天津市区PM_(2.5)污染特征及灰霾等级评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灰霾是颗粒物和气体污染物导致的可察觉到的能见度降低的污染天气现象。灰霾对生态、气候和经济产生严重影响,亦导致很多环境和健康效应,已引起社会及公众的普遍重视。灰霾现象产生的本质原因是颗粒物和气体污染物的消光作用,其中细颗粒物的散射消光占总消光的比例最大,同时气象条件也是影响灰霾的另一重要因素。准备发布的气象行业标准《霾(灰霾)‘的观测和预报等级》仅由气象视距划分灰霾的污染等级。环保部门应用API指数(包括:SO2、NO2、PM10)考察环境空气质量。这就造成现有的空气质量评价体系不能描述由细粒子引起的灰霾现象。
     本论文针对灰霾这一热点问题展开研究,对影响灰霾的细颗粒物的化学、物理特征以及细颗粒物与气态污染物和气象因子的关系进行研究。测定PM2.5中的8种水溶性无机离子(Na+、NH4+、K+、Mg2+、Ca2+、Cl-、NO3-、SO42-)、14种无机元素(Si、Al、Mn、Mg、Ca、Cu、Zn、Fe、Pb、Cr、V、Ni、Co、Cd)和PM2.5和PMlo中碳组分(OC、EC)考察化学特征。应用积分式浊度仪测定颗粒物的散射消光系数以考察物理特征,并探讨气象因子对颗粒物物理、化学特征的影响。进而将影响灰霾形成和发展的污染物和气象因素同时考虑在内,应用灰色聚类方法,构建了灰霾的等级评价方法以综合反映灰霾的污染程度,此方法比单纯的气象视距划分灰霾等级更加全面。该方法将为环保部门制定行业标准、防控灰霾提供技术支撑。论文的主要研究结果如下:
     (1)2008年,春、夏、秋、冬季天津城区PM25质量浓度分别为73.1μg/m3、80.5μg/m3、109.6μg/m3禾123.8μg/m3。PM2.5质量浓度日变化呈早晚高、白天低的变化趋势,且与环境相对湿度、S02、N02的日变化趋势一致,呈较好的正相关性,而与风速、温度、03表现为负相关。
     (2) SO42-、NO3-、NH4+和Cl-是PM2.5中的主导性离子组分,占总离子质量分数依次为47.3%、25.4%、12.9%和8.8%。春、夏、秋和冬季∑阴/∑阳的比值分别为1.10、1.13、1.12和1.88,表示春、夏和秋季阴阳离子基本处于平衡状态,接近中性,显示偏酸性,冬季酸性加重。NH4+/(2*SO42-)平均比值接近1.0,显示硫酸氨是细粒子中硫酸盐的主要存在形式。NO3-/SO42浓度比的平均值为0.65,反映了燃煤污染与机动车尾气污染并存的复合型大气污染特征。硫氧化率(SOR)和氮氧化率(NOR)的平均值分别为0.15和0.23,显示存在S02和N02的二次转化过程。
     (3)无机元素中地壳元素的含量超过90%,以Si的含量最丰富,是天津细颗粒物中含量最丰富的无机元素组分。其他元素浓度的排列次序随季节的变化略有差异,一定程度上反映了颗粒物来源的变化。通过相关性分析、聚类分析、主成分分析和富集因子多种方法的分析,体现了土壤尘源、建筑尘源、机动车尾气、燃煤和工业排放的联合效应。
     (4)OC与EC的浓度值在冬季和秋季的值较高,而在春季和夏季相对较低。这种季节性的变化可归结为污染源排放和气象因子的共同作用。最小值法估算的PM2.5和PM1o中二次有机碳(SOC)年均浓度分别为14.9μg/m3和23.4μg/m3,分别占PM2.5、PM10中OC质量浓度的61.7%和61.2%,表明二次有机碳对天津有机气溶胶有重要贡献。通过对8个碳组分(OC1、OC2、OC3、OC4、EC1、EC2、EC3和OP)的分析得出生物质燃烧、碳燃烧和机动车尾气是天津碳组分的主要贡献源。
     (5)颗粒物的散射效率随季节的不同存在明显变化,在冬季达到最大值。并根据颗粒物的散射消光特征日变化趋势总结出天津市颗粒物的散射消光类型可划分为:双峰型、单峰型和平滑型三类。有机物质、元素碳和硫酸盐是导致颗粒物消光的主要化学物种。
     (6)根据天津市2003-2007年灰霾日气象因子和污染物浓度资料,应用主成分分析方法得出影响灰霾的主要因子是污染物中的SO2、PM10和气象因子中的相对湿度、总云量、风速共5个量。并根据频数统计划分了各气象因子的分级标准。基于灰色聚类理论构建了天津市灰霾等级评价方法。天津市灰霾等级划分结果表明:春、夏、秋和冬季各季节的中度灰霾所占的比例均最大,轻度灰霾大多出现在春季和夏季,而重度灰霾在冬季所占比例最大。
Haze is a contaminative phenomenon which makes for a visual degradation of visibility by particulate and gaseous contamination. Haze has the important infection on zoology、climate and economy and leads to environmental and healthy problems. Now, it is attached importance by society and public. The fine particle is the intrinsic cause for haze, while the meteorological factors control the contaminative degree of haze. The grades of haze are distinguished by visibility in the meteorologic guild standard of the observation and forecast grades of haze (dust haze). The index of API (including:SO2、NO2、PM10) are used to examine the environmental atmospheric quality in environmental department. So the present estimate system of atmospheric quality cannot describe the haze aroused by fine particulate.
     Aiming at the haze, the physical and chemical characters of fine particle as well as the relation among fine particles, gaseous pollution and environmental factor were investigated. Eight inorganic components (Na+、NH4+、K+、Mg2+、Ca2+、Cl-、NO3-and SO42-)、fourteen inorganic elements (Si、Al、Mn、Mg、Ca、Cu、Zn、Fe、Pb、Cr、V、Ni、Co、Cd) of PM2.5 and the OC and EC of PM2.5 and PM10 were determined to study the chemical characters of PM. The particle light scattering (bsp) was determined to study the physical characters of PM. At the same time, the infection of meteorological factor was discussed. Based on the grey cluster theory, the method to estimate the grades of haze was constructed and would provide technique to establish guild criterion and control haze pollution for environmental department. Major conclusions were as follows:
     (1) The PM2.5 concentrations of 2008 were 73.1μg/m3 in spring、80.5μg/m3 in summer、109.6μg/m3 in fall and 123.8μg/m3 in winter, respectively. The diurnal variation of PM2.5 concentration presented a bimodal pattern with peak values in the morning and at night, which was consistent with the variation of ambient relative humidity、NO and NO2 but reversely correlated with wind speed、temperature and O3.
     (2) SO42-、NO3-、NH4+ and Cl- were dominated ionic components in PM2.5 and accounted for 47.3%、25.4%、12.9% and 8.8% of the total mass concentration, respectively. The ratio of∑anion/Ecation was 1.10 in spring、1.13 in summer、1.12 in fall and 1.88 in winter, respectively. It indicated that PM2.5 was approximately balanceable between anion and cation and little acidic with more acidic in winter. The average ratio of NH4+/(2*SO42-) is about 1.0, which indicates that most of SO42- in PM2.5 are likely to exist as (NH4)2SO4.The mean mass ratio of NO3-/SO42- was 0.65 indicated the complex pollution of coal combustion and vehicle exhaust in Tianjin. The average values of sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) were 0.16 and 0.23, respectively, indicating existence of obvious secondary transformation of gaseous species in the atmosphere.
     (3) Crustal element constituted more than 90% of the total inorganic elemental mass in which Si was the most abundant. The concentration orders of other inorganic elements were different with the change of seasons, which reflects different sources of particulates. Through the correlation analysis、cluster analysis、principal component analysis and enrichment analysis, the soil dust, structural dust、coal combustion and vehicle exhaust were identified as the main emission sources.
     (4) The concentrations of OC and EC in PM2.5 and PM10 were all relatively higher in winter and fall and lower in summer and spring. This seasonal variation could be attributed to the cooperative effects of changes in emission rates and seasonal meteorological conditions. The annual average concentration of the estimated secondary organic carbon (SOC) was 14.9μg/m3 and occupied 61.7% of the total OC in PM2.5, while those in PM10 were 23.4μg/m3 and 61.2%, respectively, indicating SOC had been an important contributor to organic aerosol in Tianjin. The distribution of eight carbon fractions (OC1, OC2, OC3, OC4, EC1, EC2, EC3 and OP) was also reported and found that the biomass burning, coal-combustion and motor-vehicle exhaust were all contributed to the carbonaceous particles in Tianjin.
     (5) The scattering efficiency of PM2.5 was different with seasons and the maximum was in winter. Based on the diurnal patterns of light scattering in Tianjin, the three diurnal patterns were summarized. These were double-peaks pattern, only-peak pattern, and little-diurnal variation pattern. The organics、EC and sulfate were the main substance to infect extinction of PM.
     (6) Based on the analysis of history data of diurnal contaminations and meteorological conditions from 2003 to 2007 in Tianjin, we arrived at the conclusion that the main factors affecting the haze were contamination of SO2 and PM10, cloudage, relative humidity and weed speed through the analysis of meteorological and contaminative factors affecting the haze and the method of component analysis. According to the statistical distribution of meteorological factors frequency, the haze index-classified system of Tianjin City atmosphere was established, and the haze classifies in Tianjin City came into being with grey clustering method. Therefore, the results of haze classifies in Tianjin City were demonstrated as follows. The proportion of moderate haze were the largest in spring, summer, autumn and winter. The proportion of the faintness haze was maximal in spring and summer. The proportion of the worst haze was maximal in winter.
引文
[1]Buseck P, Posfai M. Airborne minerals and related aerosol particles:Effects on climate and the environment. Proceeding of Nation Academics Science USA,1999,96:3372-3379
    [2]刘毅,王明星,张仁健,中国气溶胶研究进展.气候与环境研究,1999,4(5):406-414
    [3]Shine K P, Forster P M. The effect of human activity on radiative forcing of climate change: a review of recent developments. Global and Planetary Change.1999,20:205-225
    [4]IPCC. Climate Change 2001:The Scientific Basis. London:Cambridge University Press. 2001
    [5]罗云峰,周秀骥,李维亮.大气气溶胶辐射强迫及气候效应的研究现状.地球科学进展,1998,13:572-581
    [6]付培健,王世红,陈长和.探讨气候变化的新热点:大气气溶胶的气候效应.地球科学进展,1998,13:387-392
    [7]王明星,张仁健.大气气溶胶研究的前沿问题.气候与环境研究,2001,6:119-124
    [8]Tang I N. Chemical and Size Effects of Hygroscopic Aerosols on Light-Scattering coefficients. J. Geophysical Research,1996,101 (D14):19245-19250
    [9]吴兑.华南气溶胶研究的回顾与展望.热带气象学报,2003,19(增刊):145-151
    [10]吴兑,邓雪娇,毕雪岩等.细粒子污染形成灰霾天气导致广州地区能见度下降.热地气象学报,2007,23(1):1-6
    [11]吴兑,毕雪岩,邓雪娇等.珠江三角洲气溶胶云造成的严重灰霾天气.自然灾害学报,2006,15(6):77-83
    [12]朱岗蓖.大气污染物理学基础.高等教育出版社,1990
    [13]Horvath H. Atmospheric light absorption:a review. Atmospheric Environment,1993, 27(3):293-317
    [14]邵龙义,时宗波,黄勤.都市大气环境中可吸入颗粒物的研究.环境保护,2000,(1):24-29
    [15]Chapman. R. S., Watkinson. W. P., Dreher. K.L., et al. Ambient particulate matter and respiratory and cardiovascular illness in adults:particle-borne transition metals and the heart-lung zxis. Environmental Toxicology and Pharmacology 1997,4:331-338
    [16]杨云程,蒋国华,龙飞等.大气可吸入颗粒物的研究进展.中国科技论文在线http://www.paper.edu.cn
    [17]Schwartz J, Dockery D W, Neas L S. Is daily mortality associated specifically with fine particles? J Air Waste Manage Assoc.1996,46:927-939
    [18]Schwartz J. Is There Harvesting in the Association of Airborne Particles with Daily Deaths and Hospital Admissions? Epidemiology,2001,12(1):155-161
    [19]Schwartz J., Harvesting and long term exposure effects in the relation between air pollution and mortality. Epidemiology,2000,151(5):440-448
    [20]Samet J., Dominici F., Curriero F., et al. Fine particulate air pollution and mortality in 20 US Cities,1987-1944. N Engl J Med,2000,343(24):1742-1749
    [21]World Health Organization (WHO). World Health Report 2002:reducing risk, promoting healthy life. Geneva:World Health Organization. httP://www.who.int/whr.2002
    [22]CohenA.J., Anderson H.R., OstroB., et al. The Global Burden of Disease due to Outdoor Air Pollution. Journal of Toxicology and Environmental Health,2005, Part A,68:1-7
    [23]He K B, Yang F M, Ma Y L, et al, The characteristics of PM2.5 in Beijing, China. Atmospheric Environment,2001,35:4959-4970
    [24]Wei F Sh, Teng E J, Wu G P, et al. Ambient concentrations and elemental compositions of PM10 and PM2.5 in four Chinese cities. Environmental Science and Technology,1999, 33:4188-4193
    [25]杨圣杰,陈莎,袁波祥.北京市2.5um小颗粒大气气溶胶特征及来源.北方交通大学学报,2001,25(6):50-53
    [26]王玮,汤大钢,刘红杰,等.中国PM25污染状况和污染特征的研究.环境科学研究,2000,13(1):1-5
    [27]Judith C Chow. Temporal and spatial variations of PM2.5 and PM10 aerosol in the sourthern California air quality study. Atmospheric Environment,1994,28(12):2061-2080
    [28]陈杨,王宇俊.广州市空气可吸入性颗粒物的污染水平.中国环境监测,1999,15(2):42-46
    [29]吴国平,胡伟,滕恩江,等.我国四城市空气中PM2.5和PM1o的污染水平.中国环境科学,1999,19(2):133-137
    [30]刘培同.环境学概论.北京:高等教育出版社,1992
    [31]Griffin R J, Cocker D R, Flagan R C, et al. Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res.1999,104:3555-3567
    [32]Andersson-Skold Y, Simpson D. Secondary organic aerosol formation in northern Europe:a model study. J. Geophys. Res.2001,106:7357-7374
    [33]R. S. Parmar, G. S. Satsangi, M. Kumari, et al. Study Of Size Dist ribution Of Atmospheric Aerosol At Agra, Atmospheric Environment,2001,35(4):693-702
    [34]Y.C.chan et al, Source apportionment of PM2.5 and PM10 aerosol in Brisbane (Australia) by receptor modeling, Atmospheric Environment,1999,33(19):3251-3268
    [35]H.Andrew Gray, et al. Source Contributions to Atmospheric Fine Carbon Particle Concentrations. Atmospheric Environment,1998,32(22):3805-3825
    [36]John Onu odihi. Haze and health in Brunei DARUSSALAM:The case of the 1997-1998 episode. Singapore Journal of Tropical Geography.2001,22(1):38-51
    [37]杨建军等.太原市大气颗粒物中金属元素的富集特征.卫生研究.1997,26(2):87-89
    [38]Dzubay Thomas G. Visibility and aerosol composition in Houston, Texas. Environ. Sci. Technol,1982,16(8):514-524
    [39]戴树桂,环境化学,高等教育出版社,1997
    [40]唐孝炎,大气环境化学,高等教育出版社,1990
    [41]Malm W C. Introduction of visibility. NPS Visibility Program, Colorado State University Fort Collins, CO 80523,1999
    [42]Chow J C, Watson J G, Lu Z, et al. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmos. Environ.1996,30:2079-2112
    [43]Tanner R L, Parkhurst W J, Valente M L, et al. Regional composition of PM2.5 aerosols measured at urban, rural and background sites in the Tennessee valley. Atmos. Environ.2004, 38:3143-3153
    [44]Chan Y C, Simpson R W, Mctainsh G H, et al. Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmos. Environ.1997,31:2061-2080
    [45]Haglera G S W, Bergin M H, Salmonc L G, et al. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China. Atmos. Environ.2006, 40:3802-3815
    [46]任丽新,游荣高,吕位秀等.城市大气气溶胶的物理化学特性及其对人体健康的影响.气候与环境研究,1999,4(1):67-73
    [47]张金娜,董海燕,白志鹏等.天津初夏大气气溶胶粒度谱分布特征.城市环境与城市生态,2007,20(5):1-5
    [48]Akira Mizonhata, et al. PM2.5:A Fine Particle Standard, AWMA,1998, January,28-30
    [49]赵德山,韩应建,姜振远等.太原市冬季气溶胶粒度谱分布及其谱分布模式的研究.环境科学学报,1987,7:16-22
    [50]Clark W. E., Whitby K.T., Concentration and size distribution measurements of atmospheric aerosols and a test of the theory of self-preserving size distribution. Journal of Atmospheric Physics,1967,24:677-687
    [51]彭中贵,陈军.重庆大气气溶胶污染现状与回顾.中国环境监测,2001,17(1):11-14
    [52]宋宇,唐孝炎,方晨等.北京市能见度下降与颗粒物污染的关系.环境科学学报.2003,23(4):468-471
    [53]Chan Y C, Simpson R W, Mctainsh G H, et al. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques. Atmospheric Environment,1999,33(19):3237-3250
    [54]A. Molnar, E. Meszaros. On the relation between the size and chemical composition of aerosol particles and their optical properties Atmospheric Environment 2001,35(30):5053-5058
    [55]董雪玲.大气可吸入颗粒物对环境和人体健康的危害.资源.产业.2004,6(5):50-53
    [56]Sisler James F, Malm William C. The relative importance of soluble aerosols to spatial and seasonal trends of impaired visibility in the United States. Atmospheric Environ, 1994,28(5):851-862
    [57]Appel B R, Health Serv. Berkeley Visibility as related to atmospheric aerosol constituents. Atmos. Environ.,1985,19(9):1525-1534
    [58]Liousse C, Cachier H, JENNINGS S G. Optical and Thermal Measurements of Black Carbon Aerosol Content in Different Environments:Variation of the specific Attenuation Cross-Section, Sigma(s). Atmos. Environ.,1993,27(A):1203
    [59]于凤莲,刘东贤,胡英.有关气溶胶细粒子对城市能见度影响的研究.气象科技,2002,30(6):379-383
    [60]陈宗良,葛苏,张晶.北京大气气溶胶小颗粒的测量与解析.环境科学研究,1994,7(3):1-9
    [61]刘新民,邵敏.北京市夏季大气消光系数的来源分析.环境科学学报,2004,24(2):186-188
    [62]R. J. Barthelmie, S. C. Pryor. Implications of Ammonia Emissions for Fine Aerosol Formation and Visibility Impairment-A Case Study from the Lower Fraser Valley, British Columbia. Atmospheric Environment,1998,32(3):345-352
    [63]Cao J J, Lee S C, Ho K F, et al. Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmos. Environ.,2004,38:4447-4456
    [64]Itsushi Uno, Toshimasa Ohara, Shinji Wakamatsu. Analysis of the winter time NO2 pollution in the Tokyo Metropolitan area. Atmospheric Environment,1996(30):703-713
    [65]Shinji Wakamatsu, Toshimasa Ohara, Itsushi Uno. Recent trends in precursor concentration and oxidant distributions in the Tokyo and Osaka areas. Atmospheric Environment, 1996(30):715-721
    [66]Ioannis C. Ziomas, Dimitrios Melas, Christos S Zerefos, et al. Forecasting peak pollutant levels from meteorological variables. Atmospheric Environment,1995(29):3703-3711
    [67]Nester, K. Influence of sea breeze flows on air pollution over the Attica peninsula. Atmospheric Environment,1995(29):3655-3670
    [68]宋瑞金,崔九思.我国五城市大气污染动态观察的研究.卫生研究,1996,25(6):338-342
    [69]余淑秋,林学椿,徐祥德.北京市区大气污染的时空特征.应用气象学报,2002,13(suppl):92-99
    [70]黄鹂鸣,王格慧,王荟,等.南京市空气中颗粒物PM、PM2.5污染水平.中国环境科学,2002,22(4):334-337
    [71]Louie P K K, Chow J C, Chen L W, et al. PM2.5 chemical composition in Hong Kong:urban and regional variations. Sci. Total. Environ.2005,338:267-281
    [72]Kim H S, Huh J B, Hopke P K, et al. Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmos. Environ.2007, 41:6762-6770
    [73]Kyotani T, Iwatsuki M. Characterization of soluble and insoluble components in PM2.5 and PM10 fractions of airborne particulate matter in Kofu city, Japan. Atmos. Environ.,2002, 36:639-649
    [74]时宗波,邵龙义,李红,等.北京市西北城区取暖期环境大气中PM10的物理化学特征. 环境科学,2002,23(1):30-34
    [75]王京丽,刘旭林.北京市大气细粒子质量浓度与能见度定量关系初探.气象学报,2006,64(2):221-227
    [76]朱先磊,张远航,曾立民,等.北京市大气细颗粒物PM(2.5)的来源研究.环境科学研究,2005,18(5):1-5
    [77]宋宇,唐孝炎,方晨,等.北京市大气细粒子的来源分析.环境科学,2002,23(6):11-16
    [78]魏群,张宁,王建英,等.兰州市城区大气总悬浮微粒污染状况及元素富集特征研究.中国环境科学,1988,8(6):10-17
    [79]朱彬,马力,杨军.重庆冬季大气气溶胶的物理、化学特征.南京气象学院学报,2006,29(5):662-668
    [80]张逸,陈永桥,张晓山.北京市不同区域采暖期大气颗粒物中多环芳烃的分布特征.环境化学,2004,23(6):681-685
    [81]牟世芬,梁立娜.离子色谱的最新进展和几个热点应用.现代科学仪器,2006,(1):35-38
    [82]宋燕,徐殿斗,柴之芳.北京大气颗粒物PM,0和PM2.5中水溶性阴离子的组成及特征.分析试验室,2006,25(2):80-4
    [83]张宁,吴仁铭.兰州市大气颗粒物中水溶性离子研究.环境化学,1994,13(5):453-459
    [84]王荟,王格慧,高士祥,等.南京市大气颗粒物春季污染的特征.中国环境科学,2003,23(1):55-59
    [85]余学春,贺克斌,马永亮,等.气溶胶水溶性无机物及有机物的离子色谱测定.环境化学,2004,23(2):218-222
    [86]Tanner P A, Chan S M. Application of ion chromatography to the Hong Kong rainfall monitoring progress. Chromatographic Analysis.1996,739:249-253
    [87]阎炎,宋强.酸雨中阴离子的微孔离子色谱法测定.环境化学,1997,16(1):94-96
    [88]王丽文,王云艳.离子色谱法同时测定大气颗粒物中的7种阴离子分析方法的研究.中国环境监测,1993,9(4):12-16
    [89]Wang GH, Wang H, Yu Y J, et al. Chemical characterization of water-soluble components of PM10 and PM2.5 atmospheric aerosols in five locations of Nanjing, China. Atmospheric Environment,2003,37:2893-2902
    [90]Jim J L. Characterization of water-soluble ion species in urban ambient particles. Environment International,2002,28:55-61
    [91]Wang Y, Zhuang G S, Zhang X Y, et al. The ion chemistry, seasonal cycle and sources of PM2.5 and TSPaerosol in Shanghai. Atmospheric Environment,2006,40:2935-2952
    [92]王淑兰,柴发合,张远航,等.成都市大气颗粒物污染特征及其来源分析.地球科学,2004,24(4):487-492
    [93]Wang Y, Zhuang G S, Tang AH, et al. The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmospheric Environment,2005,39:3771-3784
    [94]Hu M, He L, Zhang Y, et al. Seasonal variation of ionic species in fine particles at Qingdao, China. Atmos. Environ,2002,36:5853-5859
    [95]Yang L X, Wang D C, Cheng S H, et al. Influence of meteorological conditions and particulate matter on visual range impairment in Jinan, China. Sci. Total Environ,2007, 383:164-173
    [96]Tsitouridou R, Samara C. First results of acidic and alkaline constituents determination in air particulates of Thessaloniki, Greece. Atmos. Environ,1993,27B:313-319
    [97]U.S. EPA. Particulate matter data analysis workbook. http://capita.wustl.edu/Databases/UserDomains/PMFineAnalysisWB/, October 1999
    [98]Watson J G, Chow J C. CMB8 applications and validation protocol for PM2.5 and VOCs. Desert Research Institute. USA, September 1998
    [99]Jacob D J, Wofsy S C. Photochemistry of biogenic emissions over the Amazon forest. Journal of Geophysical Research,1988,93:1477-1486
    [100]Yao X H, Chan C K, Fang M, et al. The water soluble Ionic Composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ,2002,36:4223-4234
    [101]高金和,王玮,杜渐等.厦门春季气溶胶特征初探.环境科学研究,1996,9:33-36
    [102]李彩霞,李彩亭,曾光明,等.长沙市夏季PM10与PM2.5中水溶性离子的污染特征.中国环境科学,2007,27:599-603
    [103]Lin J J M. Characterization of water-soluble ion species in urban ambient particles. Environ. Intern,2002,28:55-61
    [104]Lee H S, Kang C M, Kang B W, et al. Seasonal variations of acidic air pollutants in Seoul, South Korea. Atmos. Environ,1999,33:3143-3152
    [105]Kim B M, Teffera S, Zeldin M D. Characterization of PM2.5 and PM10 in the South Coast Air Basin of southern California:part 1-Spatial variations. J. Air Waste Manage. Assoc,2000, 50:2034-2044
    [106]Truex T J, Pierson W R, Mckee D E. Sulfate in diesel exhaust. Environ. Sci. Technol,1980, 14:1118-1121
    [107]Ohta S, Okita T A. Chemical characterization of atmospheric aerosol in Sapporo. Atmos. Environ,1990,24:815-822
    [108]Waldman J M, Lioy P J, Zelenka M, et al. Winter-time measurements of aerosol acidity and trace elements in Wuhan, a city in central China. Atmospheric Environment,1991, 25B:113-120
    [109]Elliott S, Shen M, Blake D, et al. Atmospheric effects of the emerging mainland Chinese transportation system at and beyond the regional scale. Journal of Atmospheric Chemistry, 1997,27:31-70
    [110]Gao Y, Arimoto R, Duce R A, et al. Atmospheric non-sea-salt sulfate, nitrate and methanesulfonate over the China sea. Journal of Geophysical Research,1996,101:12601-12611
    [111]Charlson R J. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.Nature, 1987,326:655-659
    [112]Savoie D L, Prosper J M, Arimoto R, et al. Non-sea-salt sulfate and methanesulfonate at American Samoa. Journal of Geophysical Research,1994,99:3587-3596
    [113]Bates T S, Calhoun J A, Quinn P K. Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the South Pacific Ocean. Journal of Geophysical Research,1992,97:9859-9865
    [114]Zhou L, Chen H T, Zhang F. Experimental examination of the effects of atmospheric wet deposition on primary production in the Yellow Sea. Journal of Experimental Marine Biology and Biology,2000,249:111-121
    [115]Kloke A DR, Saverbeck. Changing metal cycles and human health [M]. Berlin: Springer-Verlag,1984:113-141
    [116]Miguel E D, Llamas J F, Chacone E, et al. Sources and pathways of trace elements in urban environments:a multielemental qualitative approach. The Science of the Total Environment, 1999,235:355-357
    [117]Al-Raji M A, Al-Shayeb S M, Seaward M R D, et al. Particle size effect for metal pollution analysis of atmospherically deposited dust. Atmospheric Environment,1995,30(1):145-153
    [118]Adachi K, Tainosho Y. Single particle characterization of size-fractionated road sediments. Applied Geochemistry,2005,20:849-859
    [119]Chao Y C, Simpson R W, Metainsh C H, et al. Characterization of chemical special in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmospheric Environment,1997,31:3773-3785
    [120]Ernst W. Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry,1996,11:163-167
    [121]Wappeiboret O, Kubn I, Oehlmann J, et al. Deposition and disease:a moss monitoring project as an approach to ascertaining potential connections. The Science of the Total Environment,2000,249(2):243-256
    [122]Mohanral R, Azeez P A, Priscilla T, et al. Heavy metal in airborne particulate matter of urban Coimbatore. Environmental Contamination and Toxicology,2004,47:162-167
    [123]杨复沫,贺克斌,马永亮,等.北京大气PM25中微量元素的浓度变化特征与来源.环境科学,2003,24:33-37
    [124]Ho K.F., Lee S.C. Cao J.J. Seasonal variations and mass closure analysis of particulate matter in Hong Kong. Science of the Total Environment,2006,355:276-287
    [125]Bin Han, Shaofei Kong, Zhipeng Ba, et al. Characterizations of elemental species in PM2.5 in four cities of Northeast China. Water, Air and Soil Pollution, Accepted
    [126]张晶,陈宗良,王玮.北京市大气小颗粒物的污染源解析.环境科学学报,1998,18(1):62-67
    [127]Lioy P. J., Zhang J. In Air Pollutants and The Respiratory Tract; Swift, D. L., Ed.; Lung Biology in Health and Disease; Marcel Dekker:1999; Vol.128, pp 1-38
    [128]Seinfeld, J. H., Pandis, S. N.,1998. Atmospheric Chemistry and Physics:From Air Pollution to Climate Change; John Wiley & Sons:New York
    [129]Ho K.F., Cao J.J., Lee S.C., Source apportionment of PM2.5 in urban area of Hong Kong. Journal of Hazardous Materials,2006,138:73-85
    [130]陈立奇,高鹏飞,杨绪林.环球海洋大气气溶胶化学研究:Ⅱ.来源示踪元素的特征.海洋与湖沼,1993,24(3):264-271
    [131]李天杰,曹俊忠,朱光华,等.太平洋西部、南大洋及东南极陆缘大气气溶胶来源及其物理化学特征.极地研究,1997,9(4):243-253
    [132]中国环境监测总站.中国土壤背景值(M).北京:中国环境出版社,1990:329-483
    [133]Hacisalihoglu G., Eliyakut F., Balkas T.I., et al. Chemical composition of particles in the Black Sea aerosols. Atmos. Environ,1992,26:3207-3218
    [134]Gullu G. H., Olmez I., Aygun S., et al. Atmospheric trace element concentrations over the eastern Mediterranean Sea:factors affecting temporal variability. Journal of Geophysical Research,1998,103:21943-21954
    [135]PENNER J E, NOVAKOV T. Carbonaceous particles in the atmosphere:a historical perspective to the fifth international conference on carbonaceous particles in the atmosphere. J Geophys Res,1996,101:373-378
    [136]王玮,陈宗良.大气气溶胶中无机碳和有机碳.环境科学丛刊,1991,12(2):27-34
    [137]ROGGE W F, MAZUREK M A, HILDEMANN L M, et al. Quantification of urban organic aerosols at a molecular level:identification, abundance and seasonal variation. Atmos Environ,1993,27(8):1309-1330
    [138]张仁健,徐永福,韩志伟ACE-Asia期间北京PM2.5的化学特征及其来源分析.科学通报,2003,48(7):730-733
    [139]ZHANG Ren-jian, ARIMOTOR, AN Jun-ling, et al. Ground observations of a strong dust storm in Beijing in March 2002. J Geophys Res,2005,110(D 18S06)
    [140]ZHANG Mei-gen, Modeling of organic carbon aerosol distributions over East Asia in the springtime. China Particulogy,2004,2(5):192-195
    [141]于建华,虞统,杨晓光,等.北京冬季PM2.5中元素碳、有机碳的污染特征.环境科学研究,2005,17(1):48-51
    [142]ZHANG Yuan-hang, ZHU Xian-lei, ZENG Li-min, et al. Source apportionment of fine-particle pollution in Beijing. Urbanization, Energy, and Air Pollution in China [M]. Beijing, The National Academies Press,2004:139-153
    [143]HITZENBERGER R, TOHNO S. Comparison of black carbon (BC) aerosols in two urban areas:concentrations and size distributions. Atmos Environ,2001,35(12):2153-2167
    [144]Hansen A D A, Bodhaine B A, Dutton E G, et al. Aerosol black carbon measurements at the south pole:initial results,1986-1987. Geophys. Res. Lett.1998,15:1193-1196
    [145]Cadle S H, Mulawa P A. Atmospheric carbonaceous materials in southern California atmospheric aerosols. Environ. Sci. Technol,1990,10:359-363
    [146]Menon S, Genio A D, Koch D, et al. GCM simulations of the aerosol indirect effect: sensitivity to cloud parameterization and aerosol burden. J. Atmos. Sci.2002,59:692-713
    [147]韩博,冯银厂,毕晓辉,等.无锡市区环境空气中PM10来源解析.环境科学研究,2009, 22(1):35-39
    [148]CHENS, LIAO S, JIANW, et al. Particle size distribution of aerosol carbons in ambient air. Environ Intern,1997,23:475-488
    [149]SUN Y, ZHUANG G, GUO J, et al. The air-borne particulate pollution in Beijing: concentration, composition, distribution and sources. Atmos Environ,2004,38:5991-6004
    [150]Schmid H, Laskus L, Jurgen A H, et al. Results of the "carbon conference" international aerosol carbon round robin test stage I. Atmos. Environ,2001,35:2111-2121
    [151]Cao J. J., Lee S. C., Ho K. F., et al. Characteristics of carbonaceous aerosol in Pearl River Delta region, China during 2001 winter period. Atmos. Environ,2003,37:1451-1460
    [152]Ye B., Ji X., Yang H., et al. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmos. Environ,2003,37:499-510
    [153]Cao J.J., Chow J.C., Lee S.C., et al. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China. Atmospheric Chemistry and Physics,2005,5:3127-3137
    [154]Meng Z. Y., Jiang X. M., Yan P., et al. Characteristics and sources of PM2.5 and carbonaceous species during winter in Tianyuan, China., Atmospheric Environment,2007, 41:6901-6908
    [155]Lee H. S., Kang B. W. Chemical characteristics of principal PM2.5 species in Chongju, South Korea. Atmos. Environ,2001,35:739-746
    [156]Lin J. J, Tai H. S. Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City, Taiwan. Atmos. Environ,2001,35:2627-2636
    [157]Kim Y.P., Moon K.C., Lee J.H., et al. Concentrations of carbonaceous species in particles at Seoul and Cheju in Korea. Atmos. Environ,1999,33:2751-2758
    [158]Kim Y.P., Moon K.C., Lee J.H., et al. Organic and elemental carbon in fine particles at Kosan, Korea. Atmos. Environ,2000,34:3309-3317
    [159]Holler R., Tohnoa S., Kasaharaa M., et al. Long-term characterization of carbonaceous aerosol in Uji, Japan. Atmos. Environ,2002,36:1267-1275
    [160]ZHANG Ren-Jian, CAO Jun-ji, LEE Shun~cheng., et al. Carbonaceous aerosols in PM10 and pollution gases in winter in Beijing. Journal of Environmental Sciences,2007,19:564-571
    [161]Cao J.J, Shen Zh.X, Chow, J.C., et al. Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China. Particuology,2009,7:161-168
    [162]Nunes T V, Pio C A. Carbonaceous aerosols in industrial and coastal atmospheres. Atmos. Environ,1993,27:1339-1346
    [163]Offenberg J H, Baker J E. Aerosol size distributions of elemental and organic carbon in urban and over-water atmospheres. Atmos. Environ,2000,34:1509-1517
    [164]Turpin B. J., Lim, H. J. Species contributions to PM2.5 mass concentrations:Revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol,2001,35:602-610
    [165]Gray H. A., Cass G. R., Huntzicker J. J., et al. Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles. Environ. Sci. Technol,1986, 20:580-589
    [166]Turpin B. J., Huntzicker J. J.. Secondary formation of organic aerosol in the Los Angeles Basin:a descriptive analysis of organic and elemental carbon concentrations. Atmos. Environ, 1991,25A:207-215
    [167]Watson J G, Chow J C, Houck J E, et al. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere,2001,43:1141-1511
    [168]Turpin B J, Huntzicker J J. Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ,1995,29:3527-3544
    [169]Novakov T, Corrigan C E. Cloud condensation nucleus activity of the organic component of biomass smoke particles. Geophys. Res. Lett,1996,23:2141-2144
    [170]Castro L M, Pio C A, Harrison R M, et al. Carbonaceous aerosol in urban and rural European atmospheres:estimation of secondary organic carbon concentrations. Atmos. Environ,1999, 33:2771-2781
    [171]Chow J C, Watson J G, Kuhns H D, et al. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational (BRAVO) Study. Chemosphere,2003,54:185-208
    [172]Chow J C, Watson J G, Ashbaugh L L, et al. Similarities and differences in PM10 chemical source profiles for geological dust from the San Joaquin Valley, California. Atmos. Environ, 2003,37:1317-1340
    [173]Baik N J, Kim Y P, Moon K C. Visibility study in Seoul 1993. Atmos Environ,1996, 30(13):2319-2328
    [174]束炯,李丽,张玮.大气污染对城市能见度影响研究的理论与实践.上海环境科学,2003,22(11):785-847
    [175]Kao A S, Friedlander S K. Frequency distributions of PM lochemical com ponents and their sources. Environ Sci Techno,1995,29:19-28
    [176]Watson J G. Visibility:Science and regulation. J Air system manage,2002,52(6):628-713
    [177]董海燕,韩旸,蔡斌彬,等.天津市气溶胶折射指数及消光特征.环境污染与防治,2009,31(4):28-32
    [178]Waggoner A P, Weiss R E. Comparison of Fine Particle Mass Concentration and Light Scattering Extinction in Ambient Aerosol. Atmos. Environ,1980,14:623-626
    [179]White W H, Macias E S, Ninenger R C, et al. Size-Resolved Measurements of Light Scattering by Ambient Particles in the Southwestern U.S. Atmos. Environ,1994,28:909-921
    [180]Chow J C, Watson J G, Lowenthal D H, et al. Comparability between PM2.5 and Particle Light Scattering Measurements. Environ. Monitor. Assess,2002,79:29-45
    [181]http://vista.cira.colostate.edu/IMPROVE
    [182]White W H, Robert P T. On the nature and origins of visibility-reducing aerosols in the Los Angeles air basin.Atmos Environ,1977, 11(9):803-812
    [183]Kotchenruther R A, Hobbs P V, Hegg D A. Humidification factors for atmospheric aerosol off the mid-Atlantic coast of United States. J Geophy Res,1999,104(D2):2239-2251
    [184]Neiburger M, Wurtele M G. On the nature and size of particles in haze, fog and stratus of the Los Angeles region. Chem Rev,1949,44:321-335
    [185]Kotchenruther R A, Hobbs P V. Humidification factors of aerosols from biomass burning in Brazil. J Geophy Res,1998,103(D24):32081-32089
    [186]Liu X, Cheng Y, Zhang Y, et al. Influencess of relative humidity and particle chemical composition on aerosol scattering properties during the 2006 PRD campaign. Atmos Environ, 2008,42:1525-1536
    [187]Sisler J F, Huffman D, Latimer D A. IMPROVE Reports (1993):Spatial and Temporal Patterns and the Chemical Composition of the Haze in the United States:An Analysis of Data from the IMPROVE Network.1988-1991,1993, http://vista.cira.colostate.edu/improve/Publications/Reports/1993/1993.htm
    [188]Maim W C, Day D E. Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmos Environ,2001,35:2845-2860
    [189]林云,孙向明,张小丽,等.深圳市大气能见度与细粒子浓度统计模型.应用气象学报,2009,20(2):252-255
    [190]Jacobson M C, Hansson H C, Noone K J, et al. Organic atmospheric aerosols:review and state of the science. Reviews of Geophysics,2000,38:267-294
    [191]Sisler James F, Malm William C. The relative importance of soluble aerosols to spatial and seasonal trends of impaired visibility in the United States. Atmos. Environ,1994,28:851-862
    [192]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002
    [193]邓聚龙.灰预测与灰决策[M].武汉:华中科技人学出版社,2002
    [194]刘思峰,党耀国,方志耕等.灰色系统理论及其应用[M].北京:科学出版社,2004
    [195]罗佑新,张龙庭,李敏.灰色系统理论及其在机械程中的应用[M].长沙:国防科技出社,2001
    [196]李守仁,朱聪玲.灰色预测在武器试验中的应用.佳木斯大学学报(白然科学版),1999,17(1):12-16
    [197]罗庆成.灰色投入产出优化模型设计与应用.系统工程理论与实践,1989,9(5):55-59
    [198]Hsieh Chenhuei. Grey Data Fitting Model and Its APPlication to Image Coding. The Journl of Grey System,2000,12(3)
    [199]刘思峰.灰色系统理论的产生与发展.南京航空航大大学学报,2004,36(2):267-272
    [200]罗党.灰色决策问题分析方法[M].郑州:黄河水利出版社,2005
    [201]罗党,刘思峰.灰色关联决策方法研究.中国管理科学,2005,13(1):101-106
    [202]罗党,刘思峰.不完备信息系统的灰色关联决策方法.应用科学学报,2005,23(4):83- 87
    [203]厉彦玲.基于灰色聚类分析方法的生态环境质量综合评价模型.测绘科学,2007,32(5):77-79
    [204]李清富,胡群芳,刘文,等.基于灰色聚类决策的沥青路面使用性能评价.郑州大学学报,2003,24(2):44-47
    [205]中央气象局.地面气象观测规范.北京:气象出版社.1979:22-27
    [206]吴兑.关于霾与雾的区别和灰霾天气预警的讨论.气象,2005,31(4):3-7
    [207]白志鹏,董海燕,蔡斌彬,等.灰霾与能见度研究进展.过程工程学报,2006,6(增刊):36-41
    [208]邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,1987
    [209]傅立.灰色系统理论及其运用[M].北京:科学技术文献出版社,1992
    [210]孟宪林.灰色理论在环境质量评价中的应用与完善.哈尔滨工业大学学报,2002,34(5):700-702
    [211]徐卫国等.灰色聚类修正模型在系统总量控制中的应用.中国环境科学,2006,26(5):546-549
    [212]徐卫国等.基于修正灰色聚类模型计算污染物排放阈值.生物数学学报,2007,22(11):164-170
    [213]孟燕军,王淑英,赵习方.北京地区大雾日大气污染状况及气象条件分析.气象,2000,26(3):40-42
    [214]王淑英,张小玲,徐晓峰.北京地区大气能见度变化规律及影响因子统计分析.气象科技,2003,33(2):109-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700