氮化镓、氮化硅镁纳米材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在对氮化镓、氮化硅镁纳米材料的合成、应用等方面的发展现状进行了充分调研的基础上,本论文旨在探索高压釜中氮化镓、氮化硅镁等纳米材料的低温制备方法。通过对实验结果的分析并结合相关的文献报道,分别对它们的生长机理进行了探讨。主要研究内容如下:
     1.GaN材料非常坚硬,化学性质非常稳定。在常温下不溶于水、酸和碱,熔点较高,约为1700℃。GaN具有3.4eV的宽直接带隙、电子漂移饱和速度高、介电常数小、导热性能好等特点。GaN基器件在高亮度蓝、绿光发光二极管、蓝色激光器和紫外探测器等领域有着广阔的应用潜力和良好的市场前景,也非常适合于制作抗辐射、高频、高温大功率和高密度集成的电子器件。在我们的工作中,在200℃下,利用镓、钠和盐酸肼在高压釜中制备纯净氮化镓纳米材料。反应温度要比传统方法要低很多。X-射线粉末衍射显示制得的样品为六方相的纤锌矿氮化镓,晶格常数为:a=3.181A and c=5.179 A,与JCPDS卡(No.50-0792)所报道的数据(a=3.189A、c=5.186A)相接近。透射电子显微镜照片显示所得氮化镓纳米颗粒直径大约为30nm。但是当少量的叠氮化钠加入到镓、钠和盐酸肼这个反应系统中的时候,六方相纤锌矿氮化镓最低可以在100℃下制备,当升高该反应体系的温度到400℃时,在X射线粉末衍射图中我们看到了岩盐相氮化镓的峰,经计算其晶格常数为a=4.14 A,与文献报道的结果接近。
     2.氮化硅镁正受到越来越多的研究,由于其高断裂韧度、高应力强度、高硬度、很好的抗氧化性、高导热性和高电子阻抗等性能。这些性能使其潜在的应用于高密度集成电路基板材料。在制备陶瓷材料中,由于氮化硅镁的高导热性,使其成为一种有效的添加剂。在我们的工作中,利用硅,镁和叠氮化钠在高压釜中于350-500℃成功制备MgSiN2,产率达到90%。X-射线粉末衍射显示制得的样品为氮化硅镁,晶格常数为:a=5.260 A,b=6.463 A,和c=4.951 A,与JCPDS卡(No.52-0797)所报道的数据相接近。透射电子显微镜照片显示样品主要为纳米长方块,尺寸在200-500nm,高分辨电镜图清晰显示的两个相邻条纹之间的平均间距为0.40nm,和氮化硅镁的(110)面的晶格间距非常接近。并讨论了反应中反应物用量,反应温度,反应时间和不同的硅源对产物制备的影响,讨论了该实验可能的实验机理,发现适当过量的Mg和NaN3有利于MgSiN2的制备。同时,我们也发现SiO2和硅藻土作为硅源也可以成功制备MgSiN2。
On the basis of comprehensive and thorough investigation of literatures concerning the developments of gallium nitride and magnesium silicon nitride nanomaterials synthesis and applications, this dissertation is dedicated to explore the low-temperature synthesis of nanomaterials such as gallium nitride and magnesium silicon nitride in autoclaves. Combining the experimental analysis results and the study of the related reports, some proper theories are refered to discuss the growth mechanism of as-prepared nanomaterials.The main research contents are as follows:
     1. Being a wide-band-gap semiconductor, GaN has recently attracted enormous attention because of its wide use in optical devices operating at blue and ultraviolet wavelengths and in high-temperature electronic devices. A facile reaction of Ga, Na and N2H42HC1 has been carried out for the preparation of GaN nanomaterials at 200℃. This temperature is much lower than that of traditional methods, and the yield of GaN reached 50% according to the amount of Ga, X-ray powder diffraction patterns indicated that the products are hexagonal-phase GaN with lattice constants a=3.181A and c=5.179 A, which are near the reported values (a=3.189A,c=5.186A,JCPDS,card No.50-0792).The TEM image shows that the size of the product is 30 nm on average.However, when NaN3 were added to the system of Ga, Na and N2H42HCl, the hexagonal-phase GaN could be prepared at 100℃, The x-ray powder diffraction pattern indicated that sample was mainly hexagonal-phase GaN with a small fraction of rocksalt-phase GaN at 400℃, which has a lattice constant a=4.14 A.
     2. Recently, magnesium silicon nitride(MgSiN2)has been widely studied owing toits attractive properties such as high hardness, reasonable strength, fracturetoughness, and high electrical resistance at room temperature. In this study, magnesium silicon nitride (MgSiN2) powder was synthesized by a solid state reaction between silicon, Mg powder and NaN3 in an autoclave in 350-500 ℃. The yield of the product is calculated to be about 90% according to the amount of Si. X-ray powder diffraction patterns indicated that the products are orthorhombic MgSiN2(cell parameters:a=5.260 A, b=6.463 A, and c=4.951 A). The results of scanning electron microscopy and transmission electron microscopy(TEM) observations indicate that the product mainly composed of nanocubes which have the average diameters in the range of 200-500nm. The high-resolution TEM image shows clearly resolved fringes separated by 0.40nm, which corresponds to the(110) d-spacing of the orthorhombic MgSiN2-The effects of different synthesis conditions on the final formation of MgSiN2 powder,such as the different ratios of the precursors, reaction temperature, and reaction time were also investigated.
引文
[1]张立德,牟季美,纳米材料和纳米结构[M],北京:科学出版社,2001:53-60
    [2]R. Smalley, Congressional Hearings, Summer,1999
    [3]张志琨,崔作林,纳米技术与纳米材料,北京:国防工业出版社,2000
    [4]杨剑,滕风恩,纳米材料综述,材料导报,1997,11(2):6-10
    [5]G. J. Thomas, R. W. Siegel, J. A. Eastman, Grain boundaries in nanophase palladium:high resolution electron microscopy and image simulation[J]. Scripta Metall. Et Mater.,1990,24(9):201-206.
    [6]L. Zhang, C. Mou, T. Wang, S. Cai, J. Hu, Structure and bond properties of compacted and heat-treated silicon nitride partides [J]. Phys. Stat. Sol. A,1993, 136(2):291-300.
    [7]周震,阎杰等,纳米材料的特性及其在电化学中的应用,化学通报,1998,(4):23-26
    [8]J. C. Hulteen, C. R. Martin, Chapter 10, in:Fend J H, Nanoparticles. and Nanostructured Films. WILEY-VCH, Weinheim, New York, Chichester, Bri sban, Singapore, Toronto,1998,235.
    [9]Y. Ping, G. C. Hdj inanayis et al, Appl. Phys,1990,67,4502.
    [10]A. Henglein, Chem. Rev.,1989,89,1861.
    [11]A.I. Ekimov, A. A. Onushchenko, JEPT Lett,1984,4Q,1136.
    [12]P. V. Kamat, N. M. Dimitrijevic, S01.Energy.,1990,44,83.
    [13]T. Trindade, P. O. Brien, N. L. Pickett, Chem. Mater.,2001,13,3843.
    [14]D. D. Awschalom, M. A. Mccord, G Grinstein, Observation of macroscopic spin phenomenain nanometerscalem agnets, J, Phys. Rev. Lett.,1990, 65,783-786.
    [15]T. Takagahara, Phys. Rev. B,1993,47,4569.
    [16]A. F. Deutz, H. B. Brom, H. Deelen, L. J. de Jongh, W. J. Huiskamp. Induced-moment ferromagnetic ordering in the singlet-ground state compound TmNi2 [J]. Sol. Stat. Commun.,1985,56:917-921.
    [17]X. Ai, H. Fei, Y. Yang, et al., Polar enhancement of the nonlinear optical properties of Fe2O3 microcrystallites [J]. J. Lumin.,1994,60:364-367.
    [18]R. Roussignool, D. Ricard, C. Flytzanis. Phonon broadening and spectral holeburning in very small semiconductor particles [J]. Phys. Rev. Lett.,1989, 62:312-315.
    [19]倪星元,沈军,张志华,纳米材料的理化特性与应用,化学工业出版社,2006,北京
    [20]周瑞发,韩雅芳,陈祥宝,纳米材料技术,国防工业出版社,2003,北京
    [21]徐如人,庞文琴,无机合成与制备化学,高等教育出版社,2001,北京
    [22]李春忠,,胡黎明,陈敏恒等,硅酸盐学报,1993,21(1),93
    [23]朱宏杰等,无机材料学报,1995,10(1),43
    [24]梁博等,无机材料学报,1996,11(3),441
    [25]G. P. Vlssokov, J.Mater. Sci.1988,23,2415.
    [26]K. Is hzaki, et al. J. Mater. Sci.1989,24,3553.
    [27]隋同波等,硅酸盐学报,1993,21(1),33
    [28]郭广生等,无机材料学报,1993,8(3),77
    [29]高晓云,无机材料学报,1993,8(1),57
    [30]H. Gleiter, Euro. Physics. News,1989,20,130.
    [31]Z. L. Cui, et al., Nanostructured Mater.,1995,5,829.
    [32]R. Birringer, H. Gleiter, et al., phys.Lett,1984,102A,365.
    [33]苏品书,超微粒子材料技术[M],武汉:武汉出版社,1989:165-187.
    [34]X. T. Dong, G. Y. Hong, et al., J. Mater. Sci. Technol.1997,13,11.
    [35]董相廷,洪广言,于德财,硅酸盐学报,1997,15(3),323
    [36]M. Fievet, J. P. Lagier, et al., MRS Bull.,1989,14,29.
    [37]C. Ducamp-Sanguesa, et al., J. Solid State Chem.,1992,100,272. M. Fievet, et al., J. Mater.Chem.,1993,9,627.
    [38]M. Fievet, et al., J. Mater.Chem.,1993,9,627.
    [39]于德才,洪广言,中国稀土学报,1992,10(1),44
    [40]范福康等,硅酸盐通报,1993,6,17
    [41]赵振国等,应用化学,1993,10(1),99
    [42]M. R. De Guire, et al., J. Mater.Res.,1993,8(9),2327.
    [43]K. N. Clson, R. L. Cook, J. Am. Ceram. Soc.,1959,38,499.
    [44]J. L. Shi et al., J.Eur. Ceram. Soc,1993,13,265.
    [45]J. L. Shi, et al., J. Mater. Sci.,1995,30,793.
    [46]C. W. Lu, J. L. Shi, et al., Thenrochimica Acta,1994,132,77.
    [47]D. Jezequel, et al., J. Mater. Res.1995,10(1),77.
    [48]沈兴海等,化学通报,1995,11,6
    [49]M. Boutonnet, et al., Colloid and Surfaces,1982,5,209.
    [50]J. Nagy, Colloid and Surfaces,1989,35,201.
    [51]Kaiharak, J. Am.Chem.Soc.,1983,105,2574.
    [52]K. Kandorl, et al., J. Colloid and interface,1988,122(1),78.
    [53]吴晓春等,化学学报,1996,54,146.
    [54]K. Osseo-Asare, F. Arriageala, J. Colloids and Surfaces,1990,50,321.
    [55]D. Hayers,0. L. Micic, et al. J, Phys. Chem,1989,93,603.
    [56]K. S. Suslick, S. B. Choe, A. A. Cichowals, et al., Phys. Today,1991,44(1),17.
    [57]J. Kuyama, H. Inui, S. Imaoka, et al., Jpn. Z Appl. Phys.,1991,30(5A), L864.
    [58]G. T. Fei, L. Liu, X. Z. Ding, et al., J. Alloys and Compounds,1995,129,280.
    [59]M. S. EI-Eskandarany, et al. J, Mater. Res.,1992,7,888.
    [60]M. S. EI-Eskandarany, et al., Appl. Phys. Lett.,1992,60,1562.
    [61]M. S. EI-Eskandarany, et al. J.Mater. Res.,1994,9,2891.
    [62]H. Yang, et al., J. Mater. Sci. Lett.,1993,17,314.
    [63]洪广言,李红云,无机化学学报,1991,7(1),241.
    [64]S.Feng, R. Xu. New materials in hydrothermal synthesis [J]. Acc. Chem. Res.,2001,34:239-247.
    [65]徐如人,庞文琴,无机合成与制备化学,高等教育出版社,北京,2001.
    [66]M. Fang, H. B. Du, W. G. Xu, et al., Microprous Mater.,1997,5(1-2),59■61.
    [67]S. R. Dhage, Y. B. Khollam, H. S. Potdar, et al., Mater. Lett.,2002,7(2),457-462.
    [68]陈耀祖,陈吹,朱英杰等,化学物理学报,1997,1(1),26.
    [69]Y. Zhou, H. J. Liu, S. H. Yu, et al., Mater. Res.Bull.,1996, 34(10-11),1683-1688.
    [70]M. D. Bibby, P. M. Sale. Synthesis of silica-sodalite from nanoqueous systems[J]. Nature,1985,317:157-158.
    [71]M. Inoue, et al.. Formation of microcrystalline a-Alumina by glycothermal treatment of gibbsite [J]. J. Am. Ceram. Soc.,1989,72(2):352-353.
    [72]Q. Gao, R. Xu, et al.. High-resolution electron energy-loss studies of hydrocarbon formation from methane decomposition on Ru(0001) and Ru(11.hivin.20) catalysts [J]. J. Am. Chem. Soc.,1994,116(4):1364-1371.
    [73]S. W. Sheldrick, M. Wachold. Solventothermal synthesis of solid-state chalcogenidometalates [J]. Angew. Chem. Int. Ed.,1997,36:206-224.
    [74]Y. D. Li, H. W. Liao, Y. T. Qian, et al, Inorg. Chem,1999,38,1382.
    [75]J. Yang, C. Xue, S. H, Yu, J. Zhang, Y. T. Qian, Angew. Chem. Int. Ed,2002,41, 4697.
    [76]D. B. Yu, D. B. Wang, Z. Meng, Y. T. Qian,, Mater. Chem,2002, 12,403.
    [77]Y. Xie, et al, Science,1996,272,1926.
    [78]Y. D. Li, Y. T. Qian, et al, Inorg. Chem,1998,37,2844.
    [79]S. H. Yu, Y. T. Qian, et al, Chem. Mater,1998,10,2309.
    [80]Y. Xie, Y. T. Qian, et al, Appl.Phys. Lett,1996,69,334. [61] Y. Jiang, Y. T. Qian, et al, J.Am. Chem. Soc,2000,122,12383.
    [81]Y. D.Li, et al, Science,1998,281,246.
    [82]Y. Jiang, Y. T. Qian, et al, J.Mater. Res,2001.10,1.
    [83]Pankove J.I.,Moustakas T.D.,Gallium Nitride(GaN)I. Academic P ress,1998
    [84]张全德,氮化镓纳米颗粒的制备及性质研究,山东大学硕士毕业论文,2007,2-3
    [85]Purdy A.P., Ammonothermal synthesis of cubic gallium nitride. Chem. Mater., 1999,11:1648-1651.
    [86]VanCamp P.E., VanDoren V.E., and Devreese J.T., High pressure structural
    phase transformation in gallium nitride. Solid State Commun.,1992, 81(1):23-26.
    [87]Xia H, Xia Q and Ruoff A.L., High-pressure structural of gallium nitride: wurtzete-to-rocksal phase transition.Phys.Rev.B,1993.47 (19)12925-12928.
    [88]Shul R.J., Vawter G.A., Willison C.G., Bridges M.M., Lee J.W., Pearton S.J., Abernathy C.R., Comparison of plasma etch techniques for III-V nitrides. Solid State Electronics,1998,42(12):2259-2267.
    [89]Lakshmi E., Dielectric properties of reactively sputtered gallium nitride films. Thin Solid Films,1981,83:L137-140.
    [90]Y. Morimoto, Few characteristics of epitaxial GaN etching and thermal decomposition J.Electrochem. Soc.,1974,121:1383.
    [91]Ito K., Amano H., Hiramatsu K., Akasaki L., Cathodoluminescence properties of un-doped and Za-doped AlxGal-xN grown by metalorganic Vapor phase epitaxy. Jpn. J. Appl. Phys.,1991,30:1604-1608.
    [92]Adesida I., Mahajan A., Andideh E., Asif Khan M., Olsen D.T., and Kuznia J.N., Reactive ion etching of gallium nitride in silicon tetrachloride plasmas. Appl. Phys. Lett,1993,63(20):2777-2779.
    [93]D.C. Hays, H. Cho, K.B. Jung, C.R. Abernathy, S.J. Pearton, Selective dry etchingusing inductively coupled plasmas:Part Ⅱ.InN/GaN and InN/AlN. Appl.Surf.Sci,1999,147(1-4):134-139.
    [94]D. C. Reynoldes, Solid State Communi.109(1999)683.
    [95]Amano H, Kito M, Hiramatsn K,p-type conduction in Mg-doped GaN treated with low energy electron beam irradiation [J].J Appl Phys,1989,66(28):2112-2114.
    [96]Na Kamura S,Isawa N,Seno M.Hole compensation mechanism of p-type GaN films [J] J Appl Phys,1992,72(31):12587-12589.
    [97]Han.W.Q, Fan.S.S, Li.Q.Q, Hu.Y.D,[J]Science,1997,277(29):1287
    [98]Dung.X.F, Lieber.C.M, J.Am.C hem.Soc,2000,122:188
    [99]Shi.W.S, Zheng.Y.F, Wang.N, Lee.C.S, Lee.S.T, J. Chem.Phys.Lett.,2001,345: 377.
    [100]Ying-Ge, Yang, Hong-Lei Ma, Cheng-Shan Xue, Hui-Zhao Zhuang, Jin Ma, Xiao-Tao Hao,J. Physica.B2003,3 34:287
    [101]Li Yang, Chengshan Xue, Cuimei Wang and Huixian Li, J. Nanotechnology, 2003,14:50
    [102]Y.J.Li, Z.Y.Qiao, L.X.Chen, J. Appl.Phys.A,2000,71:587
    [103]Maoqi He, Indira Minus, Piezhen Zhou, Appl.Phys.Lett.J.2000,77:3731
    [104]Y. U. Peng, T. X. Zhou, N. Wang, F. Y. Zheng, J.Chem. Phys.Lett.2000, 327:263
    [105]Yi Xie,Yitai Qian, Wenzhong Wang, Shuyuan Zhang, Yuheng Zhang, Science, 1996,272,1962
    [106]Fen Xu, Yi Xie, Xu Zhang, Shuyuan Zhang and Lei Shi, New J. Chem.,2003, 27,565-567
    [107]Keyan Bao, Shuzhen Liu, Liang Shi, Shenglin Xiong, Jun Li, Xiaobo Hu, Jie Cao, Yitai Qian, Journal of Solid State Chemistry,181,2008,1634
    [108]W.C.Johnson, J.B.Parsons, J. Phys. Chem.,36(1932)2651
    [109]M.R.Lorenz and B.B.Binkowski,J. Electrochem.Soc.,109(1972)24
    [110]BJ.Isherwood and D.K.Wickenden, J. Mater.Sci.,5(1970)869
    [111]A.Addamiano,J.Electronchem.Soc.,108(1972)1072
    [112]Tadao Hashimoto,Journal of Crystal Growth 291(2006)100-106
    [113]Richard G. Blair, Arthur Anderson, and Richard B. Kaner, Chem. Mater.2005, 17,2155-2161.
    [114]A. Anderson, and R. B. Kaner, "A solid-state metathesis route to MgSiN2", Chem. Mate.,17[8]2155-2161(2005).
    [115]Z. Lences, K. Hirao, S. Kanzaki, M. J. Hoffmann, and P. Sajgalik, "Reaction sintering of fluorine-doped MgSiN2", J. Euro. Ceram. Soc.. 24[12]3367-3375(2004).
    [116]R. G. Blair, "The thermal conductivity of magnesium silicon nitride, MgSiN2, ceramics and related materials", P.177-201 in Ph. D. Thesis (CIP-DATA Library Technische Universities Eindhoven (Eindhoven University of Technology), Eindhoven, The Netherlands,2000.
    [117]H. T. Hintzen, P. Swaanen, R. Metselaar, W. A. Groen, and M. J. Kraan, "Hot-pressing of MgSiN2 ceramics", J.Mater. Sci. Lett,,13 1314-1316(1994).
    [118]R. G. Blair, A. A. KUDYBA-JANSEN, P. GERHARTS, H. T. HINTZEN, R. METSELAAR, "Preparation, characterization and properties of MgSiN2 ceramics", J.Mater. Sci. Mater. Electron.,13[2]63-75(2002).
    [119]G. A. Slack, pp 1 in Sol id-State Physics Vol.34, edited by F. Seitz, D. Turnbull and H. Ehrenereich AcademiC Press, New York,1979.
    [120]J. David and J. Lang, "Sur un Nitrure Double de Magnesium et de Silicium".C. R. Acad. Sci. PariS..261 1005-1007 (1965).
    [121]F. F. Grekov and B. V. Chernovets, "Methods for MgSiN2 synthesis", Russ. J. Appl. Chem.,77[8] 1223(2004).
    [122]R. J. Bruls, H. T. Hintzen and R. Metselaar, "Preparation and characterization of MgSiN2 powders", J.Mater. Sci.,34 4519-4531(1999).
    [123]G. H. Peng, G. J. Jiang, H. R. Zhuang, W. L. Li and S.Y. Xu, "A novel route for preparing MgSiN2 powder by combustion synthesis", Mat. Res. Bull. 397[1-2]65-68(2005).
    [124]Z. Lenoes, K. Hirao, Y. Yamauchi and S. Kanzaki, "Reaction synthesis of magnesium silicon nitride powder", J. Am. Ceram. Soc., 86[7]1088-1093(2003).
    [1]J. L. Pankove, Mater. Res. Soc. Symp. Proc.,1987,97,409.
    [2]N. Kuwano, Y. Nagatomo, K.Kobayshi, Jpn. J. Appl. Phys.,1994,33,18.
    [3]H. Xia, Q. Xia, A.L. Ruo., Phys. Rev. B,1993,47,12925.
    [4]W. C. Johnson, J. B. Parsons, M. C. Crew, J. Phys. Chem.,36(1932)2651.
    [5]M.R. Lorenz and B.B.Binkowski, J. Electrochem. Soc.,109(1972)24.
    [6]B. J. Isherwood and D. K.Wickenden, J. Mater. Sci.,5(1970)869.
    [7]A. Addamiano, J.Electronchem. Soc.,108(1972)1072.
    [8]J. J. Carvajal, M. Aguilo, F. Diaz, J. C. Rojo, Chem. Mater.19 (2007) 6543.
    [9]Han. W. Q, Fan. S. S, Li. Q. Q, Hu. Y. D, [J]Science,1997,277(29):1287.
    [10]J. Zhang, X. S. Peng, X. F. Wang, Y. W. Wang, L. D. Zhang, J. Chem. Phys. lett., 2001,345:372.
    [11]Dung. X. F, Lieber. C. M, J. Am. C hem. Soc.,2000,122:188.
    [12]S.C. lyu, O. H. Cha, E-K. Suh, H. Ruh, H. J. Lee, C. J. Lee, J. Chem. Physics. Lett.,2003,367:136.
    [13]Shi. W. S, Zheng. Y. F, Wang. N, Lee. C. S, Lee. S. T, J. Chem. Phys. Lett., 2001,345:377.
    [14]Ying Ge, Yang, Hong Lei Ma, Cheng Shan Xue, Hui Zhao Zhuang, Jin Ma,Xiao Tao Hao, J. Physica. B2003,3 34:287.
    [15]Li Yang, Chengshan Xue, Cuimei Wang and Huixian Li, J. Nanotechnology, 2003,14:50.
    [16]W. C. Johnson, J. B. Parsons, J. Phys. Chem.,36(1932)2651.
    [17]M. R. Lorenz and B. B. Binkowski, J. Electrochem. Soc.,109(1972)24.
    [18]Yi Xie, Yitai Qian, Wenzhong Wang, Shuyuan Zhang, Yuheng Zhang, Science, New Series, Vol.272, No.5270. (Jun.28,1996), pp.1926-1927.
    [19]Guiquan Pan, Martin E. Kordesch and P. Gregory Van Patten, Chem. Mater.2006, 18,5392-5394
    [20]P. E. Van Camp, V. E. Van Doren, J. T. Devreese, Solid State Commun.,1992, 81,23.
    [21]许燕萍,兰玉成,曹永革,李建业,陈小龙,氨热条件下锂作矿化剂合成氮 化镓纳米晶的研究,硅酸盐学报,2001,29,4
    [1]Z. Lences, K. Hirao, P. Sajgalik, M. J. Hoffmann. Thermodynamic and dielectric properties of MgSiN2 ceramics. SCIENCE OF ENGINEERING CERAMICS III, 317-318:857-860 2006
    [2]R. G. Blair, "The thermal conductivity of magnesium silicon nitride, MgSiN2, ceramics and related materials", p.177-201 in Ph.D. Thesis (CIP-DATA Library Technische Universiteit Eindhoven (Eindhoven University of Technology), Eindhoven, The Netherlands,2000).
    [3]G. Peng, G. Jiang, W. Li, B. Zhang, L. Chen. Fabrication of hard and strong α/β-Si3N4 composites with MgSiN2 as addivitives. J. Am. Cera. Soc. 89(2006)3824-3826.
    [4]H. Uchida, K. Itatani, M. Aizawa, F. S. Howell, A. Kishioka. Preparation of magnesium silicon nitride powder by the carbothermal reduction technique. Adv. POWDER TECHNOLOGY 10 (1999)133-143.
    [5]A. Anderson, and R. B. Kaner, A solid-state metathesis route to MgSiN2", Chem. Mate.,17 2155-2161(2005).
    [6]Z. Lences, K. Hirao, Y. Yamauchi, S. Kanzaki. Reaction synthesis of magnesium silicon nitride powder. J. Am. Cera. Soc.,86 (2003)1088-1093
    [7](a) H. Uchida, Itatani K., Aizawa M., Howell F.S., Kishioka A. Synthesis of magnesium silicon nitride by the nitridation of powders in the magnesium-silicon system, J. Cera. Soc. Jpn.105 (1997) 934-939. (b) A. Dvorina, O. I. Popova, N. A. Derenovskaya. Preparation and some chemical properties of magnesium silicide. Powder Metallurgy and Metal Ceramics,8 (1969) 363-366.
    [8](a) R. J. Bruls, H. T. Hintzen and R. Metselaar, Preparation and. characterisation of MgSiN2 powders, J. Mater. Sci.,34 4519-4531 (1999). (b). Inorganic Chemistry, Vol.10, No.5,1971 1091
    [9](a) F. wang, W. P. Shen, L. Bai, C. C.Ge. combusition sythesisi of magnesium silicon nitride in a Mg-Si-N system. Key Engineering materials Vols 336-338(2007) 935-938. (b) G. H. Peng, G. J. Jiang, H. R. Zhuang, W. L. Li. A novel route for preparing MgSiN2 powder by combustion synthesis. Materials Science and Engineering A.397 (2005) 65-68
    [10]P. Li, L. Xu, Z. Ju), J. Zhang, J. Yang, Y. Qian. Large-scale synthesis of magnenium silicon nitride powders at low temperature. J. Am. Cera. Soc. 91(2008) 333-336.
    [11]K. Tang, J. Hu, Q. Lu, J. Zhu, Y. Qian A Novel Low-Temperature Synthetic Route to Crystalline Si3N4 Adv. Mater.1999,11,653-655.
    [12]F. F. Grekov and B. V. Chernovets, Russ. J. Appl. Chem.2004,77,1223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700