仿人机器人的关节运动控制系统与传感器系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿人机器人不同于一般的工业机器人,它采用步行这种更为灵活的移动方式,对于多种环境具有更强的适应性,并且步行这种移动方式对于人类而言,也更容易接受,所以其相对于轮式或者履带式机器人具有更广阔的应用前景。但是对于步行控制来说,其运动控制要求更高,而且还需要引入相应的传感器系统作为信息反馈,才能实现实时准确的运动控制。
     本文针对实验室开发的小型家用仿人机器人MIH-I的具体结构,设计了分布式的控制系统体系,将关节控制系统与传感器系统从主控机中分离出来,单独作为一个系统,各个系统之间在通过CAN通讯协议相联系。将集中式任务控制和处理变为分布式的信息和任务处理,大大减轻了主控机的负担,也提高了整个系统的稳定性。
     在此基础上研究和设计了MIH-I关节运动控制系统,其硬件由DSP控制相关的驱动和信号解码电路驱动关节电机运动,软件上设计了针对硬件的底层驱动函数,并使用位置速度双PID闭环的算法对关节电机进行控制,还设计了与主控层相联系的通讯模块,使得关节运动控制系统能够从上位机接收关于关节控制的位置和速度等信息,并根据这些信息对关节电机进行实时控制,最后通过实验验证了该系统的可行性和良好的性能。
     另外还对机器人的传感器系统进行了研究,设计了MIH-I分布式控制中的传感器系统,硬件上使用压力传感器测量脚底压力信息,倾角传感器测量各个关节的倾角信息,这些信息通过相关的电平转换、接口扩展以及驱动电路处理后送于主控制芯片DSP中。软件上设计了相关的传感器和驱动芯片的底层控制函数,并通过一定的算法,将传感器的信息计算得出脚底压力分布以及机器人各关节的角度和理论重心。最后通过实验验证了这一系统的功能。
     MIH-I关节运动控制系统和传感器系统作为整个仿人机器人分布式控制系统中的两个子系统,完成了运动控制中关节运动控制和信息反馈,从而为整个仿人机器人实现实时在线运动控制做出了很大的贡献。最后,在本文结尾,作者还总结了全文所做的工作,然后以此拓展开来,说明了MIH-I以后所需要做的工作以及对未来的展望。
Humanoid robot is different from the general industrial robot, it use walking which is a more flexible way to move, and this way can be more adaptive on various of environment, and it is also more receptive to human, therefore, it has a more board application prospects than the wheeled or tracked robot. But for the walking control, its motion control requirements are higher, and it also needs the signal feedback by the sensor system, which is prerequisite to achieve the real-time and accurate motion control.
     In this paper, according to the structure of the small domestic humanoid robot in the laboratory, the distributed control system is designed to separate the joint control system and sensor systems from the main controller, and the subsystem can communicate through the CAN bus, this not only greatly reduces the burden of the main controller, but also improves the stability of the entire system.
     Next, the joint motion control system is researched and developed, this system is controlled by the central processor DSP, and with the related hardware circuit it can drive the joint motor to move, the control software is also developed, which based on the double PID control closed-loop algorithm, at last, the experiment testify the joint control system can handle the control of position and speed on joint motor.
     Then, the MIH-I robot’s sensor system is developed, it uses press sensors and inclination sensors to get the information of foot press and joint angular, and the related software is designed to calculate the foot pressure distribution and the center of gravity of MIH-I, all the information can be send to the main controller by the CAN bus.
     As the part of the whole distributed control system on MIH-I, the joint motion control system and the sensor system constitute the motion control and information feedback of the entire control system. they are prerequisite for the humanoid robot to achieve the real-time motion control. At the end of this paper, the author summarizes the work he does, and illustrates the future work on MIH-I.
引文
[1]彼得.门泽尔,费思.阿卢伊西奥著,张帆,钟皓译. "机器人的未来".上海辞书出版社, 2002:1-3
    [2]范永,谭民.机器人控制器的现状与展望.机器人. 1999,第21卷第1期: 75-80
    [3] Jinxiang Shen, Jiangping Liu, Hui Zhang, etc. Distributed control system for modular self-reconfigurable robots. Proceedings of the 2003 IEEE International Conference on Robotics, Intelligent Systems and Siganl Processing, 2003: 932-936
    [4] Noritake K, Kato S, Yamakita T, etc. A motion generation system for humanoid robots-Tai Chi motion. 2003 International Symposium on Micromechatronics and Human Science, 2003: 265-269
    [5]谢涛,徐建峰,张永学,强文义.仿人机器人的研究历史、现状及展望.机器人, 2002,第24卷第4期:367-374
    [6] Hashimoto S, Natita S, Kasahara H, etc. Humanoid robots in Waseda University—Hedaly-2 and Wabian. Autonomous Robots, 2002, 12(1): 25-38
    [7] James J. Kuffner, Satoshi Kagami, Koichi Nishiwaki, etc. Dynamically-stable motion planning for humanoid robots. Autonomous Robots, 2002, 12(1): 105-118
    [8] Kazuo Hirai. The Honda humanoid robot: development and future perspective. Industrial Robot. 1999, 26(4): 260-266
    [9] Kazuo Hirai, Masato Hirose, Yuji Haikawa, etc. The development of Honda humanoid robot. Proceedings of the 1998 IEEE International Conference on Robotics and Automation, 1998: 1321-1326
    [10] Joel Chestnutt, Manfred Lau, German Cheung, etc. Footstep planning for the Honda ASIMO humanoid. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005: 631-636
    [11] Tatsuzo Ishida, Yoshihiro Kuroki. Sensor system of a small biped entertainment robot. Advanced Robotics, 2004, 18(10): 1039-1052
    [12] Movellan J R, Tanaka F, Fortenberry B, Aisaka K, The RUBI/QRIO project: Origins, principles, and first steps. Proceedings of 2005 4th IEEE International Conference on Development and Learning, 2005: 80-86
    [13] Tanaka F, Fortenberry B, Aisaka K, Movellan J R, Developing dance interaction between QRIOand toddlers in a classroom environment: Plans for the first steps. Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, 2005:223-228
    [14] Tanaka F, Fortenberry B, Aisaka K, Movellan J R, Plans for developing real-time dance interaction between QRIO and toddlers in a classroom environment. Proceedings of 2005 4th IEEE International Conference on Development and Learning, 2005:142-147
    [15] Gutmann J S, Fukuchi M, Fujita M. 3D perception and environment map generation for humanoid robot navigation. International Journal of Robotics Research, 2008 Vol. 27 :1117-1134
    [16] Sylvain calinon, Florent Guenter, Aude Billard. Goal-Directed imitation in a humanoid robot. IEEE International Conf on Robotics and Automation, 2005,Barcelona:300~305
    [17] Furuta T, Tawara T, Okumura Y, etc. Design and Construction of a Series of Compact Humanoid Robots and Development of Biped Walk Control Strategies. Robotics and Autonomous Systems, 2001, Vol. 37, pp. 81-100
    [18] Yamasaki F, Endo K, Kitano H, Asada M. Acquisition of humanoid walking motion using genetic algorithm - Considering characteristics of servo modules. Proceedings - IEEE International Conference on Robotics and Automation 3, 2002 Vol. 3, pp. 3123-3128
    [19] http://www.sarcos.com/
    [20] Pollard N S, Hodgins J K, Riley M J, Atkenson C G.. Adapting human motion for the control of a humanoid robot. Proceedings - IEEE International Conference on Robotics and Automation 2:1390-1397
    [21] http://www.bostondynamics.com/
    [22] http://www.wired.com/dangerroom/2009/05/army-terminators-walk-like-a-man/
    [23] Aoustin Y, Plestan F, Lebastard V. Experimental comparison of several posture estimation solutions for biped robot Rabbit. Proceedings - IEEE International Conference on Robotics and Automation, art: 1270-1275
    [24]王全福,刘进长.机器人的昨天今天和明天.中国机械工程,2000, Z1期
    [25]包志军,马培荪,姜山,程君实,王春雨.从两足机器人到仿人型机器人的研究历史及其问题.机器人,1999,第21卷第4期:312-320
    [26] Zhao Mingguo, Liu Li, Wang jingsong, etc. Control system design of THBIP-1 humanoid robot. Proceedings of the 2002 IEEE International Conference on Robotics and Automation, 2002: 2253-2258
    [27] MAN Cuihua, FAN Xun, ZHANG Hua, et al. Current status and future development of humanoid robots[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(9):204-207.
    [28]于秀丽,魏世民,廖启征.仿人机器人发展及其技术探索.机械工程学报,第45卷第3期,2009.3:72-73
    [29]杨斌.仿人机器人分布式控制系统主控层的研究与实现.上海交通大学硕士学位论文, 2009:9-11
    [30]赵建东,邵黎军,徐凯等.基于CAN总线的仿人机器人关节伺服系统控制系统研究.机器人, 2002.9,第24卷第5期,
    [31]彭秀艳,李一丹,吕淑萍,赵希人.仿人机器人稳定步行控制研究.智能系统学报, 2008,第06期:536-537
    [32]钟华,吴镇炜,卜春光.仿人机器人控制系统的研究与实现.机器人, 2005.9,第27卷第5期:456-457
    [33]冯金光,周华平,马宏绪.基于CAN总线和DSP的仿人机器人运动控制系统研究.总线与网络, 2004.5:32-33
    [34]冯威,陈工. 26自由度仿人机器人的设计与控制.机械工程与自动化, 2008,第02期:131
    [35]白焰,吴鸿,杨国田.分散控制系统与现场总线控制系统.北京:中国电力出版社, 2001:178~189
    [36]吴镇炜,李斌,基于PC平台的机器人控制器设计与实现.机器人,2000,738~740.
    [37]方正,杨华,胡益民,徐心和.嵌入式智能机器人平台研究.机器人,2006.1,第28卷第1期:55-56
    [38]陶龙,张国良,贾哲.仿人机器人分布式控制系统研究及实现.工业控制计算机, Industrial Control Computer, 2008,第09期:71-72
    [39]宁柯军,杨汝清,翁新华.基于多智能体的机电设备嵌入式控制系统设计方法.上海交通大学学报, 2005,第12期:2021-2022
    [40]王天然,曲道奎,工业机器人控制系统的开放式体系结构.机器人, 2005.5,第24卷第3期
    [41]刘飞,雷旭升.小型仿人机器人主控层软件系统框架设计.计算机仿真, 2007,第09期:124-125
    [42]钟秋波,潘启树,洪炳镕,朴松昊.一种仿人机器人复杂运动控制方法.华中科技大学学报(自然科学版), 2008, S1期:200-201
    [43]邬炳明. CAN总线原理和应用系统设计.北京航天航空大学出版社, 1996
    [44]方海军,孙政顺,杜继宏,韩晓鹏.基于CAN总线的自主式仿人型机器人控制系统.机器人,2002,第24卷第1期: 58-61.
    [45]苏剑波.基于事件的仿人机器人步态规划.中南大学学报(自然科学版), 2007.8,第38卷增刊1: 485
    [46]马宏绪,张彭,张良起.两足步行机器人动态步行姿态稳定性及姿态控制.机器人, 1997.5,第19卷第3期:180-185
    [47] MIOMIR VUKOBRATOVI′C. ZERO-MOMENT POINT—THIRTY FIVE YEARS OF ITS LIFE, International Journal of Humanoid Robotics, 2004
    [48] Qiang Huang, Kazuhito Yokoi, Shuuji Kajita, Kenji Kaneko, Hirohiko Arai, Noriho Koyachi, Kazuo Tanie, Planning Walking Patterns for a Biped Robot, IEEE, 2001
    [49] Fumiaki Takemori, Akira Kitamura and Daisuke Kushida, Constraint of Center of Gravity in a Biped Walking Robot, Proceedlngs of 2004 IEEElRSJ International Conference on intelligent Robots and Systems, 2004
    [50]谈世哲.工业机器人控制器开放性、实时性分析方法及单处理器模式下的实现.上海:上海交通大学机械与动力工程学院,2002
    [51]张怡.仿人机器人运动控制系统设计.上海交通大学硕士学位论文,2008:16-18
    [52]陈光明.基于嵌入式系统的机器人控制器研究.天津理工大学研究生学位论文,2005:10-12
    [53]赵建东,卲黎君,徐凯等.基于CAN总线的仿人机器人关节伺服控制系统研究.机器人, 2002,第24卷第5期:421-426
    [54]雷旭升.仿人机器人运动控制研究.上海交通大学博士学位论文, 2006:27-28
    [55] [美]Texas Instruments Incorporated著,张卫宁编译. TMS320C28x系列DSP的CPU与外设.清华大学出版社,2004.9 :1-5
    [56]苏奎峰,吕强,耿庆锋. TMS320F2812原理与开发.北京:电子工业出版社,2005:10-15
    [57] MPM3003 ICePAK Power Module. MOTOROLA Semiconductor Technical Data
    [58] Agilent HCTL-2032, HCTL-2032-SC, HCTL-2022 Quadrature Decoder/CounterInterface ICs Data Sheet. http://www.agilent.com
    [59]谈世哲,梅志千,杨汝清.基于DSP的工业机器人控制器的设计与实现.机器人,2002,第24卷第5期:134-139
    [60] Texas Instruments Inc. IQmath Library A Virtual Floating Point Engine data sheet Version 1.4.1 , June 2002
    [61] Texas Instruments Incorporated. Optimizing Digital Motor Control (DMC) Libraries, 2005
    [62]王潞钢,陈林康,曾岳南,许贤昶. DSP C2000程序员高手进阶.北京:机械工业出版社,2005:40-43
    [63]韩安太,刘峙飞,黄海. DSP控制器原理及其在运动控制系统中的应用.北京:清华大学出版社,2003:28-31
    [64] Franklin G.F., Powell D.J., Workman M.L., Digital Control of Dynamic Systems, Addison-Wesley, 1990
    [65]慕延华,尹怡欣.任务导向的仿人机器人体系结构设计.计算机应用研究, Application Research of Computers, 2008年05期
    [66]任锐. CAN总线通讯协议设计.兵工自动化,2007,第26卷第3期:50-60
    [67]申飞,吴仲城,钱敏.基于CAN总线的机器人脚力传感器的设计及其应用[J].南京:传感技术学报, 2004:39-41.
    [68] Jung-Hoon Kim, Jung-Yup Kim, Jun-Ho Oh. Adjustment of Home Posture of Biped Humanoid Robot Using Sensory Feedback Control[J]. Springer Netherlands:Journal of Intelligent and Robotic Systems.2008:424-426.
    [69]刘熹,肖南峰.基于ZMP和实时检测的机器人步行研究[J].广西南宁:装备制造技术, 2007:25.
    [70]陈健,雷旭升,苏剑波.基于智能体的仿人机器人分层控制系统[J].北京:高技术通讯, 2007:586-590.
    [71]刘莉,汪劲松,陈恳,杨东超,赵建东.基于六维力、力矩传感器的拟人机器人实际ZMP检测,机器人, 2001:460-461

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700