海面上方目标复合电磁散射的实验测量与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文研究了一维、二维导体海面与其上方目标高频复合电磁散射问题。目标与海面复合散射的总场分为海面和目标的一次散射场以及二次散射场来求解,并考虑了目标的边缘绕射场。利用基尔霍夫近似分别计算了一维、二维导体粗糙海面电磁散射场,给出了海面散射场随入射角以及散射方位角的变化关系,分析了入射波频率、海面风速等对海面散射场的影响;利用等效边缘电磁流法计算了导体正方形平板、菱形板、正方体、圆柱、尖锥柱以及梯形体等目标的散射截面,并将结果与商业软件CST和FEKO进行了比较,两者吻合得较好;将互易性定理和等效边缘电磁流法结合起来研究了目标与海面的耦合散射特性。分别给出了导体平板、尖锥柱以及梯形体和海面的复合后向散射截面随入射角变化的数值结果,改进了未考虑目标边缘绕射场的结果;分析了目标尺寸、目标距离海面的高度、海面风速以及入射波频率对复合散射场的影响;并将数值结果与实验测量结果进行了对比,两者吻合得较好。本文最后利用时域积分方程法计算海面的时域散射场,给出了海面的表面电流,分析了不同入射角对后向远场结果的影响。介绍了时域等效边缘电磁流法的一般理论,给出了求解目标时域场的一般步骤。
The characteristics of high-frequency composite electromagnetic backscattering from a target above one- or two-dimensional conductor sea surfaces are investigated. The total composite scattering field can be split into first order scattering field and second order coupling scattering field to be calculated with the diffraction of the target fringe taken into account. The Kirchhoff Approximation (KA) is used to calculate the backscattering radar cross section (RCS) of 1-D and 2-D sea surface, respectively. The scattering field of sea surface versus incident angle and azimuth angle is presented. The impact of frequency and wind speed on RCS of sea surface is discussed. The RCS of conducting plate, rhombus, cube, cylinder, cone-cylinder and trapezia are computed by the method of equivalent edge currents (MEC). And it is compared to the results simulated by commercial software CST and FEKO, which get good agreement with each other. The reciprocity theorem method and the MEC are employed together to calculate the coupling scattering field between a target and sea surface. The numerical results of the backscattering RCS with different incident angle for the conducting plate, cone-cylinder and trapezia above the sea surface are presented, respectively, with the results improved from unconsidered diffraction. The dependence of the composite backscattering RCS on the target size, the height, the wind speed of sea surface and the frequency of incident wave is analyzed, which is in good agreement with the results of experiment. The time domain scattering field of sea surface is calculated based on the TDIE and the surface current of ocean is presented in the paper. The influence of incident angle on backward far field is analyzed. The theory of TD-EEC is introduced and the process of calculating time domain field of target is given.
引文
[1] Y. Zhang, J. Lu, and J. Joe Pacheco, Mode-Expansion Method for Calculating Electromagnetic Waves Scattered by Objects on Rough Ocean Surfaces. IEEE Trans. Antennas Propag., 2005, 53(5), pp. 1631-1639.
    [2] P. Liu and Y.-Q. Jin, An FEM Approach With FFT Accelerated Iterative Robin Boundary Condition for Electromagnetic Scattering of a Target With Strong or Weak Coupled Underlying Randomly Rough Surface. IEEE Trans. Antennas Propag., 2005, 53(12), pp. 4137-4144.
    [3] R. Wang and L.-X. Guo, Study on electromagnetic scattering from the time-varying lossy dielectric ocean and a moving conducting plate above it. J. Opt. Soc. Am. A, 2009, 26(3), pp. 517-529.
    [4] M. Dehmollaian and K. Sarabandi, Electromagnetic Scattering From Foliage Camouflaged Complex Targets. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10), pp. 2698-2709.
    [5] J. V. Toporkov and G. S. Brown, Numerical study of the extended Kirchhoff approach and the lowest order small slope approximation for scattering from ocean-like surfaces: Doppler analysis. IEEE Trans. Antennas. Propagat., 2002, 50(4), pp. 417-425.
    [6] J. T. Johnson, J. V. Toporkov, and G. S. Brown, A numerical study of backscattering from time- evolving sea surfaces: Comparison of hydrodynamic models. IEEE Trans. Geosci. Remote Sensing, 2001, 39(11), pp. 2411-2419.
    [7] H. Y. Lee, J. D. Barter, and K. L. Beach, Scattering from breaking gravity waves without wind. IEEE Trans. Antennas Propagat., 1998, 46(1), pp. 14-26.
    [8] A. Nashashibi, F. T. Ulaby, and K. Sarabandi, Measurement and modeling of the millimeter-wave backscatter response of soil surfaces. IEEE Trans. on Geosci. and Remote Sens., 1996, 34(2), pp. 561-572.
    [9] M. Martorella, F. Berizzi, and E. D. Mese, On the fractal dimension of sea surface backscattered signal at low grazing angle. IEEE Trans. on Antennas and Propag., 2004, 52(5), pp. 1193-1204.
    [10] P.Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces. New York: Pergamon, 1963,
    [11] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing (Vol. II).London: Addision-Wesbey Publishing, 1982.
    [12] M.W.Long, Radar Reflectivity of Land and Sea. 2nd ed. Norwood, MA, 1983.
    [13]黄培康,殷红成,许小剑,雷达目标特性.北京, 2004.
    [14] G. Neumann, On wind generated ocean waves with special reference to the problem of wave forecasting, Dept. of Meteor. and Oceanogr., N.Y.U., New York.
    [15] A. K. Fung and K. K. Lee, A semi-empirical sea-spectrum model for scattering coefficient estimation. IEEE Journal of Oceanic Engineering, 1982, 7(4), pp. 166-176.
    [16] D. E. Hasselmann, Directional wave spectra observed during JONSWAP 1973. J. Phys. Oceanogr., 1980, 10(7), pp. 1264-1280.
    [17] E. I. Thorsos, The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am., 1988, 83(1), pp. 78-92.
    [18] C. L. Rino and T. L. Crystal, Numerical simulation of backscatter from linear and nonlinear ocean surface realizations. Radio Science, 1991, 26(1), pp. 51-71.
    [19] J. V. Toporkov and G. S. Brown, Numerical simulations of scattering from time-varying randomly rough surfaces. IEEE Trans. Geosci. Remote Sens., 2000, 38(4), pp. 1616-1625.
    [20] A. K. Fung and K. S. Chen, Kirchhoff model for a skewed random surface. Journal of Electromagnetic Waves and Application, 1991, 5(2), pp. 205-216.
    [21] S. T. Mcdaniel, Microwave backscatter from non-Gaussian seas. IEEE Trans Geosci. Remote Sensing, 2003, 41(1), pp. 51-58.
    [22] C. Bourlier, Azimuthal harmonic coefficients of the microwave backscattering from a Non-Gaussian ocean surface with the first-order SSA Model. IEEE Trans Geosci. Remote Sensing, 2000, 38(7), pp. 2600-2611.
    [23] D. Holliday, Resolution of a controversy surrounding the Kirchhoff approach and the small perturbation method in rough surface scattering theory. IEEE Transactions on Antennas and Propagation, 1987, 35(1), pp. 120-122.
    [24] F.T.Ulaby, R.K.Moore, and a. A.K.Fung, Microwave Remote Sensing .VolⅡ:Radar Remote Sensing and Surface scattering and Emission Theory: Reading: MA:Addision-Wesley, 1982.
    [25] A. Ishimaru and J. S. Chen, Scattering from very rough metallic and dielectric surfaces: a theory based on the modified Kirchhoff approximation. Waves in Random Media, 1991, 1(1), p. 21~34.
    [26] T. E and J. D. R, The Validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum. J.Acoust.Soc.Am., 1989, 86(1), pp. 261-277.
    [27] S.-C. J. M and M.Nieto-Vesperinas, Scattering from slightly rough random surfaces: a detailed study on the validity of the small perturbation method. J. Opt. Soc. Am., 1990, A7(7), pp. 1185-1201.
    [28] F. A. K, Review of random surface scatter models. SPIE, 1982, 358,Application of mathematics in Modem Optics, pp. 87-98.
    [29] K. D. Winebrenner and A. Ishimaru, Application of the phase perturbation technique to randomly rough surfaces. J.opt.Soc.Am.A, 1985, 2(12), pp. 2285-2294.
    [30] I. K, M. M. A, and Y. O. I, Study of the phase perturbation technique for scattering of waves by rough surfaces at intermediate and large values of the roughness parameter. Journal of Electromagnetic Waves and Applications, 1990, 4(5), pp. 401-414.
    [31] M. S. Gilbert and J. T. Johnson, A study of rough surface scattering effects using the higher-order small slope approximation. International Antennas and Propagation Symposium, 2003, 6, pp. 557-560.
    [32] A. G. Voronovich, On the theory of electromagnetic waves scattering from the sea surface at low grazing angles. Radio Science, 1996, 31(6), pp. 1519-1530.
    [33] J. T. Johnson and R. T. Shin, A Numerical Study of the Composite Surface Model for Ocean Backscattering. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(1), pp. 72-83.
    [34] S. L. Durden and J. F. Vesecky, A numerical study of the separation wavenumber in the two scale scattering approximation. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3), pp. 271-272.
    [35] G. S. Agarwal, Interaction of electromagnetic waves at rough dielectric surfaces. Phys. Rev. B, 1977 ,2, 15(4), p. 2371~2383.
    [36] M.Nieto-Vesperinas, Depolarization of electromagnetic waves scattered from slightly rough random surfaces: a study by means of the extinction theorem. J.Opt. Soc. Am., 1982, A72(5), pp. 539-547.
    [37] B. E, Scattering Cross Sections for random rough surfaces: Full wave analysis. Radio Science, 1981, 16(3), pp. 331-341.
    [38] E. Bahar and B. S. Lee., Radar scatter cross sections for two-dimensional random rough surfaces-Full wave solutions and comparisons with experiments.Waves in Random Media, 1996, 6(1), p. 1~23
    [39] A. K. Fung and G. Pan., An integral equation method for rough surface scattering. Proc. Int. Symp. on Multiple Scattering of Waves in Random Media and Random Surface, 1986, p. 701~714.
    [40] A. K. Fung, M. R. Shah, and S. Tjuatja, Numerical simulation of scattering from three- dimensional randomly rough surfaces. IEEE Trans. Geosci. Remote Sensing, 1994, 32(5), pp. 986-994.
    [41] K. F. Warnick and W. C. Chew, Numerical simulation methods for rough surface scattering. Waves in Random Media, 2001, 11, pp. 1-30.
    [42]胡来平,刘占军,电磁学计算方法的比较.现代电子技术, 2003.10, 10, pp. 75-78.
    [43]葛德彪,闫玉波,电磁波时域有限差分方法.西安:西安电子科技大学出版社, 2002.
    [44] T. Dogaru and L. Carin, Time-domain sensing of targets buried under a Gaussian, exponential, or fractal rough interface. IEEE Trans. Geosci. Remote Sensing, 2001,8, 39(8), p. 1807~1819.
    [45] X. Y. Zhu and L. Carin, Multiresolution time-domain analysis of palne-wave scattering from general three-dimensional surface and subsurface dielectric targets. IEEE Transactions on Antennas and Propagation, 2001, 49(11), pp. 1568-1578.
    [46] W. C. Chew, J. M. Jin, and C. C. L., Fast solution methods in electromagnetics. IEEE Trans. Antennas Propag., 1997, 45(5), pp. 533-543.
    [47] J. T. Johnson, On the canonical grid method for two-dimensional scattering problems. IEEE Trans. Antennas Propag., 1998, 46(3), pp. 297-302.
    [48] B. E. Barrowes, C. O. Ao, F. L. Teixeira, et al., Sparse Matrix/Canonical Grid Method Applied to 3-D Dense Medium Simulations. IEEE Trans. Antennas Propag., 2003, 51(1), pp. 48-58.
    [49] M. Y. Xia, C. H. Chan, and S. Q. L., An efficient algorithm for electromagnetic scattering from rough surfaces using a single integral equation and multilevel sparse-matrix canonical- grid method. IEEE Trans. Antennas Propag., 2003, 51(6), pp. 1142-1149.
    [50] C. Waltz, K. Sertel, M. A. Carr, et al., Massively Parallel Fast Multipole Method Solutions of Large Electromagnetic Scattering Problems. IEEE Trans. Antennas Propag., 2007, 55(6), pp. 1810-1816.
    [51] C. C. Lu and W. C. Chew, A multilevel algorithm for solving boundary integralequations of wave equations of wave scattering. Microwave and Opt. Tech. Lett, 1994,7, 7(10), p. 466~470.
    [52] J. M. Song and W. C. Chew, Multilevel fast multipole algorithm for solving combined field integral equation of electromagnetic scattering. Micro. Opt. Tech. Lett, 1995,9, 10(1), p. 14~19.
    [53] V. Jandhyala, E. Michielssen, and S. Balasubramaniam, A combined steepest descent-fast multipole algorithm for the rough surfaces. IEEE Transactions on Antennas and Propagation, 1998, 36(5), pp. 738-748.
    [54] R. L. Wagner and W. C. Chew, A ray-propagation fast multipole algorithm. Microwave and Opt.Tech.Lett., 1994, 7(10), pp. 435-438.
    [55] C. C. Lu and W. C. Chew, Fast far field approximation for calculating the RCS of large objects. Microwave and Opt.Tech.Lett., 1995, 8(5), pp. 238-241.
    [56] M. El-Shenawee, Scattering from multiple objects buried beneath two-dimensional random rough surface using the steepest descent fast multipole method. IEEE Trans. Antennas Propag, 2003,4, 51(4), p. 802~809.
    [57] M. El~Shenawee, V. Jandhyala, and E. Michielssen, The steepest descent fast multipole method (SDFMM) for solving combined field integral equation pertinent to rough surface scattering. IEEE International Antennas and Propagation Symposium, 1999,7, p. 534~537.
    [58] D. S. Weile, B. Shanker, and E. Michielssen, An accurate scheme for the numerical solution of the time domain electric field integral equation. IEEE International Antennas and Propagation Symposium, 2001,7, p. 516~519.
    [59] K. W. Lam, L. Z. Zheng, and Q. Li, Statistical distributions of fields in scattering by random rough surfaces based on Monte Carlo simulations of Maxwell equations. IEEE International Antennas and Propagation Symposium, p. 573~576.
    [60] A. Ishimaru, L. Ailes-Sengers, and P. P. e. al, Pulse broadening and two-frequency mutual coherence function of the scattered wave from rough surfaces. Waves in Random Media. 1994,4, p. 139~148.
    [61] A. Ishimaru, L. Ailes-Sengers, and P. P. e. al, Pulse broadening of enhanced backscattering from rough surfaces. Waves in Random Media, 1994, 4, p. 453~465.
    [62] L. C. Schroeder, P. R. Schaffner, and J. L. M. e. al, AAFE RADSCAT 13.9-GHz measurements and analysis: Wind-speed signature of the ocean. IEEE J. Oceanic Eng, 1985,10, 10(4), p. 346~357.
    [63] W. L. Jones, L. C. Schroeder, and D. H. B. e. al, The SEASAT-A satellite scatterometer: the geophysical evaluation of remotely sensed wind vectors over the ocean. J. Geophys. Res. , 1982,4, 87(c5), p. 3297~3317.
    [64] S. V. Nghiem, F. K. Li, and G. Neumann, The dependence of ocean backscatter at Ku-band on oceanic and atmospheric parameters. IEEE Trans. Geosci. Remote Sensing, 1997,5, 35(3), p. 581~600.
    [65]金亚秋,电磁散射和热辐射的遥感理论.北京, 1993.
    [66]薛谦忠,吴振森,粗糙介质面对高斯波束的散射.电子与信息学报, 2000, 22(5), pp. 875-880.
    [67] E. M. Kennaugh and R. L. Cogriff, The use of impulse response in electromagnetic scattering problems. IRE Natl.Conv.Rec., 1958, pp. 72-77.
    [68] E. M. Kennaugh and D. L. Moffatt, Transient and impulse response approximation. Proc.IEEE, 1965, pp. 893-901.
    [69] E.-Y. Sun and W.V.T.Rusch, Time-domain physical-optics. IEEE Trans.Antenna Propagat., 1994, 42(1), pp. 9-15.
    [70] T.Veruttipong, Time-domain version of the uniform GTD. IEEE Trans.Antennas Propag., 1990, 38, pp. 1757-1764.
    [71] P.Rousseau and P.H.Pathak, Time-domain uniform GTD for a curved wedge. IEEE Trans.Antennas Propag., 1995, 43, pp. 1375-1382.
    [72] P. M.Johansen, Time-domain version of the physical theory of diffraction. IEEE Trans.Antenna Propag., 1999, 47(2), pp. 261-270.
    [73] A.Altintas and P.Russer, Time-domain equivalent edge currents for transient scattering. IEEE Trans.Antennas Propag., 2001, 49, pp. 602-606.
    [74]崔索民,吴振森,方大纲,一种计算多面体目标RCS的等效边缘电磁流公式.微波学报, 1997, 13(1), pp. 20-25.
    [75] L. Y.-L. and J.-Y. Huang, The Scattering Cross Section for a Target Irradiated by Time-varying Electromagnetic Waves. Journal of Electromagnetic Waves and Applications, 2007, 21(9), pp. 1265-1271.
    [76] J. T. Johnson, A study of the four-path model for scattering from an object above a half space. Microwave and Opt Tech. Lett., 2001, 30(2), pp. 130-134.
    [77] T. Chiu and K. Sarabandi, Electromagnetic scattering interaction between a dielectric cylinder and slightly rough surface. IEEE Trans. on Antenna and Propagat, 1999, 47(5), p. 902~913
    [78] L. L. M. R. Pino, J. L. Rodrigues et al., The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces.IEEE Trans. Antennas Propagat, 1999, 47(6), p. 961~968.
    [79]金亚秋,李中新,双网格前后向迭代与谱积分法计算分形粗糙面的双站散射与透射.物理学报, 2002, 51(7), pp. 1403-1411.
    [80] P. Liu and Y.-Q. Jin, Numerical Simulation of the Doppler Spectrum of a Flying Target Above Dynamic Oceanic Surface by Using the FEM-DDM Method. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53(2), pp. 825-832.
    [81] P. Liu and Y.-Q. Jin, Numerical simulation of bistatic scattering from a target at low altitude above rough sea surface under an EM wave incidence at low grazing angle by using the finite element method. IEEE Trans. Antennas Propag., 2004, 52(5), pp. 1205-1210.
    [82]叶红霞,金亚秋,粗糙面上2D目标散射的KA-CG方法.遥感技术与应用, 2007, 22(2), pp. 230-233.
    [83] L. Kuang and Y.-Q. Jin, Bistatic Scattering From a Three-Dimensional Object Over a Randomly Rough Surface Using the FDTD Algorithm. IEEE Trans. Antennas Propag., 2007, 55(8), pp. 2302-2312.
    [84]叶红霞,金亚秋,三维随机粗糙面上导体目标散射的解析2数值混合算法.物理学报, 2008, 57(2), pp. 839-846.
    [85]王蕊,郭立新,秦三团, et al.,粗糙海面及其上方导体目标复合电磁散射的混合算法研究.物理学报, 2008, 57(6), pp. 3473-3480.
    [86] J. Li, L.-X. Guo, and H. Zeng, FDTD investigation on the electromagnetic scattering from a target above a randomly rough sea surface. Waves Random Media, 2008, 18(4), pp. 641-650.
    [87] G. LiXin, W. YunHua, and W. ZhenSen, Study on electromagnetic backscattering and Doppler spectrum of a moving spherical target above time-varying sea surface. Science in China Series G: Physics, Mechanics & Astronomy, 2008, 51(3), pp. 269-281.
    [88]朱国强,孙劲,郑立志等,平板目标与随机粗糙面对电磁波的复合散射.武汉大学学报, 2000, 46(1), pp. 99-103.
    [89]向长青,朱国强,杨河林,平板与正弦型组合粗糙面的电磁波复合散射.电波科学学报, 1998, 13(3), p. 256~260.
    [90]朱国强,杨河林,导体条带与周期粗糙面对电磁波的复合散射.武汉大学学报, 1999, 45(1), pp. 103-107.
    [91] S.-Y. He and G.-Q. Zhu, A hybrid MM-PO method combining UV technique for scattering from two-dimensional target above a rough surface. Microwave Opt.Technol. Lett., 2007, 49(12), pp. 2957-2960.
    [92]康士峰,王显德,粗糙面与目标电磁散射统计特性分析.微波学报, 2004, 20(9), p. 43 ~46.
    [93] R.F.Millar, An approximate theory of the diffraction of an electromagnetic wave by an aperture in plane screen. Proc.IEE, 1956, 103(Part C), pp. 177-185.
    [94] C.F.Ryan and i.Perters, Evalution of ege diffracted field sincluding equivalent currents for caustic regions. IEEE Trans. Antennas Propagat, 1969, AP-17(3), pp. 292-299.
    [95]汪茂光,几何绕射理论.西安:西安电子科技大学出版社, 1994.
    [96] S. W. Lee, Comparison of Uniform Asymptotic Theory and Ufimtsev’s Theory of Electromagnetic Edge Diffraction. IEEE Trans. Antennas Propag., 1977, AP-25(2), pp. 162-170.
    [97] A. Michaeli, Equivalent edge currents for arbifrary aspects of observation. IEEE Trans. Antennas Propag., 1984, Ap-32(3), pp. 252-258.
    [98] M.Ando, Elimination of false singularities in GTD eqivalent edge currents. IEEE Proc-H, 1991, 138(4), pp. 289-296.
    [99] A.Michaeli, Elimination of infinite in equivalent edge currents.partⅠ:fringe current components. IEEE Trans.Antennas Propag, 1986, AP-34(7), pp. 912-917.
    [100] A. Michaeli, Equivalent edge currents for arbifrary aspects of observation. IEEE Trans.Antennas Propag, 1984, Ap-32(3), pp. 252-258.
    [101] A.Michaeli, Equivalent currents for second-order diffraction by the edges of perfectly conducting polygonal surfaces. IEEE Trans, 1987, AP-35(2), pp. 183-190.
    [102] G.A.Deschamps, Three-dimensional half-plane diffraction:exact solution and testing of uniform theories. IEEE Trans. Antennas Propagat, 264-271, AP-32(3), pp. 264-271.
    [103] O.Breinbjerg, Higher order equivalent edge currents for fringe wave radar scattering by perfectly conducting polygonal plates. IEEE Trans, 1992, AP-40(12), pp. 1543-1554.
    [104]崔索民,混合法和等效边缘电磁流法及其在电磁散射中的应用,西安电子科技大学博士论文, 1995.
    [105] A.J.Fenn, Bistatic radar cross section of a perfectly conducting rhombus shaphed flat. Technical report 880, Lincoln Lab.,Massachusetts Inst. of Tech., 1990,
    [106]崔索民,混合法和等效电磁流方法及其在电磁散射中的应用,博士论文,西安电子科技大学,西安, 1995.
    [107] A.Michaeli, Elimination of infinities in equivalent edge currents Pt2:physical optical components. IEEE Trans.on AP, 1986, 34(8), pp. 1034-1037.
    [108] R.Tiberio and S.Maci, An incremental theory of diffraction:Electromagnetic formulation. IEEE Trans. Antennas Propagat, 1995, AP-43(1), pp. 87-96.
    [109] P.M.Johansen and O.Breinberg, An exact line integral representation of the physical optical scattered field:the case of a perfectly conducting polyhedral structure illuminated by electric Hertzian dipoles. IEEE Trans. Antennas Propagat, 1995, AP-43(7), pp. 689-696.
    [110] L.P.Ivrissimtzis and R.J.Marhefka, A Uniform ray approximation of the scattering by polyhedral structures including higher order terms. IEEE Trans. Antennas Propagat, 1992, AP-40(11), pp. 1302-1311.
    [111] A. Michaeli, Elimination of infinite in equivalent edge currents.part I: fringe current components. IEEE Trans. Antennas Propag., 1986, 34(7), pp. 912-917.
    [112]崔索民,吴振森,方大纲,一种计算多面体目标RCS的等效边缘电磁流公式.微波学报, 1997, 13(1), pp. 20-25.
    [113] J. T. Johnson, J. V. Toporkov, and G. S. Brown, A numerical study of backscattering from time-evolving sea surfaces: Comparison of hydrodynamic models. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11), pp. 2411-2419.
    [114] J. Chen, K. Y. Lo, H. Leung, et al., The Use of Fractals for Modeling EM Waves Scattering from Rough Sea Surface. IEEE Trans. Geosci. Remote Sens., 1996, 34(4), pp. 966-972.
    [115] T. Chiu and K.Sarabandi, electromagnetic scattering interaction between leaves and thin branches. IEEE Trans. Antennas Propag., 1998, 47(2), pp. 300-302.
    [116] T. Chiu and K. Sarabandi, Electromagnetic scattering interaction between a dielectric cylinder and slightly rough surface. IEEE Trans. Antennas Propag., 1999, 47(5), pp. 902-913.
    [117]赵蕾,海面上方简单目标复合电磁散射特性研究,硕士论文,西安电子科技大学,西安, 2008.
    [118]王运华,海面及其与上方目标的复合电磁散射研究,西安电子科技大学硕士论文, 2005.
    [119]余雄庆,目标边缘后向绕射场特点分析.微波学报, 1994, 4(39), pp. 41-46.
    [120] W. Luo and M. Zhang, Analysis of EM scattering from electrically large target over 2-D sea surface. ISAPE, 2008, pp. 416-418.
    [121]郭华,实际地、海面电磁散射及其反演问题研究,西安电子科技大学硕士论文, 2007.
    [122] A.E.Ylmaz, K.Aygiin, J.M.Jin, et al., Matching criteria and the accuracy of time domain adaptive integral method. IEEE APS Symp. Digest, 2002, 2, pp. 166-169.
    [123] N. Sachdeva, S. M. Rao, and N.Balakrishnan, A comparison of FDTD-PML with TDIE. IEEE Trans. Antennas Propag., 2002, 50(11), pp. 1609-1614.
    [124] A.W.Glisson and D.R.Wilton, Simple and efficient mumerical methods for problems of electromagnetic radiation and scattering from surfaces. IEEE Trans. Antennas Propag., 1980, AP-28(S), pp. 593-603.
    [125] D.A.Vechinski and S.M.Rao, Transient scattering from two-dimensional dielectric cylinders and arbitrary shape. IEEE Trans. Antennas Propag., 1992, 40, pp. 1054-1060.
    [126]张春媛,目标与粗糙面电磁散射的时域积分方程法,硕士论文,西安电子科技大学,西安, 2006.
    [127] E.-Y. Sun and W. V. T. Rusch, Time-domain physical-optics. IEEE Trans.Antennas Propag., 1994, 42(1), pp. 9-15.
    [128] T. Veruttipong, Time-domain version of the uniform GTD. IEEE Trans.Antennas Propag., 1990, 28, pp. 1757-1764.
    [129] P. Rousseau and P. H. Pathak, Time-domain uniform GTD for a curved wedge. IEEE Trans.Antennas Propag., 1995, 43, pp. 1375-1382.
    [130]杨凌霞,时域等效边缘电磁流方法及其在电磁散射中的应用,硕士论文,西安电子科技大学,西安, 2003.
    [131] A. Altintas and P. Russer, Time-domain equivalent edge currents for transient scattering. IEEE Trans.Antennas Propag., 2001, 49, pp. 602-606.
    [132]杨凌霞,葛德彪,几种与高斯脉冲相关的脉冲波及其频谱.物理系:西安电子科技大学, 2003.
    [133]葛德彪,电磁波理论.西安:西安电子科技大学, 1997.
    [134]周其中,应用FDTD计算实用目标RCS,硕士学位论文,理学院,西安电子科技大学,西安, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700