药物小分子与牛血清白蛋白的光谱法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分别采用紫外-可见吸收光谱、荧光光谱为研究手段,研究了几种有机小分子与牛血清白蛋白(bovine serum albumin, BSA)的相互作用。主要包括两个方面的内容:一、综述了有机小分子与血清白蛋白相互作用的研究现状及意义;二、在模拟人体生理条件下研究了几种有机小分子与BSA相互作用的光谱信息,并结合化学计量学对其数据进行解析。光谱法在小分子与生物大分子相互作用的研究领域的应用日益广泛,但是光谱法结合化学计量学来探讨小分子与血清白蛋白的结合作用的文章还比较少。本论文尝试将多种化学计量学方法用于解析实验得到的光谱数据,讨论了方法的原理和实际应用,并探讨了化学计量学在复杂的生物化学体系中实现同时解析多组分平衡浓度和纯光谱的可行性。
     论文第一部分首先简要的介绍了蛋白质的定义、结构、功能和性质等,然后依次对小分子与血清白蛋白相互作用的研究方法、研究内容和存在的问题等方面展开了评述,探讨了化学计量学在小分子与血清白蛋白相互作用研究中的应用。最后还展望了小分子与血清白蛋白相互作用研究的发展趋势,将新探针的开发、各种仪器方法的联用及化学计量学方法的引入作为研究重点。
     论文第二部分运用荧光,紫外-可见以及同步荧光光谱研究了山姜素(APT)与BSA的相互作用。把所测得的混合物的一系列光潜数据用化学计量学方法—多元曲线解析-交替最小二乘法(MCR-ALS)来解析,得到混合物中纯物质光谱图和浓度图,这是一般方法所得不到的信息。而且,体系中生成的APT-BSA复合物被解析出来,这也进一步说明APT对BSA的内源荧光的猝灭是属于静态猝灭,并且形成了APT-BSA复合物。本文还计算出反应的结合常数(Ka(ave)=2.34×106 L mol-1)、结合位点数(n=1)以及热力学常数(ΔH0,ΔS0和ΔG0),数据表明APT与BSA之间的作用力主要是疏水作用。通过把APT与BSA相互作用的热力学参数与具有类似分子结构的柯因和wogonin与BSA相互作用的热力学参数进行比较,结果表明焓变随分子结构的变化影响不大,此为熵驱动反应。BSA与APT相互作用的同步荧光光谱表明APT与BSA结合之后对BSA的空间构象有一定影响。APT与位点探针的竞争结合实验说明APT在BSA上的结合位点是在Ⅰ位。
     论文第三部分是运用荧光光谱法来研究溴鼠灵(BDF)与牛血清白蛋白(BSA)的相互作用。所测得的荧光光谱用SIMPLISMA进行解析,这也是SIMPLISMA首次被用于小分子与BSA相互作用的研究,从中抽取了BDF-BSA混合体系中单个组分的纯光谱图。解析所得的光谱图中含有BDF-BSA复合物的光谱,这也就说明BDF与BSA相互作用机制是静态猝灭。通过做BSA对BDF荧光敏化作用的实验,结果表明BDF浓度越高,体系中的荧光量子产率就越大,导致BSA对BDF的敏化效应越强。同步荧光光谱和三维荧光光谱是用于研究BSA构象变化较好的方法,实验发现BDF的加入很明显的改变了BSA的空间构象,使得BSA分子中色氨酸残基的极性增加,疏水性下降,而BDF的加入并不会导致BSA分子中酪氨酸残基周围的环境发生变化。曙红Y是一种新的Ⅰ位探针,本文利用曙红Y来研究BDF在BSA上的结合位点,结果表明曙红Y与BDF并不会同时结合在BSA上,而是发生竞争作用,曙红Y把BDF竞争来。
     论文第四部分用荧光光谱法研究了克百威(carbofuran, CF)及其降解产物(carbofuran catabolite,CFP)与BSA结合反应的光谱行为。实验发现,CFP比CF对BSA有更强的荧光猝灭作用。本为采用了MCR-ALS来解析所得到的荧光光谱图,得出溶液中存在三个组分,也就是说CF(CFP)与BSA都发生了静态猝灭作用产生了复合物。同时用三维荧光光谱和同步荧光光谱法探讨了CF及CFP对BSA构象的影响,为预防和医治CF及CFP中毒提供了重要的依据。最后本文还研究了金属离子对它们之间作用的影响。
     论文第五部分在生理pH条件下用荧光光谱法和紫外光谱法结合化学计量学来研究10-羟基喜树碱(10-HCPT)与BSA的相互作用,结果发现10-HCPT对BSA的内源荧光有静态猝灭作用。本文以华法林作为标记药物,采用三维荧光技术,分别对竞争实验过程进行扫描,进而用平行因子法(PARAFAC)处理所得三维数据,并根据蛋白质结合位上药物的置换作用确定了10-HCPT的结合位置是BSA的siteⅠ。利用同步荧光光谱,考察了10-HCPT对BSA构象的影响,结果发现,10-HCPT的加入使BSA构象发生变化,BSA内部氨基酸残基所处环境的疏水性下降。
The reaction mechanism of small molecules with Protein was studied by fluorescence spectroscopy (FS) and UV spectroscopy (UV) and interaction of several organic molecules with bovine serum albumin (BSA) were investigated. There are two parts in this work:1. the recent developments and its significance of interaction between organic molecules and serum albumin were summarized; 2. the binding interaction of several organic molecules with BSA were studied by kinds of spectroscopy methods under simulated physiological conditions and the spectral data were resolved by chemometrics methods in turns. Spectroscopic techniques are widely used in analytical chemistry, however, the spectroscopic investigation combined with chemometrics, particularly for the interaction of small molecules and macromolecules, are relatively few. The application of chemometrics method in processing of spectral data also has been developed. And the application of chemometrics in complicated biochemical systems can be used to solve some problems and the equilibrium concentration and pure spectra of each component can be obtained.
     In the first section, the definition, structure, function and nature of proteins were introduced briefly. Furthermore, the research methods and existent problems of interaction between small molecules and proteins were reviewed in turns. The application of chemometrics in the field of protein research was discussed. At last, forecasting the development trends and exploiting new probes, applying various techniques simultaneously and the use of chemometrics were chosen as the emphasis of this thesis.
     In the second section, the binding interaction of Alpinetin (APT) with BSA was studied by fluorescence, UV-visible and synchronous fluorescence spectroscopy (SFS). The measured complex spectra were resolved by multivariate curve resolution-alternating least squares (MCR-ALS), which yielded a host of data and information, which otherwise would have been impossible to obtain. The extracted profiles corresponded to the spectra of the single species in the APT/BSA mixture. In addition, the presence of the APT-BSA complex was demonstrated, and it was shown that the associated quenching of the fluorescence from the BSA protein resulted from the formation of APT-BSA complex via a static mechanism. The binding constant (Ka(ave)= 2.34×106 L mol-1) and the number of sites (n=1) were obtained by fluorescence methods as were the thermodynamic parameters (ΔH0,ΔS0 andΔG0). This work suggested that the principal binding between APT to BSA was facilitated by hydrophobic interactions. The thermodynamic parameters for APT were compared to those from the structurally similar Chrysin and Wogonin molecules. It appeared that the entropy parameters were relatively more affected by the small structural changes. SFS from the interaction of BSA and APT showed that the ligand affected the conformation of BSA. The competitive interaction of APT and site makers with BSA indicated site I as the binding area of APT in BSA.
     In the third section, the association of brodifacoum (BDF) with BSA was monitored with the using of fluorescence spectroscopy. The measured spectra were resolved by SIMPLISMA, which was the first application to the system concerned with the interaction of BSA with small molecules, and the extracted profiles corresponded to the spectra of the single species in the BDF/BSA mixture. In addition, the presence of the BDF-BSA complex was demonstrated, and it was shown that the associated quenching of the fluorescence from the BSA protein resulted from the formation of BDF-BSA complex via a static mechanism. Fluorescence sensitization of BSA to BDF also was studied by adding different concentration of BSA into different concentration of BDF. The results showed that the higher concentration corresponds the more quantum efficiency resulting in stronger sensitization. Synchronous fluorescence spectra three-dimensional fluorescence spectroscopy was used to study the conformation change of BSA invoked by BDF. As a result, BDF could lead to the conformation change of BSA apparently and the polarity around the Trp residues on BSA increased and the hydrophobicity decreased, while the interaction of BSA with BDF did not have a distinct effect on the conformation of the microenvironment around Tyr. The binding sites of BDF on BSA were studied by using Eosin Y which is a new site marker and has been found to bind to site I. The conclusion was obtained that the two molecules, BDF and Eosin Y, did not readily share a common binding site on the BSA protein rather than the BDF been replaced by EY absolutely.
     In the forth section, The binding interaction of carbofuran (CF) and its degradation product, 2,3-dihydro-2,2-dimethyl-7-hydroxy benzofuran (carbofuranphenol, CFP), with BSA was studied by spectrofluorimetry using chemometrics approaches. It was shown that both CF and CFP quenched the intrinsic fluorescence of BSA via a static mechanism. By making use of the chemometrics techniques, SVD and MCR-ALS, to solve the data obtained from the fluorescence spectrum of the interaction of either CF or CFP with BSA, we can draw a conclusion that there were three components exiting in the mixture solutions of BSA and either carbofuran or its degradation product, in other words, they interacted each other and gave birth to a complex. Synchronous and three-dimensional fluorescence spectroscopy of the interaction of BSA with either CF or CFP showed that the molecular structure of the BSA was changed significantly, which is consistent with the known toxicity of the pesticide i.e., the protein is denatured. The value of the binding constant K of BSA with its degradation product is bigger than that of BSA with CF which illuminated its degradation product is more toxic than its parent, CF. In addition, the effect of some metal ions on the binding constants of either CF or CFP with BSA was also investigated.
     In the fifth section, the binding interaction of the 10-hydroxycamptothecin (10-HCPT) with BSA, using warfarin as a fluorescence probe, was studied by spectrofluorimetry and UV-vis spectroscopy with the aid of chemometrics. The result indicated that the endogenetic fluorescence quenching of BSA by 10-HCPT is static quenching. In this work, the competitive interaction of the 10-HCPT and warfarin with BSA was also studied by three-way excitation-emission fluorescence by parallel factor analysis (PARAFAC). The estimated relative concentration profiles of the components showed that the binding site of the 10-HCPT on BSA is site I. The effect of 10-HCPT on the conformation of BSA was studied by synchronous fluorescence technique, and the results indicated that the conformation of BSA was changed when 10-HCPT was added, and the hydrophobic properties of the environment of residues in BSA decreased.
引文
[1]Stevens M.M., Allen S., Davies M.C., Roberts C.J., Sakata J.K., Tendler S.J.B., Tirrell D.A., Williams P.M. Molecular level investigations of the inter-and intramolecular interactions of pH-responsive artificial triblock proterins [J]. Biomacromolecules,2005,6(3):1266-1271.
    [2]Brown M.B., Miller J.N., Seare N.J. An investigation of the use of Nile Red as a long-wavelength fluorescent probe for the study of α1-acid glycoprotein-drug interactions [J]. J. Pharm. Biomed. Anal.,1995,13(8): 1011-1017.
    [3]Yang X.J, Chou J., Sun G.Q., Yang H., Lu T.H. Synchronous fluorescence spectra of hemoglobin:A study of aggregation states in aqueous solution [J]. Microchem. J.,1998,60(3):210-216.
    [4]Liu Y.C., He W.Y., Gao W.H., Chen X. Binding of wogonin to human gammaglobulin [J]. Int. J. Biol. Macromol., 2005,37(1-2):1-11.
    [5]谢安建,姚成立,沈玉华.Hg+与胆汁蛋白质相互作用研究[J].无机化学学报,2005,21(3):413-416.
    [6]Cater D.C., Ho J.X. Structure of serum albumin [J]. Adv. Protein Chem.,1994,45:153-203.
    [7]Kragh-Hansen U. Molecular aspects of ligand binding to serum albumin [J]. ASPET,1981,33(1):17-53.
    [8]Arora J.P.S., Singh R.P., Soam D., Kumar R. The interaction between bovine serum albumin and the molybate ions [J]. Bioelectrochem. Bioenerg.,1983,10(5-6):441-450.
    [9]Sulkowska A. Interaction of drugs with bovine and human serum albumin [J]. J. Mol. Struct.,2002,614(1-3): 227-232.
    [10]Fleury F., Kudelina I., Nabiev I. Interactions of lactone, carboxylate and self-aggregated forms of camptothecin with human and bovine serum albumin [J]. FEBS Lett.,1997,406(1-2):151-156.
    [11]Ashoka S., Seetharamappa J., Kandagal P.B., Shaikh S.M.T. Investigation of the interaction between trazodone hydrochioride and bovine serum albumin [J]. J. Lumin.,2006,121(1):179-186.
    [12]Sulkowska A., Rownicka J., Bojko B., Kowski W.S. Interaction of anticancer drugs with human and bovine serum albumin [J]. J. Mol. Struct.,2003,651:133-140.
    [13]Borissevitch I.E., Tominaga T.T., Imasato H., Tabak M Resonance light scattering study of aggregation of two water soluble porphyrins due to their interaction with bovine serum albumin [J]. Anal. Chim. Acta,1997,343(3): 281-286.
    [14]Borissevitch I.E., Tominaga T.T., Schmitt C.C. Photophysical studies on the interaction of two water-soluble porphyrins with bovine serum albumin. Effects upon the porphrin triplet state characteristics [J]. J. Photochem. Photobiol. A,1998,114(3):201-207.
    [15]Kamat B.P., Scetharamappa J. In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin [J]. J. Pharm. Biomed. Anal.,2004,35(3):655-664.
    [16]Li J.C., Li.N., Wu Q.H., et al. Study on the interaction between clozapine and bovine serum albumin. J. Mol. Struct.,2007,833(1-3):184-188.
    [17]Channu B.C., Kalpana H.N., Eregowda G.B., Dass C., Houghton P.J., Thimmaiah K.N. Interaction of substituted phenoxazine chemosensitizers with bovine serum albumin [J]. J. Pharm. Biomed. Anal.,1999,21(4):775-785.
    [18]Shobini J., Mishra A.K., Sandhya K. Interaction of coumarin derivatives with human serum albumin:investigation by fluoescence spectroscopic technique and modeling studies [J]. Spectrochim. Acta Part A,2001,57(5): 1133-1147.
    [19]Andre C., Guillaume Y.C. Anti-coagulant rodenticide binding properties of human serum albumin:a biochromatographic approach [J]. J. Chromatogr. B,2004,801(2):221-227.
    [20]Long Y., Chen J., Zhang Z.H., Yao S.Z. Real-time investigation of the interaction between primaquine phosphate and bovine serum albumin (BSA) by piezoelectric quartz crystal impedance analysis [J]. J. Biotechnol.,2003, 105(1-2):105-116.
    [21]Jiang C.Q., Gao M.X., Meng X.Z. Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples [J]. Spectrochim. Acta Part A,2003,59(7):1605-1610.
    [22]Cui F.L., Fan J., Li W., Fan Y.C., Hu Z.D. Fluorescence spectroscopy studies on 5-aminosalicylic acid and zinc 5-aminosalylicylate interaction with human serum albumin [J]. J. Pharm. Biomed. Anal,2004,34(1):189-197.
    [23]颜承农,上官云凤,刘义.芦氟沙星与牛血清白蛋白作用的热力学特征[J].理化检验-化学分册,2004,40(3):132-134.
    [24]Ashoka S., Seetharamappa J., Kandagal P.B., Shaikh S.M.T. Investigation of the interaction between trazodone hydrochloride and bovine serum albumin[J]. J. Lumin.,2006,121(1):179-186.
    [25]Bertucci C., Domenici E. Reversible and covalent binding of drugs to human serum albumin:Methodological approaches and physiological relevance [J]. Curr. Med. Chem.,2002,9(15):1463-1481.
    [26]Feng X.Z., Lin Z., Yang L.J., Wang C., Bai C.L. Investigation of the interaction between acridine orange and bovine serum albumin [J]. Talanta,1998,47(5):1223-1229.
    [27]Qin Y., Zhang Y.X., Yan S.L., Ye L. A comparison study on the interaction of hyperoside and bovine serum albumin with Tachiya model and Stern-Volmer equation [J]. Spectrochim. Acta Part A:Mol. And Biomol. Spectrosc.,2010,75(5):1506-1010.
    [28]杨频,高飞.生物无机化学原理[M].北京:科学出版社,2002.
    [29]杨曼曼,杨频,张立伟.荧光法研究咖啡酸类药物与白蛋白的作用[J].科学通报,1994,39(1):31-35.
    [30]Ni Y.N., Wang S.S., Kokot S. Spectrometric study of the interaction between Alpinetin and bovine serum albumin using chemometrics [J].Anal. Chim. Acta,2010,663(2):139-146.
    [31]陈晓波,康栋国,李菘,赵承易,陈晓珊,丁焕平.利福平与人血清白蛋白作用的荧光光谱[J].光谱学与光谱分析,2006,4(26):674-677.
    [32]陈韵,孔祥荣,沈星灿.尼古丁与BSA相互作用的光谱研究[J].光谱学与光谱分析,2005,25(10):1652-1657.
    [33]Zhao H.W., Ge M., Zhang Z.X., Wang W.F., Wu G.Z. Spectroscopic studies on the interaction between riboflavin and albumin[J]. Spectrochim. Acta Part A,2006,65(3-4):811-817.
    [34]Suldow G., birkett D.J., Wade D.N. Characterization of two specific drug binding-sites on human serum albumin [J]. Mol. Pharm.,1975,11(6):824-832.
    [35]Scatchard G. The attractions of protein for small molecules and ions. Ann. NYAcad. Sci.,1949,51(4):660-673.
    [36]Bian Q., Liu J., Tian J., Hu Z. Binding of genistein to human serum albumin demonstrated using tryptophan fluorescence quenching [J]. Int. J. Biol. Macromol.,2004,34(5):333-337.
    [37]Tian J.N., Liu J.Q., Tian X., Hu Z.D., Chen X.G. Study of the interaction of kaempferol with bovine serum albumin [J]. J. Mol. Struct.,2004,691(1-3):197-202.
    [38]Tian J., Liu J., Tian X., Hu Z.D., Chen X.G. Interaction of wogonin with bovine serum albumin [J]. Bioorg. Med. Chem.,2005,13(12):4124-4129.
    [39]He W.Y., Li Y., Xue C.X., Hu Z.D., Chen X.G., Sheng F.L. Effect of Chinese medicine alpinetin on the structure of human serum albumin [J]. Bioorg. Med. Chem.,2005,13(5):1837-1845.
    [40]Liu J.Q., Tian J.N., Tian X., Hu Z.D., Chen X.G. Interaction of islfraxidin with human serum albumin [J]. Bioorg. Med. Chem.,2004,12(2):469-474.
    [41]Liu J.Q., Tian J. N., He W.Y., Xie J.P., Hu Z.D., Chen X.G. Spectrofluorimetric study of the binding of daphnetin to bovine serum albumin[J]. J. Pharm. Biomed. Anal.,2004,35(3):671-677.
    [42]Li Y., He W.Y., Tian J.N., Tang J.H., Hu Z.D., Chen X.G. The effect of Berberine on the secondary structure of human serum albumin[J]. J. Mol. Struct.,2005,743(1-3):79-84.
    [43]Li Y, He W.Y., Liu J.Q., Sheng F.L., Hu Z.D., Chen X.G. Binding of the bioactive component Jatrorrhizine to human serum albumin [J]. Biochim. Biophys. Acta,2005,1722(1):15-21.
    [44]陈国珍.荧光分析法[M].北京:科学出版社,1990.
    [45]Peters T. Serum albumin [J]. Adv. Protein Chem.,1985,37:161-245.
    [46]张勇,张贵珠,王月梅.光谱法研究撕裂霉素、血清白蛋白以及金属离子间的相互作用[J].分析科学学报,2000,16(6):445-448.
    [47]Forster T. Modern quantum chemistry [J]. New York:Academic Press,1965.
    [48]Sklar L.A., Hudson B.S., Simoni R.D. Conjugated polyene fatty acids as fluorescence probes:binding to bovine serum albumin [J]. Biochemistry,1977,16(23):5100-5108.
    [49]Bi S.Y., Sun Y.T., Qiao C.Y., Zhang H.Q., Liu C.M. Binding of several anti-tumor drugs to bovine serum albumin: Fluorescence study [J]. J. Lumin.,2009,129(5):541-547.
    [50]Yang J., Jing Z.H., Jie J.J., Guo P. Fluorescence spectroscopy study on the interaction between Gossypol and bovine serum albumin [J]. J. Mol. Struct.,2009,920(1-3):227-230.
    [51]Yamasaki K., Maruyama T., Takadate A., Suenaga A., Kragh-Hansen U., Otagiri M. Characterization of site I human serum albumin using spectroscopic analyses:lacational relations between regions I b and I c of site I [J]. J. Pharm. Sci.,2004,93(12):3004-3010.
    [52]Hu Y.J., Liu Y., Zhao R.M., Dong J.X., Qu S.S. Spectroscopic studies on the interaction between methylene blue and bovine serum albumin[J]. J. Photochem. Photobiol. A,2006,179(3):324-329.
    [53]Xiao J.B., Shi J., Cao H., Wu S.D., Ren F.L., Xu M. Analysis of binding interaction between puerarin and bovine serum albumin by multi-spectroscopic method [J]. J. Pharm. Biomed. Anal.,2007,45(4):609-615.
    [54]Gonzalez J.Z., Acquotteh J., Cayre I. Fluorescence quenching studies on binding fluoreno-9-spiro-oxazolidinedione to human serum albumin [j]. Chem. Biol. Interact.,1992,84(3):221-228.
    [55]Huahcha T.O., Luik A.I., Naboka YN. Conformation changes of albumin in its interaction with physiologically active compounds as studied by quasi-elastic light scattering spectroscopy and ultrasonic method [J]. Talanta, 2002,53(1):29-34.
    [56]Arakawa T., Kita Y. Stabilizing effects of caprylate and acetyltryptophanata on heat-induced aggregation of bovine serum albumin [J]. Biochim. Biophys. Acta,2000,1479(1-2):32-36.
    [57]Honore B., Pedersen A.O. Conformational changes in human serum albumin studied by fluorescence and absorption spectroscopy [J]. Biochem. J.,1989,258(1):199-204.
    [58]杨池明.脑神经退行性疾病中的有机化学[J].高等学校化学学报,2002,23(2):243-250.
    [59]张保林,王文清,袁荣尧.蒽醌及黄酮类化合物与牛血清白蛋白结合的反应研究[J].化学学报,1994,52:1208-1212.
    [60]Khan M.M., Tayyab S. Understanding the role of internal lysine residues of serum albumins in conformational stability and bilirubin binding [J]. Biochim. Biophys. Acta,2001,1545(1-2):263-277.
    [61]张立伟,杨频,王芳.二价铜、锌离子对盐酸巴马亭与牛血.清白蛋白结合反应光谱的影响研究[J].无机化学学报,1999,15(4):545-548.
    [62]陈艳晶,杨景和,吴霞,曹伟,庄海燕.邻苯二酚-溴化十六烷基三甲铵-核酸共振光散射体系的研究及其分析应用[J].分析化学,2003,31(11):1352-1355.
    [63]刘绍璞,龙秀芬.某些分子光谱分析法测定核酸的进展[J].理化检验化学分册,2002,38(2):101-107.
    [64]Liu S., Kong L. Interaction between isopoly-tungstic acid and berberine hydrochloride by resonance Rayleigh scattering spectrum [J].Anal. Sci.,2003,19(7):1055-1060.
    [65]汪尔康.分析化学新进展[M].北京:科学出版社,2002.
    [66]Liang H., Huang J., Tu C.Q., Zhang M., Zhou Y.Q., Shen P.W. The subsequent effect of interaction between Co2+ and human serum albumin or bovine serum albumin [J]. J. Inorg. Biochem.,2001,85(1):167-171.
    [67]何梅,夏之宁,阴永光,刘峥.紫外光谱研究中药大黄有效成分与牛血清白蛋白的相互作用[J].中国现代应用药学杂志,2004,21(6):429-432.
    [68]张朝红,臧树良,耿兵,铁梅,吴林友,苏欣,冯冲.紫外和圆二色光谱法研究丁基锡化合物与牛血清白蛋白的相互作用[J].分析科学学报,2005,21,179-181.
    [69]Shen X.C., Liang H., Guo J.H., Song C., He X.W., Yuan Y.Z. Studies on the interaction between Ag+ and human serum albumin [J]. Journal of Inorganic Biochemistry,2003,95(2):124-130.
    [70]沈星灿,梁宏,何锡文,王新省.圆二色光谱分析蛋白质构象的方法及研究进展[J].分析化学,2004,32(3):388-394.
    [71]Wang Y.L., Wang H.F. Interaction of bovine serum albumin with benzote [J]. ASNUP,2002,38(2):159-163.
    [72]Wu Y., Ji X.B., Hu S.S. Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin [J]. Bioelectrochemistry,2004,64(1):91-97.
    [73]Kaibara A., Hirose M., Nakagawa T. Evaluation of hydrophobic interaction between acidic drugs and bovine serum albumin by reversed-phase high-performance liquid chromatography [J]. Chem. Pharm. Bull.,1991,39(3): 720-723.
    [74]Schmid M.G., Gubitz G., Kilar F. Stereoselective interaction of drug enantiomers with human serum transferrin in capillary zone electrophoresis (Ⅱ) [J]. Capillary Electrophoresis,2005,19(2):282-287.
    [75]Sarre S., Vanbelle K., Smolders I., Krieken G., Michotte Y. The use of microdialysis for the determination of plasma protein binding of drugs [J]. J. Pharm. Biomed Anal.,1992,10(10-12):735-739.
    [76]Moore J.M. NMR screening in drug discovery [J]. Curr. Opin. Biotechnol.,1999,10(1):54-58.
    [77]王钢力,田金改,林瑞超.x射线衍射分析法在中药分析中的应用[J].中国中药杂志,1999,24(7):387-389.
    [78]Hage D.S., Noctor T.A.G., Wainer I.W. Characterization of the protein binding of chiral drugs by high-performance affinity chromatography:interaction of R-and S-ibuprofen with human serum albumin [J]. J. Chromatogr. A,1995, 693(1):23-32.
    [79]Ding Y.S., Lin B.C., Huie C.W. Binding studies of porphyrins to human serum albumin using affinity capillary eletrophoresis [C].3rd International Symposium on Capillary Electroporesis and Related Microscale Techniques. Hong Kong,2000.
    [80]Zhang W.B., Zhang L.H., Ping G.C., Zhang Y.K., Kettrup A. Study on the multiple sites binding of human serum albumin and porhpyrin by affinity capillary electrophoresis [J].J. Chromatogr. B,2002,768(1):211-214.
    [81]Chu Y.H., Chen J.K., Whitesides G.M. Affinity electrophoresis in multisectional polyacrylamide slab gels is a useful and convenient technique for measuring binding constants of aryl sulfonamides to bovine carbonic anhydrase-B [J].Anal. Chem.,1993,65(10):1314-1322.
    [82]Dunn W.J., Wold S. Use of chemometrics in environmental toxicology and structrure:Activity relationships [J]. Trac-trends Anal. Chem.,1986,5(3):53-56.
    [83]Garkani-Nejad Z., Seyedbagheri S.A. Prediction of electrophoretic mobilities of organic acids using artificial neural networks with three different tranining functions [J]. Chromatographia,2010,71(5-6):431-437.
    [84]Astakhov S.A., Stogbauer H., Kraskov A., Grassberger P. Monte carlo algorithm for least dependent non-negative mixture decomposition [J]. Anal. Chem.,2006,78(5):1620-1627.
    [85]Pourbasheer E., Riahi S., Ganjali M.R., Norouzi P. Application of genetic algorithm-support vector machine for prediction of BK-channels activity [J]. Eur. J. Med. Chem.,2009,44(12):5023-5028.
    [86]Cassale M., Sinelli N., Oliveri P., Di Egidio V., Lanteri S. Chemometrical strategies for feature selection and data compression applied to NIR and MIR spectra of extra virgin olive oils for cultivar identification [J]. Talanta,2010, 80(5):1832-1837.
    [87]Lee J.L.S., Gilmore I.S., Fletcher I.W., Seah M.P. Multivariate image analysis stragies for ToF-SIMS images with topography [J]. Surf.interface anal.,2009,41(8):653-665.
    [88]Ni Y.N., Su S.J., Kokot S. Spectrofluorimetric studies on the binding of salicylic acid to bovine serum albumin using warfarin and ibuprofen as site markers with the aid of parallel factor analysis [J]. Anal. Chim. Acta,2006, 580(2):206-215.
    [1]Kandagal P.B., Ashoka S., Seetharamappa J., Shaikh S.M.T., Ilare O.B. Study of the interaction of an anticancer drug with human and bovine serum albumin:Spectroscopic approach [J]. J. Pharm. Biomed. Anal.,2006,41(2): 393-399.
    [2]Zhu X.S., Sun J., Hu Y.Y. Determination of protein by hydroxypropyl-beta-cyclodextrin sensitized fluorescence quenching method with erythrosine sodium as a fluorescence probe [J]. Anal. Chim. Acta,2007,596(2):298-302.
    [3]Wang Y.Q., Zhang H.M., Zhang G.C. Studies of the interaction between palmatine hydrochloride and human serum albumin by fluorescence quenching method [J]. J. Pharm. Biomed. Anal.,2006,41(3):1041-1046.
    [4]He X.M., Carter D.C. Atomic-structure and chemistry of human serum albumin [J]. Nature,1992,358(6383): 209-215.
    [5]Qi Z.D., Zhou B., Xiao Q., Chuan S., Liu Y., Dai J. Interaction of rofecoxib with human serum albumin: Determination of binding constants and the binding site by spectroscopic methods [J]. J. Photochem. Photobiol. A, 2008,193(2-3):81-88.
    [6]Wang Y.Q., Zhang H.M., Zhang G.C., Tao W.H., Fei Z.H., Liu Z.T. Spectroscopic studies on the interaction between silicotugstic acid and bovine serum albumin [J]. J. Pharm. Biomed. Anal.,2007,43(5):1869-1875.
    [7]Bertucci C., Cimitan S., Riva A., Morazzoni P. Binding studies of taxanes to human serum albumin by bioaffinity chromatography and cicular dichroism [C]. 11th Meeting on recent developments in pharmaceutical analysis, Italy, 2005.
    [8]Lamson D. W., Brignall M.S. Antioxidants and cancer, part 3:quercetin [J]. Altern. Med. Rev.,2000,5(3):196-208.
    [9]Wilmsen P.K., Spada D.S., Salvador M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems [J]. J. Agric. Food Chem.,2005,53(12):4757-4761.
    [10]Jung H.A., Jung M.J., Kim J.Y., Chung H.Y., Choi J.S. Inhibitory activity of flavonoids from Prunus savidiana and other flavonoids on total ROS and hydroxyl radical generation [J]. Arch. Pharmacol Res.,2003,26(10):809-815.
    [11]Jiang R.W, Ye W.C., Woo K.Y., Du J., Che C.T., But P.P.H., Mak T.C.W. Molecular structures and pi-pi interactions of some flavonoid and biflavonoids [J]. J. Mol. Struct.,2002,642(1-3):77-84.
    [12]He W.Y., Li Y., Tang J.H., Luan F., Jin J., Hu Z.D. Comparison of the characterization on binding of alpinetin and cardamonin to lysozyme by spectroscopic methods [J]. Int. J. Biol. Macromol.,2006,39(4-5):165-173.
    [13]Ni Y.N., Su S.J., Kokot S. Small molecule-biopolymer interactions:Ultraviolet-visible and fluorescence spectroscopy and chemometrics [J]. Anal. Chim. Acta,2008,628(1):49-56.
    [14]de Juan A., Izquierdo-Ridorsa A., Tauler R., Fonrodona G., Casassas E. A soft-modeling approach to interpret thermodynamic and conformational transitions of polynucleotides [J]. Biophys. J.,1997,73(6):2937-2948.
    [15]Izquierdo-Ridorsa A., Saurina J., Hernandez-Cassou S., Tauler R. Second-order multivariate curve resolution applied to rank-deficient data obtained from acid-base spectrophotometric titrations of mixtures of nucleic bases [C].2nd Internet Conference in Chemometrics,1996.
    [16]Vives M., Gargallo R., Tauler R., Moreno V. Study of the interaction of cis-dichloro-(1,2 diethyl-3-amonopyrrolidine)Pt(Ⅱ) complex with poly(I), poly(C) and poly(I)center dot poly(C) [J]. J. Inorg. Biochem., 2001,85(4):279-290.
    [17]Kumar P., Kanchan K., Gargallo R., Chowdhury S. Application of multivariate curve resolution for the study of folding processes of DNA monitored by fluorescence resonance energy transfer [J]. Anal. Chim. Acta,2005, 536(1-2):135-143.
    [18]Tang J.H., Luan F., Chen X.G. Binding analysis of glycyrrhetinic acid to human serum albumin; Fluorescence spectroscopy, FTIR, and molecular modeling [J]. Bioorg. Med. Chem.,2006,14(9):3210-3217.
    [19]Tauler R. Multivariate curve resolution applied to second order data [J]. Chemom. Intell. Lab. Syst.,1995,30(1): 133-146.
    [20]de Juan A., Tauler R. Chemometrics applied to unravel multicomponent processes and mixtures-Revisiting latest trends in multivariate resolution [J]. Anal. Chim. Acta,2003,500(1-2):195-210.
    [21]Zachariassen C.B., Larsen J., van den Berg F., Bro R., De Juan A., Tauler R. Comparison of PARAFAC2 and MCR-ALS for resolution of an analytical liquid dilution system [J]. Chemom. Intell. Lab. Syst.,2006,83(1): 13-25.
    [22]Golub G.H., van Loan C.F. Matrix Computations [J]. John Hopkins University Press,1989.
    [23]Maeder M. Evolving factor-analysis for the resolution of overlapping chromatographic peaks [J]. Anal. Chem., 1987,9(3):527-530.
    [24]Windig W., Guilment J. Interactive self-modeling mixture analysis [J]. Anal. Chem.,1991,63(14):25-1432.
    [25]Tauler R., Smilde A., Kowalski B. Selectivity, local rank,3-way data-analysis and ambiguity in multicariate curve resolution [J]. J. Chemom.,1995,9(1):31-58.
    [26]Pan B.F., Gao F., Ao L.M. Investigation of interaction between dendrimer-coated magnetite nanoparticles and bovine serum albumin [J]. J. Magn. Magn. Mater.,2005,293(1):252-258.
    [27]Vives M., Gargallo R., Tauler R. Multivariate extension of the continuous variation and mole-ratio methods for the study of the interaction of intercalators with polynucleotides [J]. Anal. Chim. Acta,2000,424(1):105-114.
    [28]Eftink M.R. Fluorescence quenching reations:probing biological macromolecular structures [M]. New York: Biophysical and Biochemical Aapects of Fluorescence Spectroscopy,1991.
    [29]Wang C., Wu Q.H., Wang Z., Zhao J. Study of the interaction of carbamazepine with bovine serum albumin by luorescence quenching method [J]. Anal. Sci.,2006,22(3):435-438.
    [30]Zhao H. W., Ge M., Zhang Z.X., Wang W.F., Wu G.Z. Spectroscopic studies on the interaction between riboflavin and albumins [J]. Spectrochim. Acta Part A,2006,65(3-4):811-817.
    [31]Ulrich K.H. Molecular aspects of ligand binding to serum albumin [J]. Pharmacol. Rev.,1981,33:17-53.
    [32]Suldlow G., Birkett D.J., Wade D.N. The characterization of two specific drug binding sites on human serum albumin[J]. Mol. Pharmacol.,1975,11:824-832.
    [33]Suldlow G., Birkett D.J., Wade D.N. Further characterization of specific drug binding sites on human serum albumin [J]. Mol. Pharmacol.,1976,12:1052-1061.
    [34]Ni Y.N., Zhang X., Kokot S. Spectrophotofluorimetric study of the interaction between Trazodone hydrochloride and bovine serum albumin [J]. Anal. Lett.,2007,40:2721-2736.
    [35]Olsson T.S.G., Williams M.A., Pitt W.R., Ladbury J.E. The thermodynamics of protein-ligand interaction and solvation:insights for ligand design [J]. J. Mol. Biol.,2008,384(4):1002-1017.
    [36]Li Y., He W.Y., Liu J.Q., Sheng F.L., Hu Z.D., Chen X.G. Binding of the bioactive component jatrorrohizine to human serum albumin [J]. Biochim. Biophys. Acta,2005,1722:15-21.
    [37]Xiao J.B., Shi J., Cao H., Wu S., Ren F., Xu M. Analysis of binding interaction between puerarin and bovine serum albumin by multi-spectroscopic method [J]. J. Pharm. Biomed. Anal.,2007,45(4):609-615.
    [38]Zhang G.W., Chen X.X., Guo J.B., Wang J.J. Spectroscopic investigation of the interaction between chrysin and bovine erum albumin [J]. J. Mol. Struct.,2009,921(1-3):346-351.
    [39]Tian J.N., Liu J.Q., Hu Z.D., Chen X.G. Interaction of wogonin with bovine serum albumin [J]. Bioorg. Med. Chem.,2005,13(12):4124-4129.
    [40]Hu Y.J., Liu Y., Zhao R.M., Dong J.X., Qu S.S. Spectroscopic studies on the interaction between methylene blue and bovine serum albumin [J]. J. Photochem. Photobiol. A,2006,179(3):324-329.
    [41]Lloyd J.B.F. Synchronized excitation of fluorescence emission spectra [J]. Nature Phys. Sci.,1971,231:64-65.
    [42]Zhang G.W., Wang A.P., Jiang T., Guo J.B. Interaction of the irisflorentin with bovine serum albumin:A fluorescence quenching study [J]. J. Mol. Struct.,2008,891(1-3):93-97.
    [43]Shaklai N., Yguerabide J., Ranney H.M. Interaction of hemoglobin with red blood-cell membranes as shown by a fluorescent chromophore [J]. Biochemistry,1977,16(25):5585-5592.
    [1]Carter D.C., Ho J.X. Structure of serum albumin [J]. Adv. Protein Chem.,1994,45(45):153-203.
    [2]He X.M., Carter D.C. Atomic structure and chemistry of human serum albumin [J]. Nature,1992,358(6383): 209-215.
    [3]Ni Y.N., Su S.J., Kokot S. Spectrofluorimetric studied on the binding of salicylic acid to bovine serum albumin using warfarion and ibuprofen as site markers with the aid of parallel factor analysis [J]. Analytica Chimica Acta, 2006,580(2):206-215.
    [4]Deepa S., Mishra A.K. Fluorescence spectroscopic study of serum albumin-bromadiolone interaction:fluorimetric determination of bromadiolone [J]. J. Pharm. Biomed. Anal.,2005,38(3):556-563.
    [5]Zhang H.X., Mei P., Yang X.X. Optical, structural and thermodynamic properties of the interaction between tradimefon and serum albumin [J]. Spectrochim. Acta Part A,2009,72(3):621-626.
    [6]Zhang Y.Z., Gorner H. Photoprocesses of Xanthene Dyes Bound to Lysozyme or Serum Albumin [J]. Photochem. and Photobiol.,2009,85(3):677-685.
    [7]Windig W., Guilment J. Interactive self-moldeling mixture analysis [J].Anal. Chem.,1991,63:1425-1432.
    [8]Wang Y.Q., Zhang H.M., Zhang G.C., Tao W.H., Tang S.H. Interaction of the flavonoid hesperidin with bovine serum albumin:A fluorescence quenching study[J]. J. Lumin.,2007,127(1):211-218.
    [9]Qi Z.D., Zhou B., Xiao Q., Shi C., Liu Y., Dai J. Interaction of rofecoxib with human serum albumin: Determination of binding constants and the binding site by spectroscopic methods [J]. J. Photochem. Photobiol. A, 2008,193(2-3):81-88.
    [10]Moreno F., Gonzalez-Jimenez J. Binding of the Promen fluorescent probe to human serum albumin-A fluorescence spectroscopic study[J]. Chem. Biol. Interact.,1999,121(16):237-252.
    [11]Leverenz H.W. An introduction to luminescence of solids [J], New York:Dover Publications,1968.
    [12]Jadhav S.A., Patil S.R. Sensitization of fluorescence of crystalline fluorine by anthracene [J]. Mater. Chem. Phys., 1999,60(2):204-210.
    [13]张立伟,杨频,王芳.二价铜、锌离子对盐酸巴马亭与牛血清白蛋白结合反应光谱的影响研究[J].无机化学学报,1999,15(4):545-548.
    [14]Zhang G.W., Wang A.P., Jiang T., Guo J.M. Interaction of the irisflorentin with bovine serum albumin:A fluorescence quenching study [J]. J. Mol. Struct.,2008,891(1-3):93-97.
    [15]Tang B.P., Wang Y.Q., Zhang D.Z. Studies on the interaction between benzidine and hemocyanin from Chinese mitten crab eriocheir japonica sinensis (Decapoda, Grapsidae) [J]. Spectrochim. Acta Part A,2009,73(4): 676-681.
    [16]Rodriguez-Cuesta M.J., Boque R., Rius F.X., Zamora D.P., Galera M.M., Frenich A.G. Determination of carbendazim, fuberidazole and thiabendazole by threedimensional excitation-emission matrix fluorescence [J]. Anal. Chim. Acta,2003,491(1):47-56.
    [17]Zhang Y.Z., Dai J., Zhang X.P., Yang X., Liu Y. Studies of the interaction between Sudan Ⅰ and bovine serum albumin by spectroscopic methods [J]. J. Mol. Struct.,2008,888(1-3):152-159.
    [18]Tang J.H., Luan F., Chen X.G. Binding analysis of glycyrrhetinic acid to human serum albumin:fluorescence spectroscopy, FTIR, and molecular modeling [J]. Bioorg. Med. Chem.,2006,14(9):3210-3217.
    [19]Sjoholm I., Ekman B., Kober A., Ljungstedt-Pahlman L., Seiving B., Sjodin T. Binding of drugs to human serum albumin:Ⅺ. The specificity of three binding sites as studied with albumin immodilized in microparticals [J]. Mol. Pharm.,1979,16:767-777.
    [20]Dufour C., Dangles O. Flavonoid-serum albumin complexation:determination of binding constants and binding sites by fluorescence spectroscopy [J]. Biochim. Biophys. Acta,2005,1721(1-3):164-173.
    [21]Kosa T., Maruyama T., Otagiri M. Species differences of serum albumin:Ⅰ. Drug binding sites [J]. Pharmaceut. Res.,1997,14(11):1607-1612.
    [22]Itoh T., Saura Y., Tsuda Y., Yamada H. Stereoselectivity and enantiomer-enantiomer interactions in the binding of ibuprofen to human serum albumin [J]. Chirality,1997,9(7):643-649.
    [23]Baroni S., Mattu M., Vannini A., Cipollone R., Aime S., Ascenzi P., Fasano M. Effect of ibuprofen and warfarin on the allosteric properties of haem-human serum albumin-A spectroscopic study[J]. Eu. J. Biochem.,2001,268(23): 6214-6220.
    [1]韩华,孙命,王天宇,贡集勋.蛋白质科学[J].学科发展,2005,20(2):107-111.
    [2]Wang Y., Cheng Y, Sun H.F. Interaction of nicotine and bovine serum albumin [J]. Chin. Chem. Lett.,2000,11(3): 247-250.
    [3]王玉田,崔立超,李艳春,王冬生.用三维荧光技术检测氨基甲酸酯类农药残留研究[J].计量技术,2006,1(3):26-28.
    [4]高鸿.分析化学前沿[J].北京:科学出版社,1991.
    [5]Guo YJ. The Application of Experimental Technologies of Flourescence in the Molecular Biology [J]. Beijing: Academic Press.1983.
    [9]Yan C.N., Zhang H.X., Liu Y., Mei P., Li K.H., Tong J.Q. Fluorescence spectra of the binding reaction between paraquat and bovine serum albumin [J]. Acta Chim. Sin.,2005,63(18):1727-1732.
    [10]Chen G Z, Huang X Zi, Zheng Z Z, Wang Z.B. Fluorescence Analytical Method [M]. Beijing:Science Press,1990.
    [11]鄢远,许金钩,陈国珍.三维荧光光谱研究蛋白质溶液构象[J].中国科学(B辑),1997,27(1):16-22.
    [12]刘志宏,蔡汝秀.三维荧光光谱技术分析应用进展[J].分析科学学报,2000,16(6):516-523.
    [13]He H., Ye H.Y., Dai L., Jiao Q.C., Chong P.H. Study on the interaction of lonefloxacin terbium complex and bovine serum albumin by fluorescence spectra [J]. Spectrosc. Spect. Anal.,2006,26(3):480-483.
    [14]Shaikh S.M.T., Seetharamappa J., Ashoka S., Kandagai P.B. A study of the interaction between bromopyrogallol red and bovine serum albumin by spectroscopic methods [J]. Dyes and Pigments,2007,73(2):211-216.
    [15]Pang Y.H., Yang L.L., Shuang S.M., Dong C., Thompson M. Interaction of buman serum albumin with bendroflumethiazide studied by fluorescence spectroscopy [J]. J. Photochem. Photobiol. B,2005,80(2):139-144.
    [1]Hsiang Y.H., Hertzberg R., Hecht S., Liu L.F. Campotothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I [J]. J. Biol. Chem.,1985,260(27):873-878.
    [2]Zhao J., Zheng X.F., Xing W., huang J.Y., Li G.X. Electrochemical studies of camptothecin and its interaction with human serum albumin [J]. Inter. J. Mol. Sci.,2007,8(1):42-50.
    [3]Harshman R.A. Foundations of the PARAFAC procedure:Models and conditions for an "explanatory" multi-model factor analysis [J]. UCLA Working Papers in Phonetics,1970,16:1-84.
    [4]Carroll J.D., Chang J.J. Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Yong" decomposition [J]. Psychometrika,1970,35(3):283-319.
    [5]Bro R. PARFAC. Tutorial and application [C].2nd Internet Conference in Chemometrics,1996.
    [6]倪永年.化学计量学在分析化学中的应用[M].北京:科学出版社,2004.
    [7]Kamat B.P. Study of interaction between fluoroquinolones and bovine serum albumin [J]. J. Pharm. Biomed. Anal., 2005,39(5):1046-1050.
    [8]李桂芝,刘永明,虢新运,王进军.荧光法研究7-乙基喜树碱、10-羟基喜树碱和牛血清白蛋白的相互作用[J].分析化学,2006,34(9):91-94.
    [9]颜梅,陈欣,孙舒婷,马洪敏,杜斌,惟琴.荧光光谱法研究二溴羟基卟啉与蛋白质的结合作用机理[J].光谱学与光谱分析,2008,28(6):1322-1326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700