硫化镉纳米空心球及胶体球的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构的空心材料由于具有较大的内部空间以及具有一定厚度的纳米尺度的壳层,可作为药物载体,在医学和制药学领域应用很广。此外,空心材料与块材相比还具有比表面积大、密度小等特性,可作为轻质填料、催化剂、隔热材料等。由于空心材料独特的结构及优异的性能,其研究受到人们广泛的关注。目前空心材料的制备方法多采用模板法,为了避免杂质的引进以及反应过程的复杂,发展非模板方法制备空心材料是纳米材料研究的一个重要方面。近年来,研究单分散性能优异的胶体球的制备是胶体化学领域颇受挑战的主题,通过自组装的方法,胶体球作为基本单元被广泛应用于制备光子晶体。高度单分散的具有高折射指数胶体球,是形成宽带光子晶体的理想的基本单元。CdS,作为一种重要的半导体材料,具有优异的光电转化性能和发光性能,随着尺寸的减小以及形貌的变化,CdS纳米结构的禁带宽度发生明显的变化,表现出不同于块材的、更加优异的光电性能,因而在催化、非线性光学、光吸收、传感器和磁性材料等新材料方面有广阔的应用前景。本文利用水热法对空心结构及单分散的胶体球进行了控制合成,并分别从材料制备,性质分析、反应条件、反应机理等方面进行了系统的研究,初步研究了CdS纳米空心球光催化降解亚甲基蓝的效率。论文的具体研究内容如下:
     (1)离子液体辅助水热法制备CdS纳米空心球
     目前CdS空心材料的制备多采用模板法。本文首次采用离子液体辅助的非模板方法制备了尺寸约为130 nm的CdS纳米空心球,反应过程简单可重复。研究了反应物摩尔比、温度、添加剂等条件对CdS纳米空心球形成的影响。经过研究发现,反应物摩尔比对产物形貌有较大的影响,只有在S过量的情况下,才能形成结构较好的空心球;较低或较高的反应温度均不能形成结构完善的CdS空心球;此外添加剂六亚甲基四胺(HMT)与聚乙烯吡咯烷酮(PVP)对于空心球的形成二者缺一不可,二者共同影响球形结构的形成;离子液体1-丁基-3-甲基咪唑六氟磷酸盐([bmim][PF6])对于空心结构的形成起着至关重要的作用,当不添加离子液体时得不到空心结构。通过对不同反应时间段产物形貌的考察,初步认为CdS纳米空心球的形成机理为奥氏熟化作用。此外,研究了CdS空心球光催化亚甲基蓝降解的效率,经研究表明,CdS空心球由于具有较高的比表面积,因此能够有效的催化亚甲基蓝降解。
     (2)水热法制备CdS胶体球
     CdS胶体颗粒由于具有较大的折射指数及特殊的光学、磁学等性能,在光子晶体领域具有潜在的应用价值。在本文中以CdCl2和硫代乙酰胺(TAA)为反应物,以HMT和PVP为添加剂,通过两种添加剂的协同作用,提出了一种简便快速水热反应方法,制备了分散性能良好的CdS胶体球。通过改变添加剂的浓度,可以实现对产物尺寸的调节。深入研究了PVP及HMT在产物形成过程中所起的作用。通过对比两个极端试验以及比较不同添加剂浓度下产物形貌图,认为在产物形成过程中HMT通过与Cd2+形成络合剂,控制单体的释放速度,从而影响产物的形貌;PVP有双重作用,既作为保护剂又作为增粘剂,影响晶面及颗粒的生长。
Inorganic materials with hollow structures have recieved considerable attention in recent years, owing to their unique chemicophysical properties including high specific surface area, good permeability, and special optical/electrical/magnetic properties. Many applications could be realized using hollow materials, such as catalysis, nanoscale chemical reactors, encapsulation and controlled release of bioactive agents, photonic devices, lightweight fillers and acoustic insulators. Among the methods employed for the preparation of hollow nanostructures, hard or soft template-assisted synthesis has been most widely investigated. Compared with template-assisted methods involving multistep procedures, a one pot template-free method for controlled preparation of hollow nanostructures with rationally designed parameters is highly attractive. On the other hand, monodispersed colloidal spheres have been extensively exploited as building blocks to fabricate photonic crystals by self-assembly. Of the various colloidal nanocrystals, semiconductor types, especially metal sulfides, have been the most studied due to their high refractive index and excellent optical, magnetic, and optoelectronic properties that can be further exploited to produce photonic crystals with tunable or switchable band gaps. As a semiconductor with important wide band gap (2.4 eV at room temperature), CdS is useful for many important applications such as light emitting diodes, flat panel displays, solar cells, photo-catalysts, and thin film transistors. Since the properties of the material greatly depend on their morphological features, nanostructured CdS with different sizes and morphologies has been fabricated and characterized, among which the hollow structure and colloidal spheres have received particular attention. Herein, firstly, we present an ionic liquid assisted hydrothermal method for the preparation of CdS hollow nanospheres, and investigate the effect of the reaction parameters on the formation of CdS hollow nanospheres, and a hollowing growth mechanism involve Ostwald ripening is proposed. Secondly, we demonstrate that CdS colloidal spheres could be prepared by a facile hydrothermal method.
     1. Template-free synthesis of CdS hollow nanospheres based on an ionic liquid assisted hydrothermal process and their application in photocatalysis.
     Until now, the synthesis of hollow CdS has been largely based on the use of templates. It is the first time for the preparation of CdS hollow nanospheres in high yield with a template-free ionic liquid (IL) assisted hydrothermal route in the presence of polyvinylpyrrolidone (PVP) and hexamethylenetetramine (HMT). Structural characterization by TEM, SEM, SAED, and XRD indicates that the CdS hollow nanospheres are polycrystalline consisting of some smaller nanoparticles. The formation of such nanospheres is attributed to the preferential adsorption of PVP molecules on the CdS crystal nuclei. The small crystal nuclei aggregated to form solid nanoparticles that are protected by the adsorption of HMT molecules on certain faces of nanoparticles. The solid nanoparticles experienced a localized Ostwald ripening process and finally the CdS hollow nanospheres are obtained. The reaction temperature, the molar ratios of Cd/S, the concentration of capping agents (PVP and HMT) and IL [bmim][PF6] were found to be crucial for the formation of CdS hollow nanospheres. These hollow structured materials can be used as efficient photocatalysts for the degradation of MB. The CdS hollow nanospheres with near band emission, may find promising applications in microelectronic and photovoltaic devices. Importantly, the ionic liquid (IL) assisted hydrothermal route may be a versatile method to prepare hollow nanomaterials.
     2. Facile synthesis and properties of uniformed CdS colloidal spheres
     Due to high refractive index and excellent properties of luminescence and photochemistry, CdS could be used as building blocks for the fabrication of wide band photonic crystals. In our study, we developed a facile one-pot hydrothermal approach for the synthesis of uniform CdS colloidal spheres with tunable sizes, by changing the concentrations of capping agents PVP and HMT. To the best of our knowledge, this is the first report that CdS colloidal spheres could be prepared with such a rapid method. Only by changing the concentrations of PVP and HMT, the sizes of the product can be tuned from 70 um to approximately 200 nm. Comparative experiments reveal that synergistic effect of HMT and PVP are crucial for the formation of colloidal spheres. Meanwhile, the nearly uniformed CdS colloidal spheres could serve as an ideal building block for the fabrication of wide band gap photonic crystals.
引文
[1]R. Feynman, J. Microelectromechanical Systems 1992,1,60.
    [2]周彦豪,纳米科技与橡胶工业的发展,中国橡胶,2002,18,23-25.
    [3]Caruso, F.; Caruso, R. A; Mohwald, H. Nanoengineering of Inorganic and Hybid Hollow Spheres by Colloidal Templating. Science 1998,282,1111-1114.
    [4]Wilcox, D. L.; Berg, M.; Bernat, T.; Kellerman, D.; Cochran, J. K. Eds. Hollow and Solid Spheres and Microspheres:Science and Technology Associated with Their Fabrication and Applications. MRS Mater. Res. Soc. Symp. Proc. Pittsburgh, PA 1995, Vol.372.
    [5]Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach. Chem. Mater.2001,13,109-116.
    [6]Jagadeesan, D.; Mansoori, U.; Mandal, P.; Sundaresan, A.; Eswaramoorthy, M. Hollow Spheres to Nanocups:Tuning the Morphology and Magnetic Properties of Single-Crystalline α-Fe2O3 Nanostructures. Angew. Chem., Int. Ed.2008, 120,7685-7688.
    [7]Peng, S.; Sun, S. Synthesis and Characterization of Monodisperse Hollow Fe3O4 Nanoparticles. Angew. Chem., Int. Ed.2007,46,4155-4158.
    [8]Buchold, D. H. M.; Feldmann, C. Nanoscale y-AlO(OH) Hollow Spheres: Synthesis and Container-Type Functionality. Nano Lett.2007,7,3489-3492.
    [9]Xu, H. L.; Wang, W. Z. Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall. Angew. Chem., Int. Ed.,2007,46, 1489-1492.
    [10]Peng, Q.; Dong, Y. J.; Li, Y. D. ZnSe Semiconductor Hollow Microspheres. Angew. Chem., Int. Ed.2003,42,3027-3030.
    [11]Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow Micro-/Nanostructures:Synthesis and Applications. Adv. Mater.2008,20,3987-4019.
    [12]Imhof, A. Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells. Langmuir 2001,17,3579-3585.
    [13]Eiden, S.; Maret, G. Preparation and Characterization of Hollow Spheres of Rutile J. Colloid Interface Sci.2002,250,281-284.
    [14]Lu, Y.; McLellan, J.; Xia, Y. N. Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells. Langmuir 2004,20,3464-3470.
    [15]Huang, Z. B.; Tang, F. Q. Preparation, Structure, and Magnetic Properties of Mesoporous Magnetite Hollow Spheres. J. Colloid Interface Sci.2005,281, 432-436.
    [16]Chen, G. C.; Kuo, C. Y.; Lu, S. Y. A General Process for Preparation of Core-Shell Particles of Complete and Smooth Shells. J. Am. Ceram. Soc.2005, 88,277-283.
    [17]Martinez, C. J.; Hockey, B.; Montgomery, C. B.; Semancik, S. Porous Tin Oxide Nanostructured Microspheres for Sensor Applications. Langmuir 2005, 21,7937-7940.
    [18]Liang, Z. J.; Susha, A.; Caruso, F. Gold Nanoparticle-Based Core-Shell and Hollow Spheres and Ordered Assemblies Thereof. Chem. Mater.2003,15, 3176-3183.
    [19]Correa-Duarte, M. A.; Kosiorek, A.; Kandulski, W.; Giersig, M.; LizMarzan, L. M. Layer-by-Layer Assembly of Multiwall Carbon Nanotubes on Spherical Colloids. Chem. Mater.2005,17,3268-3272.
    [20]Sun, X. M.; Li, Y. D. Ga2O3 and GaN Semiconductor Hollow Spheres. Angew. Chem. Int. Ed.2004,43,3827-3831.
    [21]Buchel, G.; Unger, K. K.; Matsumoto, A.; Tsutsumi, K.; A Novel Pathway for Synthesis of Submicrometer-Size Solid Core/Mesoporous Shell Silica Spheres. Adv. Mater.1998,10,1036-1038.
    [22]Yoon, S. B.; Sohn, K.; Kim, J. Y.; Shin, C. H.; Yu, J. S.; Hyeon, T. Fabrication of Carbon Capsules with Hollow Macroporous Core/Mesoporous Shell Structures. Adv. Mater.2002,14,19-21.
    [23]Chai, G. S.; Yoon, S. B.; Kim, J. H.; Yu, J. S. Spherical Carbon Capsules with Hollow Macroporous Core and Mesoporous Shell Structures as A Highly Efficient Ccatalyst Support in the Direct Methanol Fuel Cell. Chem. Commun. 2004,2766-2767.
    [24]Suarez, F. J.; Sevilla, M.; Alvarez, S.; Valdes-Solis, T.; Fuertes, A. B. Synthesis of Highly Uniform Mesoporous Sub-Micrometric Capsules of Silicon Oxycarbide and Silica. Chem. Mater.2007,19,3096-3098.
    [25]Zhong, Z. Y.; Yin, Y. D.; Gates, B.; Xia, Y. N. Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads. Adv. Mater.2000,12,206-209.
    [26]Gao, J. N.; Ren, X. L.; Chen, D.; Tang, F. Q.; Ren, J. Bimetallic Ag-Pt Hollow Nanoparticles:Synthesis and Tunable Surface Plasmon Resonance. Scr. Mater. 2007,57,687-690.
    [27]Sun, Y. G.; Mayers, B. T. Xia, Y. N. Template-Engaged Replacement Reaction: A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors. Nano Lett.2002,2,481-485.
    [28]Yin, Y. D.; Erdonmez, C.; Aloni, S.; Alivisatos, A. P. Faceting of Nanocrystals during Chemical Transformation: From Solid Silver Spheres to Hollow Gold Octahedra. J. Am. Chem. Soc.2006,128,12671-12673.
    [29]P. R. Selvakannan, M. Sastry, Hollow Gold and Platinum Nanoparticles by A Transmetallation Reaction in An Organic Solution. Chem. Commun.2005, 1684-1686.
    [30]Guo, S. J.; Fang, Y X.; Dong, S. J.; Wang, E. K. High-Efficiency and Low-Cost Hybrid Nanomaterial as Enhancing Electrocatalyst:Spongelike Au/Pt Core/Shell Nanomaterial with Hollow Cavity. J. Phys. Chem. C 2007,111, 17104-17109.
    [31]Liang, H. P.; Guo, Y. G.; Zhang, H. M.; Hu, J. S.; Wan, L. J.; Bai, C. L Controllable AuPt bimetallic hollow nanostructures. Chem. Commun.2004, 1496-1497.
    [32]Vasquez, Y.; Sra, A. K.; Schaak, R. E. One-Pot Synthesis of Hollow Superparamagnetic CoPt Nanospheres. J. Am. Chem. Soc.2005,127, 12504-12505.
    [33]Fei, J. B.; Cui, Y.; Yan, X. H.; Qi, W.; Yang, Y.; Wang, K. W.; He, Q.; Li, J. B. Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment. Adv. Mater.2008,20,452-456.
    [34]Li, C.; Yang, X. G.; Yang, B. J.; Yang, Y.; Yan, Y.; Qian, Y. T. A Template-Interface Co-Reduction Synthesis of Hollow Sphere-like Carbides. Eur. J. Inorg. Chem.2003,19,3534-3537.
    [35]Shen, G. Z.; Chen, D.; Liu, Y. F.; Tang, K. B.; Qian, Y. T. Synthesis of ZrC hollow nanospheres at low temperature. J. Cryst. Growth 2004,262,277-280.
    [36]Nakashima, T.; Kimizuka, N. Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids. J. Am. Chem. Soc.2003,125,6386-6387.
    [37]Ni, Y. H.; Tao, A.; Hu, G. Z.; Cao, X. F.; Wei, X. W.; Yang, Z. S. Synthesis, characterization and properties of hollow nickel phosphide nanospheres. Nanotechnology 2006,17,5013-5018.
    [38]Hu, Y.; Chen, J.; Chen, W.; Lin, X.; Li, X. Synthesis of Novel Nickel Sulfide Submicrometer Hollow Spheres. Adv. Mater.2003,15,726-729.
    [39]Hu, Y.; Chen, J. F.; Jin, X. Z.; Chen, W. M. Synthesis of hollow lead sulfide microspheres. Mater. Lett.2005,59,234-237.
    [40]Bao, J. C.; Liang, Y. Y.; Xu, Z.; Si, L. Facile Synthesis of Hollow Nickel Submicrometer Spheres. Adv. Mater.2003,15,1832-1835.
    [41]Wang, H. R.; Song, Y. J.; Medforth, C. J.; Shelnutt, J. A.; Interfacial Synthesis of Dendritic Platinum Nanoshells Templated on Benzene Nanodroplets Stabilized in Water by a Photocatalytic Lipoporphyrin. J. Am. Chem. Soc.2006, 128,9284-9285.
    [42]Chen, H. M.; He, J. H.; Zhang, C. B.; He, H. Self-Assembly of Novel Mesoporous Manganese Oxide Nanostructures and Their Application in Oxidative Decomposition of Formaldehyde J. Phys. Chem. C 2007,111, 18033-18038.
    [43]Dong, L. H.; Chu, Y.; Zhang, Y. P.; Liu, Y.; Yang, F. Y. Surfactant-assistant and
    facile synthesis of hollow ZnS nanospheres. J. Colloid Interface Sci.2007,308, 258-264.
    [44]Yu, X. L.; Cao, C. B.; Zhu, H. S.; Li, Q. S.; Liu, C. L.; Gong, Q. H. Nanometer-Sized Copper Sulfide Hollow Spheres with Strong Optical-Limiting Properties. Adv. Funct. Mater.2007,17,1397-1401.
    [45]Wu, D. Z.; Ge, X. W.; Zhang, Z. C.; Wang, M. Z.; Zhang, S. L. Novel One-Step Route for Synthesizing CdS/Polystyrene Nanocomposite Hollow Spheres. Langmuir 2004,20,5192-5195.
    [46]Yang, S. Liu, H. R. A Novel Approach to Hollow Superparamagnetic Magnetite/Polystyrene Nanocomposite Microspheres via Interfacial Polymerization. J. Mater. Chem.2006,16,4480-4487.
    [47]Miyao, T.; Minoshima, K.; Naito, S. Remarkable Hydrogen Occlusion Ability of Hollow Ir-SiO2 Nanoparticles Prepared by Reversed Micelle Techniques. J. Mater. Chem.2005,15,2268-2270.
    [48]Jovanovic, A. V.; Underhill, R. S.; Bucholz, T. L.; Duran, R. S. Oil Core and Silica Shell Nanocapsules:Toward Controlling the Size and the Ability To Sequester Hydrophobic Compounds. Chem. Mater.2005,17,3375-3383.
    [49]Fendler, J. H. Polymerized Surfactant Vesicles:Novel Membrane Mimetic Systems. Science 1984,223,888-894.
    [50]Bunton, C. A.; Nome, F.; Quina, F. H.; Romsted, L. S. Ion binding and reactivity at charged aqueous interfaces. Acc. Chem. Res.1991,24,357-364.
    [51]Li, Y. J.; Li, X. F.; Li, Y. L.; Liu, H. B.; Wang, S.; Gan, H. Y.; Li, J. B.; Wang, N.; He, X. R.; Zhu, D. B. Controlled Self-Assembly Behavior of an Amphiphilic Bisporphyrin-Bipyridinium-Palladium Complex:From Multibilayer Vesicles to Hollow Capsules. Angew. Chem. Int. Ed.2006,45,3639-3643.
    [52]Sun, X. M.; Li, Y. D. Hollow Carbonaceous Capsules from Glucose Solution. J. Colloid Interface Sci.2005,291,7-12.
    [53]He, T.; Chen, D. R.; Jiao, X. L.; Xu, Y. Y.; Gu, Y X. Surfactant-Assisted Solvothermal Synthesis of Co3O4 Hollow Spheres with Oriented-Aggregation Nanostructures and Tunable Particle Size. Langmuir 2004,20,8404-8408.
    [54]Zhao, Q. R.; Xie, Y.; Dong, T.; Zhang, Z. G. Oxidation-Crystallization Process of Colloids:An Effective Approach for the Morphology Controllable Synthesis of SnO2 Hollow Spheres and Rod Bundles. J. Phys. Chem. C 2007,111, 11598-11603.
    [55]Cong, H. P.; Yu, S. H. Hybrid ZnO-Dye Hollow Spheres with New Optical Properties by a Self-Assembly Process Based on Evans Blue Dye and Cetyltrimethylammonium Bromide. Adv. Funct. Mater.2007,17,1814-1820.
    [56]Zhang, X. J.; Li, D. Metal-Compound-Induced Vesicles as Efficient Directors for Rapid Synthesis of Hollow Alloy Spheres. Angew. Chem. Int. Ed.2006,45, 5971-5974.
    [57]Chen, G.; Xia, D. G.; Nie, Z. R.; Wang, Z. Y.; Wang, L.; Zhang, L.; Zhang, J. J. Facile Synthesis of Co-Pt Hollow Sphere Electrocatalyst. Chem. Mater.2007, 19,1840-1844.
    [58]Qi, L. M.; Li, J.; Ma, J. M. Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers. Adv. Mater.2002,14,300-303.
    [59]Yeh, Y. Q.; Chen, B. C.; Lin, H. P.; Tang, C. Y. Synthesis of Hollow Silica Spheres with Mesostructured Shell Using Cationic-Anionic-Neutral Block Copolymer Ternary Surfactants. Langmuir 2006,22,6-9.
    [60]Xu, Y. Y.; Chen, D. R.; Jiao, X. L.; Xue, K. Y.; Nanosized Cu2O/PEG400 Composite Hollow Spheres with Mesoporous Shells. J. Phys. Chem. C 2007, 111,16284-16289.
    [61]Zhou, P.; Li, Y. G.; Sun, P. P.; Zhou, J. H.; Bao, J. C. A Novel Heck Reaction Catalyzed by Co Hollow Nanospheres in Ligand-free Condition. Chem. Commun.2007,1418-1420.
    [62]Gu, F.; Li, C. Z.; Wang, S. F.; Lu, M. K. Solution-Phase Synthesis of Spherical Zinc Sulfide Nanostructures. Langmuir 2006,22,1329-1332.
    [63]Suslick, K. S. Sonochemistry. Science 1990,247,1439-1445.
    [64]Wu, C. Z.; Xie, Y.; Lei, L. Y.; Hu, S. Q.; OuYang, C. Z. Synthesis of New-Phased VOOH Hollow "Dandelions" and Their Application in Lithium-Ion Batteries. Adv. Mater.2006,18,1727-1732.
    [65]Ahmad, J.; Dickerson, M. B.; Cai, Y.; Jones, S. E.; Ernst, E. M.; Vernon, J. P.; Haluska, M. S.; Fang, Y.; Wang, J.; Subramanyam, G.; Naik, R. R.; Sandhage, K. H. Rapid Bioenabled Formation of Ferroelectric BaTiO3 at Room Temperature from an Aqueous Salt Solution at Near Neutral pH. J. Am. Chem. Soc. 2008,130,4-5.
    [66]Kisailus, D.; Truong, Q.; Amemiya, Y.; Weaver, J. C.; Morse, D. E. Self-assembled Bifunctional Surface Mimics an Enzymatic and Templating Protein for the Synthesis of a Metal Oxide Semiconductor Proc. Natl. Acad. Sci. U.S.A.2006,103,5652-5657.
    [67]Ma, N.; Dooley, C. J.; Kelley, S. O. RNA-Templated Semiconductor Nanocrystals. J. Am. Chem. Soc.2006,128,12598-12599.
    [68]Sharma, J.; Chhabra, R.; Andersen, C. S.; Gothelf, K. V.; Yan, H.; Liu, Y Toward Reliable Gold Nanoparticle Patterning On Self-Assembled DNA Nanoscaffold. J. Am. Chem. Soc.2008,130,7820-7821.
    [69]Whaley, S. R.; English, D. S.; Hu, E. L.; Barbara, P. F.; Belcher, A. M. Selection of Peptides with Semiconductor Binding Specificity for Directednanocrystal Assembly. Nature 2000,405,665-668.
    [70]Zhou, H.; Fan, T. X.; Han, T.; Li, X. F.; Ding, J.; Zhang, D.; Guo, Q. X.; Ogawa, H. Bacteria-based Controlled Assembly of Metal Chalcogenide Hollow Nanostructures with Enhanced Light-harvesting and Photocatalytic Properties. Nanotechnology 2009,20,085603.
    [71]Sanchez, C.; Arribart, H.; Guille, M. M. G. Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems. Nat. Mater.2005,4, 277-288.
    [72]Vriezema, D. M.; Aragones, M. C.; Elemans, J. A. A. W.; Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Self-Assembled Nanoreactors. Chem. Rev. 2005,105,1445-1490.
    [73]Shen, L. M.; Bao, N. Z.; Prevelige, P. E.; Gupta, A. Escherichia coli Bacteria-Templated Synthesis of Nanoporous Cadmium Sulfide Hollow Microrods for Efficient Photocatalytic Hydrogen Production. J. Phys. Chem. C 2010,114, 2551-2559.
    [74]W. Ostwald, Z. Phys. Chem.1900,34,495.
    [75]W. Ostwald, Lehrbuch der Allgemeinen Chemie, Vol.2, Part 1, Engelmann, Leipzig, Germany 1896.
    [76]Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity. Adv. Mater.2006,18,2325-2329.
    [77]Liu, B.; Zeng, H. C. Mesoscale Organization of CuO Nanoribbons:Formation of "Dandelions". J. Am. Chem. Soc.2004,126,8124-8125.
    [78]H. G. Yang, H. C. Zeng, Self-construetion of Hollow SnO2 Oetahedra Based on Two-dimensional Aggregation of Nanocrystallites. Angew. Chem. Int. Ed.2004, 43,5930-5933.
    [79]Kirkendall, E. O. Diffusion of Zinc in Alpha Brass. Trans. AIME 1942,147, 104-109.
    [80]Smigelskas, A. D.; Kirkendall, E. O. Zinc diffusion in alpha brass. Trans. AIME 1947,171,130-142.
    [81]Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect. Science 2004,304,711-714.
    [82]Wang, Y. L.; Cai, L.; Xia, Y N. Monodisperse Spherical Colloids of Pb and Their Use as Chemical Templates to Produce Hollow Particles. Adv. Mater. 2005,17,473-477.
    [83]Tong, W. J.; Gao, C. Y Multilayer microcapsules with tailored structures for bio-related applications. J. Mater. Chem.2008,18,3799-3812.
    [84]Johnston, A. P. R.; Cortez, C.; Angelatos, A. S.; Caruso, F. Layer-by-layer engineered capsules and their applications. Curr. Opin. Colloid Interface Sci. 2006,11,203-209.
    [85]Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions. J. Am. Chem. Soc.2002,124, 7642-7643.
    [86]Li, Y. G.; Zhou, P.; Dai, Z. H.; Hu, Z. X.; Sun, P. P.; Bao, J. C. A facile synthesis of PdCo bimetallic hollow nanospheres and their application to Sonogashira reaction in aqueous media. New J. Chem.2006,30,832-837.
    [87]Cheng, F. Y.; Ma, H.; Li, Y. M.; Chen, J. Ni1-xPtx (x= 0-0.12) Hollow Spheres as Catalysts for Hydrogen Generation from Ammonia Borane Inorg. Chem.2007, 46,788-794.
    [88]Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.; Wan, L. J.; Bai, C. L. Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts. Angew. Chem. Int. Ed.2004,43,1540-1543.
    [89]Botterhuis, N. E.; Sun, Q. Y.; M. P. C.; Magusin, M.; van Santen, R. A.; Sommerdijk, N. A. J. M. Hollow Silica Spheres with an Ordered Pore Structure and Their Application in Controlled Release Studies.Chem. Eur. J.2006,12, 1448-1456.
    [90]Zhu, Y. F.; Shi, J. L.; Shen, W. H.; Dong, X. P.; Feng, J. W.; Ruan, M. L.; Li, Y. S. Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure. Angew. Chem. Int. Ed.2005,44,5083-5087.
    [91]Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z. Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X. D.; Xia, Y. N. Gold Nanocages:Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents. Nano Lett.2005,5, 473-477.
    [92]Tarascon, J. M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001,414,359-367.
    [93]Wang, Y.; Su, F. B.; Lee, J. Y.; Zhao, X. S. Crystalline Carbon Hollow Spheres, Crystalline Carbon-SnO2 Hollow Spheres, and Crystalline SnO2 Hollow Spheres:Synthesis and Performance in Reversible Li-Ion Storage. Chem. Mater. 2006,18,1347-1353.
    [94]Cui, G L.; Hu, Y. S.; Zhi, L. J.; Wu, D. Q.; Lieberwirth, I.; Maier, J.; Mullen, K. A One-Step Approach towards Carbon-Encapsulated Hollow Tin Nanoparticles and Their Application in Lithium Batteries. Small 2007,3,2066-2069.
    [95]Li, B. X.; Rong, G. X.; Xie, Y.; Huang, L. F.; Feng, C. Q. Low-Temperature Synthesis of a-MnO2 Hollow Urchins and Their Application in Rechargeable Li+ Batteries. Inorg. Chem.2006,45,6404-6410.
    [96]Shiho, H.; Kawallashi. N. Iron Compounds as Coatings on Polystyrene Latex and as Hollow Spheres. J. Colloid Interface Sci.2000,226,91-97.
    [97]Wang, Y.; Zhu, Q. S.; Zhang, H.G. Fabrication and Magnetic Properties of Hierarchical Porous Hollow Nickel Microspheres. J. Mater. Chem.2006,16, 1212-1214.
    [98]Peng, Z. A.; Peng, X. G. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc.2001,123,183-184.
    [99]Gao, F.; Lu, Q. Y.; Xie, S. H.; Zhao, D. Y. A Simple Route for the Synthesis of Multi-Armed CdS Nanorod-Based Materials. Adv. Mater.2002,14,1537-1540.
    [100]Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrical-ly driven lasers. Nature 2003,421,241-245.
    [101]Cao, B. L.; Jiang, Y.; Wang, C.; Wang, W. H.; Wang, L. Z.; Niu, M.; Zhang, W.J.; Li, Y Q.; Lee. S. T. Synthesis and Lasing Properties of Highly Ordered CdS Nanowire Arrays. Adv. Funct. Mater.2007,17,1501-1506.
    [102]Zhao, P. T.; Huang K. X. Preparation and Characterization of Netted Sphere-like CdS Nanostructures. Cryst. Growth Des.2008,8,717-722.
    [103]Chen, W.; Chen, K.; Peng, Q.; Li, Y D. Triangular CdS Nanocrystals:Rational Solvothermal Synthesis and Optical Studies. Small 2009,5,681-684.
    [104]Zhou, W. C.; Pan, A. L.; Li, Y.; Dai, G. Z.; Wan, Q.; Zhang, Q. L.; Zou, B. S. Controllable Fabrication of High-Quality 6-Fold Symmetry-Branched CdS Nanostructures with ZnS Nanowires as Templates. J. Phys. Chem. C 2008,112, 9253-9260.
    [105]Huang, J.; Xie, Y.; Li, B.; Liu, Y.; Qian, Y.; Zhang. S. In-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres. Adv. Mater.2000,12,808-811.
    [106]Song, C. X.; Gu, G. H.; Lin, Y.S.; Wang, H.; Guo, Y.; Fu, X.; Hu, Z. X. Preparation and characterization of CdS hollow spheres. Mater. Res. Bull.2003, 38,917-924.
    [107]Ma, Y. R.; Qi, L. M.; Ma, J. M.; Cheng, H. M.; Shen, W. Synthesis of Submicrometer-Sized CdS Hollow Spheres in Aqueous Solutions of a Triblock Copolymer. Langmuir 2003,19,9079-9085.
    [108]Wu, D. Z.; Ge, X. W.; Zhang, Z. C.; Wang, M. Z.; Zhang, S. L. Novel One-Step Route for Synthesizing CdS/Polystyrene Nanocomposite Hollow Spheres. Langmuir 2004,20,5192-5195.
    [109]Miao, J. J.; Ren, T.; Dong L.; Zhu, J. J.; Chen, H. Y. Double-Template Synthesis of CdS Nanotubes with Strong Electrogenerated Chemiluminescence. Small 2005,1,802-805.
    [110]Lu, W.; Chen, M.; Wu, L. M. Easy Method for Preparing Nanocrystalline CdS Hollow Spheres Using Miniemulsion Droplets as Templates. J. Colloid Interface Sci.2008,324,220-224.
    [111]Bao, Z. H.; Shen, L. M.; Takata, T.; Domen, K. Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light. Chem. Mater.2008,20,110-117.
    [112]Cabot, A.; Smith, R. K.; Yin, Y. D.; Zheng, H. M.; Reinhard, B. M.; Liu, H. T.; Alivisatos, A. P. Sulfidation of Cadmium at the Nanoscale. ACS nano 2008,2, 1452-1458.
    [113]Gong, Q.; Qian, X. F.; Zhou, P. L.; Yu, X. B.; Du, W. M.; Xu, S. H. In Situ Sacrificial Template Approach to the Synthesis of Octahedral CdS Microcages. J. Phys. Chem. C 2007,111,1935-1940.
    [114]Kim, M. R.; Jang, D. J. One-step fabrication of well-defined hollow CdS nanoboxes. Chem. Commun.2008,5218-5220.
    [115]Dai, Z. H.; Zhang, J.; Bao, J. C.; Huang X. H.; Mo, X. Y. Facile synthesis of high-quality nano-sized CdS hollow spheres and their application in electrogenerated chemiluminescence sensing. J. Mater. Chem 2007,17, 1087-1093.
    [116]Lin, G. F.; Zheng, J. W.; Xu, R. Template-Free Synthesis of Uniform CdS Hollow Nanospheres and Their Photocatalytic Activities. J. Phys. Chem. C 2008, 112,7363-7370.
    [117]Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Hydrophobic, Highly Conductive Ambient-Template Molten Salts. Inorg. Chem. 1996,35,1168-1178.
    [118]Koch, V. R.; Nanjundian, C.; Battista, a.g.; Scrosati, B. The interfacial stability of Li with two new solvent-free ionic liquids-1,2-dimethyl-3-propylimidazolium imide and methide. J. Electrochem. Soc.1995,142:L116-L118.
    [119]Macfarlane, D. R.; Golding, J.; Forsyth, S.; Deacon, G. B. Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem. Commun.2001, 1430-1431.
    [121]Wang, P.; Zakeeruddion, S. M.; Comte, P.; Exnar, I.; Gratzel, M. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J. Am. Chem. Soc.2003,125,1166-1167.
    [122]R. R. Deshmukh, R. Rajagopal, K. V. Srinivasan, Ultrasound promoted C-C bond formation:Heck reaction at ambient conditions in room temperature ionic liquids. Chem. Commun.2001,1544-1545.
    [123]F. Endres, S. Z. Abedin, Electrodeposition of Stable and Narrowly Dispersed Germanium Nanoclusters from An Ionic Liquid. Chem. Commun.2002,8, 892-893.
    [124]Biswas, K.; Rao, C. N. R. Use of Ionic Liquids in the Synthesis of Nanocrystals and Nanorods of Semiconducting Metal Chalcogenides Chem. Eur. J.2007,13,6123-6129.
    [125]Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett.1987,58,2059-2062.
    [126]John, S. Strong Location of Photons in Certain Disorders Dielectric Superlattices. Phys. Rev. Lett.1987,58,2486-2489.
    [127]Meseguer, F.; Blanco, A.; Miguez, H.; Garcia-Santamaria, F.; Ibisate, M.; Lopez, C. Synthesis of inverse opals. Colloids Surf., A 2002,202,281-290.
    [128]陈宗淇.王光信,徐桂英,胶体与界面化学,北京,高等教育出版社,2001.
    [129]Matijevic E. Prog. Colloid Polym. Sci.1976,61,24.
    [130]Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y. Monodispersed Colloidal Spheres:Old Materials with New Applications. Adv. Mater 2000,12,693-713.
    [131]Zhang, Y.; Li, Y D. Synthesis and Characterization of Monodisperse Doped ZnS Nanospheres with Enhanced Thermal Stability. J. Phys. Chem. B 2004, 108, 17805-17811.
    [132]Wang, X.; Zhuang, J.; Peng Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005,437,121-124.
    [1]Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370,354-357.
    [2]Coe, S.; Woo, W. K.; Bawendi, M.; Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002,420, 800-803.
    [3]Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.; Wan, L. J.; Bai, C. L. Pt Hollow Nanospheres:Facile Synthesis and Enhanced Electrocatalysts. Angew. Chem. Int. Ed.2004,43,1540-1543.
    [4]Zhu, Y. F.; Shi, J. L.; Shen, W. H.; Dong, X. P.; Feng, J. W.; Ruan, M. L.; Li, Y. S. Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure. Angew. Chem. Int. Ed.2005,44,5083-5087.
    [5]W. Ostwald, Z. Phys. Chem.1900,34,495.
    [6]R. L. Penn, J. F. Banfield, Imperfect oriented attachment: Dislacation generation n defect-free nanocrystals. Science 1998,281,969-971.
    [7]Chen, C. C.; Chao, C. Y.; Lang, Z. H. Simple Solution-Phase Synthesis of Soluble CdS and CdSe Nanorods. Chem. Mater.2000,12,1516-1518.
    [8]Cao, H. Q.; Wang, G. Z.; Zhang, S. C.; Zhang, X. R.; Rabinovich. D. Growth and Optical Properties of Wurtzite-Type CdS Nanocrystals. Inorg. Chem.2006,45, 5103-5108.
    [9]Chen, M.; Xie, Y.; Lu, J.; Xiong, Y. J.; Zhang, S. Y.; Qian, Y T.; Liu, X. M. Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique. J. Mater. Chem., 2002,12,748-753.
    [10]Dong, L. F.; Gushtyuk, T.; Jiao, J. Synthesis, Characterization, and Growth Mechanism of Self-Assembled Dendritic CdS Nanorods. J. Phys. Chem. B 2004,108,1617-1620
    [11]Cao, B. L.; Jiang, Y.; Wang, C.; Wang, W. H.; Wang, L. Z.; Niu, M.; Zhang, W. J.; Li, Y. Q.; Lee. S. T. Synthesis and Lasing Properties of Highly Ordered CdS Nanowire Arrays**. Adv. Funct. Mater.2007,17,1501-1506.
    [12]Kar, S.; Satpati, B.; Satyam, P. V.; Chaudhuri. S. Synthesis and Optical Properties of CdS Nanoribbons. J. Phys. Chem. B 2005,109,19134-19138.
    [13]Wang, Q. Q.; Xu, G.; Han, G. R. Synthesis and Characterization of Large-Scale Hierarchical Dendrites of Single-Crystal CdS. Cryst. Growth Des.2006,6, 1776-1780.
    [14]Ma, Y. R.; Qi, L. M.; Ma, J. M.; Cheng, H. M.; Shen, W. Synthesis of Submicrometer-Sized CdS Hollow Spheres in Aqueous Solutions of a Triblock Copolymer. Langmuir 2003,19,9079-9085.
    [15]Wu, D. Z.; Ge, X. W.; Zhang, Z. C.; Wang, M. Z.; Zhang, S. L. Novel One-Step Route for Synthesizing CdS/Polystyrene Nanocomposite Hollow Spheres. Langmuir 2004,20,5192-5195.
    [16]Lu, W.; Chen, M.; Wu, L. M. Easy method for preparing nanocrystalline CdS hollow spheres using miniemulsion droplets as templates. J. Colloid Interface Sci.2008,324,220-224.
    [17]Lin, G. F.; Zheng, J. W.; Xu, R. Template-Free Synthesis of Uniform CdS Hollow Nanospheres and Their Photocatalytic Activities. J. Phys. Chem. C 2008,112,7363-7370.
    [18]Huddleston, J. G.; Willauer, H. D.; Swatloski, R. P.; Rogers, R. D. Room-temperature ionic liquids as novel media for'clean'liquid-liquid extraction. Chem. Commun.1998,1765-1766.
    [19]Zhao, D.; Wu, M.; Kou, Y.; Min, E. Ionic liquids:applications in catalysis. Catal. Today 2002,74,157-189.
    [20]Antonietti, M.; Kuang, D.; Smarsly, B.; Zhou, Y. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew. Chem. Int. Ed.2004,43,4988-4992.
    [21]Zhou, Y.; Antonietti, M. Synthesis of very small Tio2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous
    spherical aggregates. J. Am. Chem. Soc.2003,125,14690-14691.
    [22]Wang, Y.; Yang, H. Synthesis of CoPt nanorods in ionic liquids. J. Am. Chem. Soc.2005,127,5316-5317.
    [23]Zhao, M. W.; Zheng, L. Q.; Bai, X. T.; Li, N.; Yu, L. Fabrication of silica nanoparticles and hollow spheres using ionic liquid microemulsion droplets as templates. Colloids Surf. A 2009,346,229-236.
    [24]Bai, X. T.; Gao, Y. A.; Liu, H. G.; Zheng, L. Q. Synthesis of Amphiphilic Ionic Liquids Terminated Gold Nanorods and Their Superior Catalytic Activity for the Reduction of Nitro Compounds. J. Phys. Chem. C 2009,113,17730-17736
    [25]Dupont, J.; Consorti, C. S.; Suarez, P. A. Z.; de Souza, R. F.; Fulmer, S. L.; Richardson, D. P.; Smith, T. E.; Wolff, S. Preparation of 1-butyl-3-methylimidazolum-based room-temperature ionic liquids. Org. Synth. 2002,79(3),236-241.
    [26]Zhao, P. T.; Huang, K. X. Preparation and Characterization of Netted Sphere-like CdS Nanostructures. Cryst. Growth Des.2008,8,717-722.
    [27]Li, X. H.; Li, J. X.; Li, G. D.; Liu, D. P.; Chen. J. S. Controlled Synthesis, Growth Mechanism, and Properties of Monodisperse CdS Colloidal Spheres. Chem. Eur. J.2007,13,8754-8761.
    [28]Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Polyol synthesis of uniform silver nanowires:A plausible growth mechanism and the supporting evidence. Nano Lett.,2003,3,955-960.
    [29]Ewers, T. D.; Sra, A. K.; Norris, B. C.; Cable, R. E.; Cheng, C. H.; Shantz, D. F.; Schaak, R. E. Spontaneous Hierarchical Assembly of Rhodium Nanoparticles into Spherical Aggregates and Superlattices. Chem. Mater.2005,17,514-520.
    [30]Chen, F.; Zhou, R. J.; Yang, L. G.; Liu, N.; Wang, M.; Chen, H. Z. Large-Scale and Shape-Controlled Syntheses of Three-Dimensional CdS Nanocrystals with Flowerlike Structure. J. Phys. Chem. C 2008,112,1001-1007.
    [31]Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity. Adv. Mater.2006,18,2325-2329.
    [32]Yang, H. G.; Zeng, H. C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 2004,108,3492-3495.
    [33]Wang, W. S.; Zhen, L.; Xu, C. Y.; Zhang, B. Y.; Shao, W. Z. Room Temperature Synthesis of Hollow CdMoO4 Microspheres by a Surfactant-Free Aqueous Solution Route. J. Phys. Chem. B 2006,110,23154-23158.
    [34]Yu, H. G.; Yu, J. G.; Liu, S. W.; Mann, S. Template-free Hydrothermal Synthesis of CuO/Cu2O Composite Hollow Microspheres. Chem. Mater.2007,19, 4327-4334.
    [35]Dai, Z. H.; Zhang, J.; Bao, J. C.; Huang, X. H.; Mo, X. Y. Facile synthesis of high-quality nano-sized CdS hollow spheres and their application in electrogenerated chemiluminescence sensing. J. Mater. Chem.2007,17, 1087-1093.
    [36]Liu, Y. K.; Zapien, J. A.; Geng, C. Y.; Shan, Y. Y.; Lee, C. S.; Lifshitz, Y.; Lee, S. T. High-quality CdS nanoribbons with lasing cavity. Appl. Phys. Lett.2004,85, 3241-3243.
    [37]Wang, Y.; Meng, G.; Zhang, L.; Liang C.; Zhang, J. Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole. Chem. Mater.2002,14,1773-1777.
    [38]J. S. Suh, J. S. Lee, Surface enhanced Raman Scattering for CdS nanowires deposited in anodic aluminum oxide nanotemplate. Chem. Phys. Lett.1997, 281,384-388.
    [39]Torres-Martinez, C. L.; Kho, R.; Mian, O. I.; Mehral R. K. Efficient photocatalytic degradation of environmental pollutants with mass-produced ZnS nanocrystals. J. Colloid Inter. Sci.2001,240:525-532.
    [1]Matijevic, E. Uniform Inorganic Colloid Dispersions. Achievements and Challenges. Langmuir 1994,10,8-16.
    [2]Lopez, C. Materials Aspects of Photonic Crystals. Adv. Mater.2003,15, 1679-1704.
    [3]Velev, O. D.; Lenhoff, A. M. Colloidal crystals as templates for porous materials. Curr. Opin. Colloid Interface Sci.2000,5,56-63.
    [4]. Xia, Y.; Gates, B.; Yin, Y.; Lu, Y Monodispersed Colloidal Spheres:Old Materials with New Applications. Adv. Mater,2000,12,693-713
    [5]Johnson, S. A.; Ollivier, P. J.; Mallouk, T. E. Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates. Science 1999,283,963-965.
    [6]Wang, Y. L.; Xia, Y. N. Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals. Nano Lett. 2004,4,2047-2050.
    [7]Camargo PHC, Lee YH, Jeong U, Zou Z, Xia YN. Cation Exchange:A Simple and Versatile Route to Inorganic Colloidal Spheres with the Same Size but Different Compositions and Properties. Langmuir 2007,23,2985-2992.
    [8]Jeong, U.; Wang, Y.; Ibisate, M.; Xia, Y. N. Some New Development in the Synthesis, Fictionalization, and Utilization of Monodisperse Colloidal Spheres. Adv. Funct. Mater.2005,15,1907-1921.
    [9]Jiang, X.; Herricks, T.; Xia, Y. N. Monodispersed Spherical Colloids of Titania: Synthesis, Characterization, and Crystallization. Adv. Mater.2003,15, 1205-1209.
    [10]Kim, S. H.; Lee, S. Y.; Yi, G. R.; Pine, D. J.; Yang, S. M. Microwave-Assisted Self-Organization of Colloidal Particles in Confining Aqueous Droplets. J. Am. Chem. Soc.2006,128,10897-10904.
    [11]Barry, R. A.; Wiltzius, P. Humidity-Sensing Inverse Opal Hydrogels. Langmuir 2006,22,1369-1374.
    [12]Zhao, X.; Cao, Y.; Ito, F.; Chen, H. H.; Nagai, K.; Zhao, Y. H.; Gu, Z. Z. Colloidal Crystal Beads as Supports for Biomolecular Screening. Angew. Chem. 2006,118,6989-6992; Angew. Chem. Int. Ed.2006,45,6835-6838.
    [13]Matijevic E, Wilhelmy MD. Preparation and Properties of Monodispersed Spherical Colloidal Particles of Cadmium Sulfide1. J. Colloid Interface Sci. 1982,86,476-484.
    [14]Sugimoto, T.; Chen, S.; Muramatsu, A. Synthesis of uniform particles of CdS, ZnS, PbS and CuS from concentrated solutions of the metal chelates. Colloids Surf. A.1998,135,207-226.
    [15]Li C. G.; Zhao Y.; Li F. F.; Shi, Z.; Feng, S. H.. Near-Infrared Absorption of Monodisperse Water-Soluble PbS Colloidal Nanocrystal Clusters. Chem. Mater. 2010,22,1901-1907.
    [16]Li, X. H.; Li, J.X.; Li, G. D.; Liu, D.P.; Chen, J. S. Controlled Synthesis, Growth Mechanism, and Properties of Monodisperse CdS Colloidal Spheres. Chem. Eur. J.2007,13,8754-8761.
    [17]Li, X.H.; Li, H.B.; Li, G. D.; Chen, J. S. General Synthesis of Uniform Metal Sulfide Colloidal Particles via Autocatalytic Surface Growth:A Self-Correcting System. Inorg. Chem.2009,48,3132-3138.
    [18]So, W. W.; Jang, J. S.; Rhee, Y. W.; Kim, K.J.; Moon, S. J. Preparation of Nanosized Crystalline CdS Particles by the Hydrothermal Treatment. J. Colloid Interface Sci.2001,237,136-141.
    [19]Chen, Y.; Kim, M.; Lian, G.; Johnson, M. B.; Peng, X. Side Reactions in Controlling the Quality, Yield, and Stability of High Quality Colloidal Nanocrystals. J. Am. Chem. Soc.2005,127,13331-13337.
    [20]Chen, F.; Zhou, R. J.; Yang, L. G.; Liu, N.; Wang, M.; Chen, H. Z. Large-Scale and Shape-Controlled Syntheses of Three-Dimensional CdS Nanocrystals with Flowerlike Structure. J. Phys. Chem. C 2008,112,1001-1007.
    [21]Wang, Q. Q.; Zhao, G L.; Han, G. R. Synthesis of single crystalline CdS by a PVP-assisted sovothermal method. Mater Lett.2005,59,2625-2629.
    [22]Wang, G Z.; Saeterli, R.; Rorvik, P. M.; van Helvoort, A. T. J.; Holmestad, R.; Grande, T.; Einarsrud, M. A. Self-Assembled Growth of PbTiO3 Nanoparticles into Microspheres and Bur-like Structures. Chem. Mater.2007,19,2213-2221.
    [23]Yan, S. C.; Sun, L. T.; Qu, P.; Huang, N. P.; Song, Y. C.; Xiao, Z. D.. Synthesis of uniform CdS nanowires in high yield and its single nanowire electrical property. J. Solid State Chem.2009,182,2941-2945.
    [24]Butty, J.; Peyghambarian, N. Room temperature optical gain in sol-gel derived CdS quantum dots. Appl. Phys. Lett.1996,69,3224-3226.
    [25]Wang, Y. W.; Meng, G. W.; Zhang, L. D.; Liang, C. H.; Zhang, J. Catalytic Growth of Large-Scale Single-Crystal CdS Nanowires by Physical Evaporation and Their Photoluminescence. Chem. Mater.2002,14,1773-1777.
    [26]Xiong, S. L.; Xi, B. J.; Wang, C. M.; Zou, G. F.; Fei, L. F.; Wang, W. Z.; Qian, Y. T. Shape-Controlled Synthesis of 3D and 1D Structures of CdS in a Binary Solution with 1-Cysteine's Assistance. Chem. Eur. J.2007,13,3076-3081.
    [27]Gao, F.; Lu, Q. Y.; Xie, S. H.; Zhao, D. Y. A Simple Route for the Synthesis of Muti-Armed CdS Nanorod-Based Materials. Adv. Mater.2002,14,1537-1540.
    [28]Dai, Z. H.; Zhang, J.; Bao, J. C.; Huang X. H.; Mo, X. Y. Facile synthesis of high-quality nano-sized CdS hollow spheres and their application in electrogenerated chemiluminescence sensing. J. Mater. Chem 2007,17, 1087-1093.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700