纳米多孔银及复合多孔材料的制备、结构表征与催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用去合金化法合成了纳米多孔银,并通过腐蚀条件的探索对纳米多孔银的合成机理进行了研究。鉴于纳米多孔银的特殊结构和简便制备方法,本文接下来以纳米多孔银为模板,进一步合成了中空纳米多孔Pt/Ag、Pd/Ag双金属功能材料和多孔AgCI/Ag纳米复合材料。通过透射电子显微镜(TEM),X-射线衍射(XRD),高分辨透射电镜(HRTEM),能量分散X-射线分析(EDS),电子衍射(SAED)分别对材料形貌、晶体结构、材料组分进行分析。通过电化学、光催化测试研究了它们的催化性能。旨在发展简便、无有机试剂参与、温和的合成方法合成新结构材料,并探索它们在催化方面的应用价值。
     1.去合金化法制备纳米多孔银及其制备条件的研究
     选择性腐蚀制备纳米多孔材料要点是在于协调较活泼金属溶解速率与较惰性金属扩散速率。30℃下,用约50μm厚的Ag23Al77合金在1M NaOH中腐蚀72h可以得到拥有均匀三维双连续孔壁结构的纳米多孔银结构,孔径尺寸约为40nm。温度升高或腐蚀溶液浓度增大都会影响最终材料的形貌。在HCl溶液中,同样的银铝合金片腐蚀也可以得到海绵状的三维双连续孔壁纳米多孔银结构,但多孔结构表面相对粗糙。研究证实Cl-的存在对于银的表面扩散具有明显的加速作用。
     2.中空纳米多孔Pt/Ag、Pd/Ag双金属材料的制备及其电催化性质研究
     以去合金化法制备的纳米多孔银同时为物理和化学模板,通过简单的置换反应制备了中空的纳米多孔双金属材料。其中以40nm纳米多孔银为物理模板(制备方法同上)和还原剂分别与H2PtCl6,K2PdCl4溶液进行置换反应。通过电镜观察证实纳米多孔结构的孔壁被掏空,形成了中空纳米多孔双金属结构。其中Pt/Ag材料的管壁表面比较光滑,管径大概为45 nm,壁厚约7 nm,而Pd/Ag材料的管壁上有直径约为4 nm的小孔,管径约40 nm,壁厚约5nm。XRD及电子衍射数据证实两种材料都为合金。在电催化性能测试中,我们发现Pt/Ag材料具有良好的甲醇电氧化性能和抗CO中毒能力。这种纳米结构独特的催化性能、简便环保的制备方法、显著的结构优势为其在非均相催化剂和燃料电池技术中显示了潜在的应用价值。
     3.海绵状纳米多孔AgCl/Ag复合材料的制备及其可见光催化性能的研究
     多孔AgCl/Ag纳米复合材料由简便的两步路径合成。其中包括去合金化法制备纳米多孔银及其随后的与H2O2和HCl混合溶液的氯化反应。电镜分析显示AgCl/Ag继承了纳米多孔银的均匀的拥有三维双连续孔壁多孔结构,孔壁尺寸约为600 nm。紫外漫反射数据显示该材料有明显的可见光响应现象,实验研究证实这一响应源自于材料中残余的Ag。在以甲基橙溶液降解为测试系统的材料可见光催化性能测试中,在420 nm波长以上光源的照射下,多孔AgCl/Ag的降解速率为0.75mg/min·gcat,明显优于体相AgCl。这种多孔结构的复合光催化材料及其简便制备方法在环境科学中显示了广阔的应用前景。
Nanoporous silver (NPS) was fabricated by a simple dealloying method, and its formation mechanism was studied by corrosion condition controlling experiences. Based on the significative structure of NPS and its facile fabricating method, we further fabricated tubular nanoporous Pt/Ag, Pd/Ag bimetallic materials and porous AgCl/Ag nanocomposite. By means of TEM(Transmission Electron Microscopy), HRTEM(High Resolution Transmission Electron Microscopy), XRD(X-ray Diffraction), SAED(Select Area Electron Diffraction), EDS(Energy Dispersive X-Ray Spectrum) the surface morphology, crystal structure of these materials have been studied. Catalytic properties of these materials were explored by employing the electrochemical and photocatalytic test system. This paper was focusing on the developing of facile and environmental friendly fabrication method for effective catalytic material structure.
     1. Preparation of NPS by dealloying and the fabrication conditions study.
     The key point for the fabrication of nanoporous material by dealloying is to balance the dissolution speed of the more active element and the diffusion speed of the more inert element. Typically, NPS with sponge like uniform nanoporous surface can be fabricated by etching a piece of 50μm Ag23Al77 alloy in 1 M NaOH for 72 h at 30℃. The final morphology of the material was deeply related on the concentration/temperature of the corrosion solution and the corrosion time. Etching the same AgAl alloy in the HC1 solution can also obtain the nanoporous skeleton with bicontinuous pore ligaments companied with a rough surface. It is verified by the controlling experiments that the existence of Cl- can markedly accelerate the diffusion speed of Ag.
     2. Preparation and electrocatalytic performance of nanotubular porous platinum-group bimetallic nanocomposites
     Dealloying was used to synthesize nanoporous metals to act as sacrificial templates, and followed by reacting with H2PtCl6 and K2PdCl4 solution precursors. Electron spectroscopy study revealed that the ligaments of the initial porous sturcture were completely hollow and the nanotubular porous bimetallic structures have been successively fabricated. The shell surface of the Pt/Ag material was smooth and seamless with tube diameter and shell thickness around 45 nm and 7nm respectively. The tube diameter and shell thickness of Pd/Ag material were around 40 nm and 5 nm respectively, and it has small holes with diameter of~4 nm on the shell. Crystal structure study approve the both of the two material were alloy. During the electrochemical test, Pt/Ag material exhibits high catalytic activity and CO-tolerance toward methanol oxidation. These nanostructures have obvious structural advantages in terms of unique catalytic properties, simple and clean processing, and saving precious metals, which suggest their great potential for use in heterogeneous catalysis and fuel cell technologies.
     3. Fabrication of porous AgCl/Ag nanocomposites and its visible light catalysis.
     Porous AgCl/Ag nanocomposites were fabricated with a facile two-step route, which involves the formation of nanoporous silver (NPS) by dealloying AgAl alloys, and a subsequent surface chlorination in a mixed solution containing H2O2 and HCl. Morphology study revealed a porous AgCl/Ag composite nanostructure that inherited the bicontinuous spongy morphology of NPS precursors with interconnected pore channels and solid ligaments. The existence of Ag in the structure was found to contribute greatly to enhanced absorption in the visible light region. In a test system for the degradation of methylic orange (MO) dye, it was found that porous AgCl/Ag nanocomposites performed very well as efficient and stable visible light catalysts. Under non-optimized conditions, the MO dye degradation rate can reach as high as 0.75 mg/min·gcat with 420 nm irradiation. It is believed that porous AgCl/Ag and similar structures will be promising nanostructured visible light photocatalysts useful for environmental science and technology.
引文
[1]Erlebacher, J. Seshadri, R, Hard Materials with Tunable Porosity, MRS Bull. 2009,34,561-569.
    [2]刘培生.多孔材料引论.北京:清华大学出版社,2004,16-90。
    [3]Caruso. F. Caruso, R. A. Mohwald, H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating, Science,1998,282,1111-1114.
    [4]Iler, R. K. Multilayers of Colloidal Particles, J. Colloid Interface Sci.1966,21, 569-594.
    [5]Caruso, F. Shi, X, Y. Caruso, R. A. Susha, A. Hollow Titania Spheres from Layered Precursor Depositon on Sacrificial Colloidal Core Particles, Adv. Mater. 2001,13,740-744.
    [6]Liang. Z. J. Susha, A. Caruso, F. Gold Nanoparticle-Based Core-Shell and Hollow Spheres and Ordered Assemblies Thereof, Chem. Mater.2003,15, 3176-3183.
    [7]Caruso, F, Spasova, M, Susha, A. Giersig, M. Caruso, R. A. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach, Chem. Mater.2001,13,109-116
    [8]Eerenstein, W, Mathur, D. N. Scott, J. F. Multiferroic and magnetoelectric materials, Nature,2006,442,759-765.
    [9]Wang, P. Chen, D. Tang, F. Q. Preparation of Titania-Coated Polystyrene Particles in Mixed Solvents by Ammonia Catalysis, Langmuir,2006,22, 4832-4835.
    [10]Cheng, X. J. Chen, M. Wu, L. M. Gu, G. X. A Novel and Facile Method for Preparation of Monodisperse Titania Hollow Spheres, Langmuir,2006,22, 3858-3863.
    [11]Shi, W. L. Sahoo, Y. Swihart, M. T.; Prasad, P. N. Gold Nanoshells on Polystyrene Cores for Control of Surface Plasmon Resonance. Langmuir.2005, 21,1610-1617.
    [12]Schofield, E. Anodic Routes to Nanoporous Materials. Transactions of the Institute of Metal Finishing,2005,83,35-42.
    [13]Chu, S.; Wada, K. Inoue, S. Todoroki, S. Fabrication of Oxide Nanostructures On Glass by Aluminum Anodization and Sol-Gel Process. Surf. Coat. Technol.2003, 169-170.
    [14]Meldrum, F. C. Seshadri, R. Porous Gold Structures Through Templating by Echinoid Skeletal Plates. Chem. Commun.2000,29-30.
    [15]Seshadri, R. Meldrum, F. C. Bioskeletons Ss templates for ordered, Macroporous structures. Adv. Mater.2000,12,1149-1151.
    [16]Shchukin, D, G. Caruso, R. A. Template synthesis of porous gold microspheres. Chem. Commun.2003,1478-1479.
    [17]Walsh. D. Arcelli, L. Ikoma, T. Tanaka, J. Mann, S. Dextran templating for the synthesis of metallic and metal oxide sponges. Nat. Mater.2003.2,386-390.
    [18]Zhang. H. Cooper, A.1. New Approaches to the Synthesis of Macroporous Metals. J. Mater. Chem.2005,15,2157-2159.
    [19]Sun, Y. G. Xia, Y. N. Mechanistic Study on the Replacement Reaction Between Silver Nanostructures and Chloroauric Acid in Aqueous Medium. J. Am. Chem. Soc.2004,126,3892-3901
    [20]Ma, M. Y. Zhu, Y. J. Li, L. Cao, S. W. Nanostructured Porous Hollow Ellipsoidal Capsules of Hydroxyapatite and Calcium Silicate:Preparation and Application in Drug Delivery, J. Mater. Chem.2008,18,2722-2727.
    [21]Enke, D. Janowski, F. Schwieger, W. Porous Glasses in the 21st Century-a Short Review, Microporous Mesoporous Mater.2003,60,19-30.
    [22]Hood, H.P. Nordberg, M. E. Heat Treated Articles of Borosilicate Glass, U.S. Patent 2,106,744 (1938).
    [23]Masuda, H. Fukuda, K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science,268,1995, 1466-1468.
    [24]Smith, R. L. Collins, S. D. Porous Silicon Formation Mechanisms. Appl.Phys, 1992, R1,71-93.
    [25]王艳香,谭寿洪,江东亮,液相聚合相分离技术制备孔径可控的多孔碳的研究,无机材料学报,19,170-176.
    [26]Banhart, John. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams, Progress in Materials Science,2001,46,559-632
    [27]Kondo, N. Suzuki, Y. Ohji, T. High-Strength Porous Silicon Nitride Fabricated by the Sinter-Forging Technique, J. Mater. Res.2001,16,32-34.
    [28]Forty, A. J. Corrosion Micromorphology of Noble Metal Alloys and Depletion. Natrure,1979,282,597-598.
    [29]Stratmann, M. Rohwerder, M, A pore view of corrosion. Nature,2001,410, 420-421.
    [30]Ozmetin, C. Copur, M. Kocakerim, M. M. Crystallization of Silver Nitrate From Saturated Silver Nitrate Solution in Nitric Acid Chemical Technology 2001,8: 112-119.
    [31]Pickering, H.W Characteristic Features of Alloy Polarization Curves, Corros. Sci. 1983,23,1107-1120.
    [32]Newman, R. C. Sieradzki, K. Corrosion Science, MRS Bull.1999,24,12-47.
    [33]Ryan, M. R Williams, D. E. Chater, R. J. Hutton, B. M. Mcphail, D. S. Why Stainless Steel Corrodes, Nature,2002,415,770-774.
    [34]Raney, M. Method of Producing Finely-Divided Nickel. US Patent 1927, 1,628,190.
    [35]Pavlic, A. A. Adkins, H. Preparation of a Raney Nickel Catalyst, J. Am. Chem. Soc.1946,68,1471.
    [36]Swann, P.R. Mechanism of Corrosion Tunnelling with Special Reference to Cu3Au, Corrosion.1969,25,869-873.
    [37]Li, R. Sieradzki, K. Ductile-Brittle Transition in Random Porous Au. Phys. Rev. Lett.1992,68,1168-1171
    [38]Corcoran, S. G. Symp. on Critical Factors in Localized Corrosion Ⅲ, Proc. of the Electrochem. Soc.,1998,500-507
    [39]Thlorp, J. C. Sieradzki, K. Tang, L. Formation of Nanoporous Noble Metal Thin by Electrochemical Dealloying of PtxSij-x, Appl. Phys. Lett.2006,88, 033110-033110-3.
    [40]Pugh, D.V. Dulsun. A. Corcoran, S. G. Formation of Nanoporous Platinum by Selective Dissolution of Cu from Cu0.75 Pt0.25, J Mater Res,2003,18,216-221.
    [41]Lu, H. B.Li, Y. Wang, F. H. Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying. Scr Mater,2007,56,165-168.
    [42]Titherand, G. Lavite, M. Beneficial Stress-Strain Behavior of Moly-Nb Steel Line pipe, J Metal,1975,27,15
    [43]Liao, C. M. Lee, J. L. Effect of Molybdenum on Sulfide Stress Cracking Resistance of Low-Alloy Steels, Corrosion,1994,50,695.
    [44]Snyder, J, Asanithi, P.A. Dalton, B. Erlebacher, J. Stabilized Nanoporous Metals by Dealloying Ternary Alloy Precursors. Adv. Mater.2008,20,4883-4886
    [45]Roland E Zeolite as Catalysts, Sorbents and Detergents Builders. Figures, Future. In:Studies in Surface Science and Catalysis Elservier science,1989, 645-659.
    [46]Ying, J. Y. Mehner, C, P. Wong, M. S. Synthesis and Applications of Supramolecular-Templated Mesoporous Mateirals, Angew Chem Int Ed,1999,38, 56-77.
    [47]Climent, M. J. Corma, A. Iborra, S. Navarro, M. C. Primo, J. Use of Mesoporous MCM-41 Aluminosilicates as Catalysts in the Production of Fine Chemicals: Preparation of Dimethylacetals. J. Catal.1996,161,783-789.
    [48]Zielasek,V. Jurgens,B. Schulz,C. Biener,J. Biener, M. M. Hamza, A.V. Baumer, M. Gold catalysts.Nanoporous gold foams, Angew. Chem. Int. Ed.2006,45, 8241-8244.
    [49]Xu, C. X. Su, J. Xu,X. Liu,P. Zhao,H. Tian, F. Ding, Y. Low Temperature CO Oxidation over Unsupported Nanoporous Gold, J. Am. Chem. Soc.2007,129, 42-43.
    [50]Zhang, J. Liu, P. Ma, H. Ding, Y. Nanostructured Porous Gold for Methanol. Electro-Oxidation, J. Phys. Chem. C,2007,111,10382-10388.
    [51]Ge, X. Wang, R. Cui, S. Tian, F. Xu, L. Ding, Y. Structure Dependent Electrooxidation of Small Organic Molecules on Pt-decorated Nanoporous Gold Membrane Catalysts, Electrochem. Comrnun.2008,10,1494-1497.
    [52]Ge, X. Wang, R. Liu, P. Ding, Y. Platinum-Decorated Nanoporous Gold Leaf for Methanol Electrooxidation, Chem. Mater.2007,19,5827-5829.
    [53]Liu, P. Ge, X. Wang, R. Ma, H. Ding, Y. Facile Fabrication of Ultrathin Pt Overlayers onto Nanoporous Metal Membranes via Repeated Cu UPD and in-situ Redox Replacement Reaction, Langmuir 2009,25,561-567.
    [54]Wang, X. C. Yu, J. C. Ho, C. Hou, Y. Fu, X. Z. Photocatalytic Activity of a Hierarchically Macro/Mesoporous Titania, Langmuir,2005,21,2552-2559.
    [1]Miljanic, S. Frkanec, L. Biljan, T. Surface-Enhanced Raman Scattering on Molecular Self-Assembly in Nanoparticle-Hydrogel Composite, Langmuir,2006, 22,9079-9081.
    [2]Zhou, Q. Qian, G. Z. Li, Y. Two-Dimensional Assembly of Silver Nanoparticles for Catalytic Reduction of 4-nitronniline, Thin Solid Films,2008,516,953-956.
    [3]Sun, Y. G. Gates, B. Mayers, B. Crystalline Silver Nanowires by Soft Solution Processing, Nano Lett.2002,2,165-168.
    [4]Sun, Y. G. Yin, Y. D. Mayers, B. T. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(vinyl pyrrolidone, Chem. Mater.2002,14,4736-4745.
    [5]Liu, F. K. Huang, P. W. Chang, Y. C. Formation of Silver Nanorods by Microwave Heating in the Presence of Gold SeedsCryst. Growth,2005,273, 439-445.
    [6]Sun, Y. G. Xia, Y. N. Multiple-Walled Nanotubes Made of Metals, Adv. Mater. 2004,16,265-279.
    [7]Sun, Y. G. Mayers, B. Xia, Y N. Transformation of Silver Nanospheres Into Nanobelts and Triangular Nanoplates Through a Thermal Process, Nano. Lett. 2003,3,675-679.
    [8]Jiang, L. P. Xu, S. Zhu, J. M. Ultrasonic-assisted Synthesis of Monodisperse Single Crystalline Silver Nanoplates and Gold Nanorings, Inorg. Chem.2004,43, 5877-5883.
    [9]Maillard, M. Huang, P. Brus, L. Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+], Nano. Lett.2003,3,1611-1615.
    [10]Zhou, Y. Yu, S. H. Wang, C. Y. A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single-Crystal Ag Nanorods and Ag Dendrites, Adv. Mater.1999,11,850-852.
    [11]Kang, Z. H. Wang, E. B. Lian, S. Y. Surfactant-Assisted Electrochemical Method for Dendritic Silver Nanocrystals with Advanced Structure, Mater. Lett.2005,59, 2289-2291.
    [12]Sun, Y. G. Xia, Y. N. Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science,2002,298,2176-2179.
    [13]Wiley, B. Herricks, T. Sun,Y G. Polyol Synthesis of Silver Nanoparticles:Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons. Nano. Lett.2004,4,1733-1739
    [14]Imai. H. Nakamura, H. Fukuyo, T. Anisotropic Growth of Silver Crystals with Ethylenediamine Tetraacetate and Formation of Plannar and Stacked Wires. Cryst. Growth Des.2005,5,1073-1077.
    [15]Huang, H. H. Ni, X. P. Loy, G.L. Photochemical Formation of Silver Nanoparticles in Poly(n-vinylpyrrolidone). Langmuir 1996,12:909-912.
    [16]Zheng, X. J. Jiang, Z. Y. Xie, Z. X. Growth of Silver Nanowires by an Unconventional Electrodeposition without Template. Electrochem. Commun. 2007,9:629-632.
    [17]Tian, M. L. Wang, J. G. Kurtz, D. R. Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism. Nano Lett,2003,3(7):919-923.
    [18]Mock, J. J. Schultz, D. A. Schultz, S. Composite Plasmon Resonant Nanowires. Nano. Lett.2002,2,465-469.
    [19]Wang, J. G Tian, M. L. Favier. F. Microtwinned in Template-Synthesized Single-Crystal metal nanowires. J. Phys. Chem. B 2004,108,841-845.
    [20]Lu, L. Kobayashi, A. Tawa, K. Ozaki, Y. Silver Nanoplates with Special Shapes: Controlled Synthesis and Their Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Properties. Chem. Mater.2006,18, 4894-4901.
    [21]Hakamada, M. Mabuchi,M. Nanoporous Gold Prism Microassembly Through a Self-Organizing Route, Nano Lett.,2006,6,882-885.
    [22]罗远辉,郭琳.泡沫银制备工艺研究.有色金属冶炼,2005,5,43-45.
    [23]李保山.牛玉舒电沉积法制备新型发泡银催化剂.石油化工,2000,29, 909-913.
    [24]Rachel Morrish and Anthony J. Muscat, Nanoporous Silver with Controllable Optical Properties Formed by Chemical Dealloying in Supercritical CO2, Chem. Mater.2009,21,3865-3870.
    [1]Mandal, S. Roy, D. Chaudhari, R. V. Sastry, M. Pt and Pd Nanoparticles Immobilized on Amine-Functionalized Zeolite:Excellent Catalysts for Hydrogenation, Chem. Mater.2004,16,3714-3724.
    [2]Taton, T. A. Mirkin, C. A. Letsinger, R. L. Scanometric DNA Array Detection with Nanoparticle Probes. Science 2000,289,1757-1760.
    [3]Brongersma, M. L. Hartman, J. W. Atwater, H. A. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B 2000,62,356-359.
    [4]Sun, Y. Xia, Y. Increased Sensitivity of Surface Plasmon Resonance of Gold Nanoshells Compared to that of Gold Solid Colloids in Response to Environmental Changes, Anal. Chem.2002,74,5297-5305.
    [5]Bao, J. C. Liang, Y. Y. Xu, Z. Si, L. Facile Synthesis of Hollow Nickel Submicrometer Spheres, Adv. Mater.2003,15,1832-1835.
    [6]Caruso, F. Caruso, R. A. Mohwald, H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating, Science 1998,282,1111-1114.
    [7]Velikov, K. P. Blaaderen, A. Synthesis and Characterization of Monodisperse Core-Shell Colloidal Spheres of Zinc Sulfide and Silica, Langmuir 2001,17, 4779-4786.
    [8]Gao, X.; Zhang, J.; Zhang, L. Hollow Sphere Selenium Nanoparticles:Their In-Vitro Anti Hydroxyl Radical Effect, AdV. Mater.2002,14,290-293.
    [9]Mayers, B. Jiang, X. Sunderland, D. Cattle, B. Xia, Y. Hollow Nanostructures of Platinum with Controllable Dimensions Can Be Synthesized by Templating Against Selenium Nanowires and Colloids, J. Am. Chem. Soc.2003,125, 13364-13365.
    [10]Kim, S. W. Kim, M. Lee, W. Y Hyeon, T. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions, J. Am. Chem. Soc.2002,124, 7642-7643.
    [11]Sun, Y. G. Xia, Y. N. Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium, J. Am. Chem. Soc.2004,126,3892-3901
    [12]Yi, R. Shi, R. Gao, G. Zhang, N. Cui, X. He, Y. Liu, X. Hollow Metallic Microspheres:Fabrication and Characterization J. Phys. Chem. C 2009,113, 1222-1226
    [13]Liang, H. P. Lawrence, N. S. Wan, L. J. Jiang, L. Song, W. G, Jones, T. G. Controllable Synthesis of Hollow Hierarchical Palladium Nanostructures with Enhanced Activity for Proton/Hydrogen Sensing. J. Phys. Chem. C 2008,112, 338-344.
    [14]Lou, Y. B. Maye, M. M. Han, L. Luo, J.; Zhong, C. J. Gold-Platinum Alloy Nanoparticle Assembly as Catalyst for Methanol Electrooxidation. Chem. Commun.2001,473-474.
    [15]Zhou, S. H. Jackson, G. S. Eichhorn, B. AuPt alloy Nanoparticles for CO-Tolerant Hydrogen Activation:Architectural Effects in Au-Pt Bimetallic Nanocatalysts. Adv. Funct. Mater.2007,17,3099-3104.
    [16]Zach, M. P. Penner, R. M. Size-Monodisperse and Nanocrystalline Nickel Nanoparticles, AdV. Mater.2000,12,878-883.
    [17]Koifmann, Arch. Sci. Phys. Nat.1915,40,12509.
    [18]D. Zhao, Y. H. Wang, B. Yan and B. Q. Xu, Manipulation of PtAg Nanostructures for Advanced Electrocatalyst J. Phys. Chem. C 2009,113,1242-1250.
    [19]Xu, C. Wang, L. Wang, R. Wang, K. Zhang, Y. Tian, F. Ding, Y. Nanotubular Mesoporous Bimetallic Nanostructures with Enhanced Electrocatalytic Performance Adv. Mater.2009,21,2165-2169.
    [20]Tripkovic, A. V. Popovic, K. D. Grgur, B. N. Blizanac, B. Ross, P. N. Markovic, N. M. Methanol Electrooxidation on Supported Pt and PtRu Catalysts in Acid and Alkaline Solutions, Electrochim. Acta.2002,47,3707-3714.
    [21]Zhao, D. Yan, B. Xu, B. Q. Proper Alloying of Pt with Underlying Ag Nanoparticles Leads to Dramatic Activity Enhancement of Pt Electrocatalyst, Electrochem. Commun.2008,10,884-887.
    [22]He, W. Wu, X. Liu, J. Zhang, K. Chu, W. Feng, L. Hu, X. Zhou, W. Xie, S. Formation of AgPt Alloy Nanoislands via Chemical Etching with Tunable Optical and Catalytic Properties, Langmuir,2010,26,4443-4448.
    [1]Linsebigler, A. L. Lu, G. Q. Yates, J. T. Photocatalysis on TiO2 Surfaces-Principles, Mechanisms, and Selected Results, Chem. Rev.1995,95,735-758.
    [2]Lettmann, C. Hinrichs, H. Maier, W. F. Combinatorial Discovery of New Photocatalysts for Water Purification with Visible Light,Angew. Chem., Int. Ed. 2001,40,3160-3164.
    [3]Bansal, A. Madhavi, S. Tan, T. T. Y. Lim, T. M. Effect of Silver on the Photocatalytic Degradation of Humic acid, Catal. Today,2008,131,250-254.
    [4]Borgarello, E. Kiwi, J. Gratzel, M. Pelizzetti, E. Visca, M. Visible-Light Induced Water Cleavage in Colloidal Solutions of Chromium-Doped Titanium-Dioxide Particles, J. Am. Chem. Soc.1982,104,2996-3002.
    [5]Li, X. Z. Li, F. B. Yang, C. L. Ge, W. K. J. Photocatalytic Activity of WOx-TiO2 Under Visible Light Irradiation, Photochem. Photobiol. A 2001,141,209-217.
    [6]Klosek, S. Raftery, D. Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol, J. Phys. Chem. B 2001,105,2815-2819.
    [7]Kasahara, A. Nukumizu, K. Takata, T. Kondo, J. N. Hara, M. Kobayashi, H. Domen, K. LaTiO2N as a Visible-Light (<= 600 nm)-Driven Photocatalyst (2), J. Phys. Chem. B 2003,107,791-797.
    [8]Cong, Y. Zhang, J. L. Chen, F. Anpo, M. Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity, J. Phys. Chem. C 2007,111,6976-6982.
    [9]Elahifard, M. R. Rahimnejad, S. Haghighi, S. Gholami, M. R. Apatite-Coated Ag/AgBr/TiO2 Visible-Light Photocatalyst for Destruction of Bacteria, J. Am. Chem. Soc.2007,129,9552-9553.
    [10]Hu, C. Guo, J. Qu, J. H. Hu, X. X. Photocatalytic Degradation of Pathogenic Bacteria with AgI/TiO2 under Visible Light Irradiation, Langmuir 2007,23, 4982-4987.
    [11]Shang, M. Wang, W. Z. Zhang, L. Sun, S. M. Wang, Lu. Zhou,L.3D Hierarchical Heterostructure:Controllable Synthesis and Enhanced Visible Photocatalytic Degradation Performances,J. Phys. Chem. C 2009,113, 14727-14731.
    [12]Asahi, R. Morikawa, T. Ohwaki, T. Aoki, K. Taga, Y. Visible-light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science2001,293,269-271.
    [13]Pfanner, K. Gfeller, N. Calzaferri, G. Photochemical Oxidation of Water with Thin AgCl Layers, J. Photochem. Photobiol. A 1996,95,175-180.
    [14]Lanz, M. Calzaferh, G. Photocatalytic Oxidation of Water to O"2 on AgCl-Coated Electrodes, J. Photochem. Photobiol. A 1997,109,87-89.
    [15]Morimoto, T. Suzuki, K. Torikoshi, M. Kawahara, T. Tada, H. Ag(core)-AgCl(shell) Standard Microelectrode-Loaded TiO2, Chem. Commun. 2007,4291-4293.
    [16]Lanz, M. SchuErch, D. Calzaferri, G. Photocatalytic Oxidation of Water to O-2 on AgCl-Coated Electrodes, J. Photochem. Photobiol. A 1999,120,105-117.
    [17]Glaus, S. Calzaferri, G. Hoffmann, R. Electronic Properties of the Silver-Silver Chloride Cluster Interface, Chem.sEur. J.2002,8,1785-1794.
    [18]Currao, A. Reddy, V. R. Calzaferri, G. Gold-Colloid-Modified AgCl Photocatalyst for Water Oxidation to O-2, Chem. Phys. Chem.2004,5,720-724.
    [19]Wang, P. Huang, B. B. Zhang, X. Y. Qin, X. Y. Dai, Y. Jin, H. Wei, J. Y. Whangbo, M. H. Composite Semiconductor H2WO4 center dot H2O/AgCl as an Efficient and Stable Photocatalyst under Visible Light, Chem. Eur. J.2008,14, 10543-10546.
    [20]Qiao, Z. A. Zhang, L. Guo, M. Y. Liu, Y. L. Huo, Q. S. Synthesis of Mesoporous Silica Nanoparticles via Controlled Hydrolysis and Condensation of Silicon Alkoxide, Chem. Mater.2009,21,3823-3829.
    [21]Wang, P. Huang, B. B. Qin, X. Y. Zhang, X. Y. Dai, Y. Wei, J. Y. Whangbo, M. H. Ag@AgCl:A Highly Efficient and Stable Photocatalyst Active under Visible Light, Angew. Chem., Int. Ed.2008,47,7931-7933.
    [22]Murphy, C. J. Nanocubes and Nanoboxes, Science 2002,298,2139-2141.
    [23]Tao, A. R.; Habas, S.; Yang, P. D. Shape Control of Colloidal Metal Nanocrystals, Small 2008,4,310-325.
    [24]Ye, J. F. Zhang, H. J. Yang, R. Li, X. G. Qi, L. M. Morphology-Controlled Synthesis of SnO2 Nanotubes by Using 1D Silica Mesostructures as Sacrificial Templates and Their Applications in Lithium-Ion Batteries, Small 2010,6, 296-306.
    [25]Ding, Y. Chen, M. W. Nanoporous Metals for Catalytic and Optical Applications, MRS Bull.2009,34,569-576.
    [26]Erlebacher, J. Aziz, M. J. Karma, A. Dimitrov, N. Sieradzki, K. Evolution of Nanoporosity In Dealloying, Nature 2001,410,450-453.
    [27]Ding, Y. Kim, Y. J. Erlebacher, J. Nanoporous Gold Leaf:Ancient Technology, Adv. Mater.2004,16,1897-1900.
    [28]Jia, F. Yu, C. F. Deng, K. J. Zhang, L. Z. Nanoporous Metal (Cu, Ag, Au) Films with High Surface Area:General Fabrication and Preliminary Electrochemical Performance, J. Phys. Chem. C 2007,111,8424-8431.
    [29]Zhang, J. Liu, P. Ma, H. Ding, Y. Nanostructured Porous Gold for Methanol Electro-Oxidation, J. Phys. Chem. C,2007,111,10382-10388.
    [30]Xu, C. X. Su, J. X. Xu, X. H. Liu, P. P. Zhao, H. J. Tian,F. Ding, Y. Low Temperature CO Oxidation over Unsupported Nanoporous Gold, J. Am. Chem. Soc.2007,129,42-43.
    [31]Xu, C. X. Wang, L. Q. Wang, R. Y. Wang, K. Zhang, Y. Tian,F. Ding, Y. Nanotubular Mesoporous Bimetallic Nanostructures with Enhanced Electrocatalytic Performance, Adv. Mater.2009,21,2165-2169.
    [32]Chen, L. Y. Yu, J. S. Fujita, T. Chen, M. W. Nanoporous Copper with Tunable Nanoporosity for SERS Applications, Adv. Funct. Mater.2009,19,1221-1226.
    [33]Meng, Q. B. Fu, C. H. Einaga, Y. Gu, Z. Z. Fujishima, A. Sato, O. Assembly of Highly Ordered Three-Dimensional Porous Structure with Nanocrystalline TiO2 Semiconductors, Chem. Mater.2002,14,83-88.
    [34]Wang, X. C. Yu, J. C. Ho, C. M. Hou, Y. D. Fu, X. Z. Photocatalytic Activity of a Hierarchically Macro/Mesoporous Titanium, Langmuir 2005,21,2552-2559.
    [35]Qiao, Z. A. Zhang, L. Guo, M. Y. Liu, Y. L. Huo, Q. S. Synthesis of Mesoporous Silica Nanoparticles via Controlled Hydrolysis and Condensation of Silicon Alkoxide, Chem. Mater.2009,21,3823-3829.
    [36]Zhang, Z. H. Wang, Y. Qi, Z. Zhang, W. H. Qin, J. Y. Frenzel, J. Generalized Fabrication of Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) through Chemical Dealloying, J. Phys. Chem. C 2009,113,12629-12636.
    [37]Morrish, R. Muscat, A. J. Nanoporous Silver with Controllable Optical Properties Formed by Chemical Dealloying in Supercritical CO2, Chem. Mater.2009,21, 3865-3870.
    [38]http://sci.tech-archive.net/Archive/sci.chem/2005-04/msg00737.html.
    [39]Newman, R. C. Sieradzki, K. Metallic Corrosion, Science 1994,263,1708-1709.
    [40]Hakamada, M. Mabuchi, M. Nanoporous gold prism microassembly through a self-organizing route, Nano Lett.2006,6,882-885.
    [41]Li, R. Sieradzki, K. Ductile-Brittle Transition in Random Porous Au, Phys. Rev. Lett.1992,68,1168-1171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700