认知无线电系统资源管理与分配关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的飞速发展,频谱资源变得越来越紧张。传统的静态的无线频谱管理方式使得部分频谱通常处于空闲状态,限制了频谱的使用效率。认知无线电(Cognitive Radio)技术被认为是有效利用空闲频谱、缓解无线频谱紧缺问题的一种新方法。认知无线电网络能够感知无线频谱环境、自动搜寻可用频谱,为提高频谱利用率开辟了崭新的途径。
     认知无线电系统基于动态频谱接入方式,资源管理和分配是认知无线电系统的关键技术和研究热点。本文对认知无线电系统的频谱分配、功率控制和接入控制进行了深入研究,主要创新性成果如下:
     (1)基于图论着色模型研究认知无线电非连续正交频分复用系统的子载波分配问题。本文对现有的认知无线电系统的图论模型进行改进,建立了适用于认知无线电NC-OFDM系统的子载波分配模型。在此模型下,将随机算法和分布式贪婪算法应用于认知无线电NC-OFDM系统的子载波分配中,同时针对这两种算法的缺点,将多用户OFDM系统的最小容量最大化算法引入认知无线电NC-OFDM系统中,提出适用于认知无线电NC-OFDM系统的最小容量最大化算法,该算法很好的兼顾了系统的吞吐量性能和用户公平性。
     (2)基于干扰温度模型研究认知无线电系统的功率分配问题。现有基于干扰温度模型的功率控制问题的求解方法存在不能得到最优解或计算量较大的问题。本文提出一种适用于上行认知无线电OFDM系统的功率分配算法,计算复杂度较低、并且能够得到最大化用户传输速率的最优功率分配。该算法在干扰温度和认知用户总功率限制条件下,反复使用置零迭代注水算法,直至获得最优功率分配。数学推导证明算法具有最优性,仿真结果验证了该结论,同时表明该算法的计算量比梯度方法减少50%以上。
     (3)研究非实时业务条件下认知无线电系统的动态资源分配问题。由于认知无线电系统可用频谱状态的时变性,静态分配方法并不能实现频谱的高效利用。本文采用POMDP理论模型对认知无线电系统的子载波状态进行建模,然后基于两种共享方式研究系统的动态资源分配。在填充式共享中,针对可用子载波的不断变化,将空闲子载波动态分配给认知用户,通过控制各认知用户在各子载波上的接入概率最大化系统的吞吐量并保证用户的QoS需求。仿真结果表明,动态子载波分配算法的吞吐量性能优于静态分配方法和CSMA接入方法。在下垫式共享中,首先对功率进行动态分配,仅在授权用户出现时才将认知用户的功率限制在干扰功率约束之下,然后按照一定的接入概率将子载波动态分配给各认知用户,在保证用户最低速率需求的前提下最大化系统容量。仿真结果表明,子载波与功率的联合动态分配算法能够获得明显的吞吐量性能增益。
     (4)研究实时业务条件下认知无线电系统的接入控制问题。针对无缓冲机制和有缓冲机制两种系统类型,采用马尔可夫链对系统状态进行建模,分别对用户的阻塞概率、中断概率和系统容量进行分析,在此基础上提出一种认知用户的接入概率控制算法,在满足用户中断概率限制的前提下最大化系统容量。分析结果表明,在使用该算法进行接入概率控制的系统中,用户的接入概率与系统吞吐量随中断概率限制的增大而增大,中断概率限制下的最大接入概率即为最大化系统容量的接入概率,用户中断概率限制的满足是以牺牲系统吞吐量作为代价的。同时,结果表明,引入缓冲机制能够降低用户的中断概率、提高用户的接入概率和系统的吞吐量性能。
With the rapid development of the wireless communication technology, the frequency resource becomes more and more insufficient. The traditional static wireless frequency management makes much frequency in idle state in usual, which limits the usage efficiency of the frequency resource. Cognitive radio is considered an effective method, which employs spare frequency effectively and solves the insufficiency problem of the wireless frequency. Cognitive radio network can sense the wireless frequency environment intelligently and search for available frequency automatically. Therefore cognitive radio pioneers a new way to enhance the frequency utilization efficiency.
     Cognitive radio system is based on dynamic frequency access. So resource allocation and management is a pivotal technology and research hotspot. The paper makes deep research in frequency allocation, power control and access control of cognitive radio system. The main innovation results are as follows:
     1. Research on subcarrier allocation of cognitive radio NC-OFDM system based on graph coloring model. The paper improves the current graph model based on channel allocation and builds the subcarrier allocation model adapted to cognitive radio NC-OFDM system. Based on the improved model, the paper applies the rand algorithm and the existing distribution greedy algorithm for subcarrier allocation in cognitive radio NC-OFDM system. Also the paper introduces the max-min algorithm in multiuser OFDM system and proposes the max-min algorithm adapted to cognitive radio NC-OFDM system, which can not only obtains better throughput performance but good fairness performance.
     2. Research on power allocation in cognitive radio system based on interference temperature model. In the existing power control based on interference temperature some problems exist. For example, some methods are too simple to attain the optimal solution, and also some have too large computation amount. Aimed at the disadvantage of the existing methods, the paper proposes an optimal power allocation algorithm adapted to uplink cognitive radio OFDM system which has low computation complexity and can maximize the user transmission rate. The algorithm applies the zero-setting iterative water-filling algorithm repeatedly until the optimal power allocation is achieved. The mathematical derivation proves the optimization performance of the algorithm, which is also verified by the simulation result. At the same time the simulation result indicates that the computation complexity of the algorithm reduces by over 50% compared with the gradient method.
     3. Research on the dynamic resource allocation in cognitive radio system in the condition of non real time service. Currently a lot of document researches on the static resource allocation in cognitive radio system, but because of the time and space change of the available frequency, the static allocation method can’t realize the efficient frequency utilization. The paper researches on dynamic subcarrier and power allocation in cognitive radio system in the condition of non real time service based on overlay and underlay sharing mode. Firstly we build and analyze the model of the subcarrier state based on POMDP theory. Then under the overlay and underlay mode we research on the dynamic resource allocation in cognitive radio system. Under the overlay mode we allocate the idle subcarrier to cognitive user dynamically and control the access probability of cognitive users to spare subcarrier to maximize the system throughput and guarantee the QoS (Quality of Service) requirement of users. The simulation results indicate that the throughput performance of dynamic allocation algorithm is better than static allocation and CSMA access method. Under the underlay mode, first we allocate power dynamically by limiting the cognitive user power only when the primary user arrives. Then we allocate the subcarriers dynamically according to the access probability of cognitive users in each subcarrier states to maximize the system throughput in the precondition of guaranteeing the minimal rate requirement of cognitive users. The simulation results show that the associated subcarrier and power allocation algorithm can attain obvious throughput performance plus.
     4. Research on access control in cognitive radio system in the condition of real time service. Aimed at the system with buffer mechanism and without buffer mechanism respectively, we build the system state model by continuous time Markov chain and analyze the block probability, forced termination probability and throughput performance respectively. Then we propose the access probability controlling algorithm to satisfy the limitation of the user forced termination probability and also maximize the system throughput. The analysis results indicate that in the system with access probability control, the access probability of users and system throughput are enlarged with the forced termination probability limitation and the largest access probability under the forced termination probability is the access probability value able to maximize the system throughput. Therefore in conclusion the satisfaction of user forced termination probability limitation sacrifices the system throughput performance. Also the results show that the introduction of the buffer mechanism can reduce the forced termination of users and enhance the access probability of users and system throughput performance.
引文
[1] Zhao Qing, Sadler, Brian M. Q. A survey of dynamic spectrum access: signal processing, networking, and regulatory policy [J]. IEEE Signal Processing Magzine, 2007, 24(3):79-89.
    [2] FCC. ET Doeket NO 03-322, Notice of proposed rule making and order [R]. Washington: Federal Communications Commission, 2003.
    [3] J.Mitola III. Cognitive radio for flexible mobile multimedia communications [A]. Proceedings of IEEE Sixth International Workshop on Mobile Multimedia Communications (MoMuC’99) [C]. SanDiego, CA: IEEE, 1999:3-10.
    [4] Simon Haykin. Cognitive radio: brain-empowered wireless communications [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2):201–220.
    [5] Hoven N. K. On the feasibility of cognitive radio [D]. Master of Science. University of California, Berkeley, Spring 2005.
    [6] Sahai A., Hoven N., Tandra R. Some fundamental limits on cognitive radio. Allerton Conference on Commununication, Control and Computing. Dallas, USA: IEEE, 2004: 1-6.
    [7] Joseph MitolaⅢ, Gerald Q. Maguire, JR. Cognitive Radio: making software radio more personal [J]. IEEE Personal Communications, 1999, 6(4):3-18.
    [8] Joseph MitolaⅢ. Cognitive radio: An integrated agent architecture for software defined Radios [D]. Stockholm, Sweden: Royal Institute Technology (KTH), 2000.
    [9] Haitao Zheng, Chunyi Peng. Collaboration and fairness in opportunistic spectrum access [A]. Proceedings of IEEE ICC2005 [C]. Seoul, Korea: IEEE, 2005: 3132-3136.
    [10] Lili Cao, Haitao Zheng. Distributed spectrum allocation via local bargaining [A]. IEEE Sensor and AdHoc Communications and Networks (SECON) 2005 [C]. Santa Clara, California: IEEE, 2005: 475-486.
    [11] Cabric D., Mishra S.M., Brodersen R.W. Implementation issues in spectrum sensing for cognitive radios [A]. Proceeding of the 38th Asilomar Conference on Signals, Systems and Computers [C]. Pacific Grove, California: IEEE, 2004: 772-776.
    [12] Haiyun Tang. Some physical layer issues of wide-band cognitive radio system [A]. IEEE DySPAN [C]. Baltimore Harbor, Maryland: IEEE, 2005: 151-159.
    [13] Robert W. Brodersen, Adam Wolisz, Danijela Cabric, Shridhar Mubaraq Mishra and Daniel Willkomm. CORVUS: a cognitive radio approach for usage of virtual unlicensed spectrum [R]. UC Berkeley: Berkeley Wireless Research Center, 2004.
    [14] Kamakaris T, Buddhikot M., Ivyer R. A case for coordinated dynamic spectrum access in cellular networks [A]. IEEE New Frontiers in Dynamic Spectrum Access Networks 2005 [C]. Baltimore: IEEE, 2005: 289-298.
    [15] Leaves P., Grandblaise D., Bourse D., et al. Dynamic spectrum allocation in composite reconfigurable wireless networks [J]. IEEE Communications Magazine, 2004, 42(5): 72-81.
    [16] IEEE 802.22-05/0007r40, Functional Requirements for the 802.22 WRAN Standard [S]. SanDiego, CA: Stevenson, Carlos Cordeiro, Eli Sofer, Gerald Chouinard., 2005.
    [17] Buddhikot M.M., Ryan K. Spectrum management in coordinated dynamic spectrum access based cellular network [A]. IEEE Intenational Syposium on New Frontiers in Dynamic spectrum Access Networks [C]. Baltimore: IEEE, 2005: 299-307.
    [18] Haitao Zheng, Lili Cao. Device-centric spectrum management [A]. Proceeding of IEEE DySPAN [C]. Baltimore: IEEE, 2005:56-65.
    [19] Lili Cao, Haitao Zhang. Distributed rule-regulated spectrum sharing [J]. IEEE Journal on Selected Areas in Communication, 2008, 26(1):130-145.
    [20] Akyildiz I.F., Lee W., M.C.Vuran. Next generation/dynamic spectrum access/cognitive radio wireless network: A survey [J]. Computer Networks,2006,50(13): 2127-2159.
    [21] XG working Group. The XG Vision.RFC v2.0 [S/OL]. http://www.ir.bbn.com/~ramanath/pdf/rfc_vision.pdf
    [22] XG working Group. The XG Architecture Framework.RFC v1.0 [S/OL]. http://bwrc.eecs.berkeley.edu/research/mcma/CR_White_paper_final1.pdf
    [23] E3项目[EB/OL] http://ict-e3.eu/
    [24] EUWB项目[EB/OL] http://www.euwb.eu/
    [25] ARAGORN项目[EB/OL] http://www.ict-aragorn.eu/
    [26] SENDORA项目[EB/OL] http://www.sendora.eu/node/81
    [27] PHYDAS项目[EB/OL] http://www.ict-phydyas.org/
    [28] Neel J. Analysis and design of cognitive radio networks and distributed radio resource management algorithms [D]. Blacksburg VA: Virginia Polytechnic Institute and StateUniversity, 2006.
    [29] Fan Wang, Marwan Krunz, Shuguang Cui. Price-based spectrum management in cognitive radio networks [J]. IEEE Journal of Selected to Topics in Signal Processing, 2008, 2(1): 74-87.
    [30] Fan Wang, Marwan Krunz, Shuguang Cui. Spectrum sharing in cognitive radio networks [R]. Tucson, AZ: Department of Electrical & Computer Engineering, University of Arizona, 2007.
    [31] Mingyi Hong, Alfredo Garcia. Equilibrium Pricing of Interference in cognitive radio networks [J/OL]. http://people.virginia.edu/~ag7s/papers/Hong_Garcia_Nov15.pdf
    [32] Niyatoand D, Hossain E. Market-equilibrium, competitive, and cooperative pricing for spectrum sharing in cognitive radio networks: analysis and comparison [J]. IEEE Wireless Communication, 2008, 7(11): 4273-4283.
    [33] Zhu Ji, K.J.RayLiu. Multi-stage pricing game for collusion-resistant dynamic spectrum allocation [J]. IEEE Journal on Selected Areas Communication, 2008, 26(1):182-191.
    [34] Beibei Wang, Yongle Wu, Zhu Ji., K.J.RayLiu, T.Charles Clancy. Game theoretical mechanism design for cognitive radio networks with selfish users [J]. IEEE Signal Processing Magazine, 2008, 25 (6): 74-84.
    [35] Song Qijun, Han Yunan, Huang Yan. A Centre Controlled Strategy for Adaptive Spectrum Access [A]. The 4th Asia-Pacific Conference on Environmental Electromagnetics [C]. Dalian, China: IEEE, 2006: 771-774.
    [36] Paul Houze, Sana Ben Jemaa, Pascal Cordier. Dynamic spectrum allocation algorithm for cognitive networks [A]. The Third IEEE International Conference on Wireless and Mobile Communications (ICWMC) [C]. New York, USA: IEEE, 2007: 25-27.
    [37] Wei Wang, Xin Liu. List-coloring based channel allocation for open-spectrum wireless networks [A]. The 62nd IEEE Vehicular Technology Conference (VTC) [C]. Dallas, TX, USA: IEEE, 2005, (1):690-694.
    [38] Rosenberg, Louis W. Stern. Conflict measurement in the distribution channels [J]. Journal of Marketing Research, 1971, 8(4): 437-442.
    [39] T.C.Claucy III. Dynamic spectrum access in cognitive networks [D]. Maryland: University of Maryland, College Park, 2006.
    [40] Clancy T., Arbaugh W. Measuring Interference Temperature [A]. Virginia Technology Wireless Personal Communications Symposium [C]. Blacksburg, VA: IEEE, 2006.
    [41] Neel J., Reed J.H., Gilles R.P. Convergence of cognitive radio networks [A].WirelessCommunications and Networking Conference [C]. Atlanta, Georgia: IEEE, 2004: 2250 - 2255.
    [42] Nie N.,Comaniciu C. Adaptive channel allocation spectrum etiquette for cognitive radio networks [A]. IEEE New Frontier in Dynamic Spectrum Access Networks [C]. Baltimore: IEEE, 2005: 267-278.
    [43] Kloeck. C, Jaekel. H, Jondral. F.K. Dynamic and local combined pricing, allocation and billing system with cognitive radios [A]. The 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN) [C]. Baltimore: IEEE, 2005: 73-81.
    [44]李锵.蜂窝移动通信系统中功率控制算法的研究[D].中国优秀博士学位论文全文数据库,2003.
    [45] Wei Wang, Yilin Cui, Tao Peng, Wenbo Wang. Noncooperative power control game with exponential pricing for cognitive radio network [A]. IEEE 65th Vehicular Technology Conference (VTC) [C]. Dublin, Ireland: IEEE, 2007: 3125-3129.
    [46] Shilun Cheng, Zhen Yang. Energy-efficient power control game for cognitive radio systems [A]. The 8th ACIS International Conference Software Engineering, Artificial Intelligence, Networking, and Parallel/ Distributed Computing [C]. Qingdao: IEEE, 2007: 526-530.
    [47] Jiandong Li, Dong Chen, Weiying Li, Jing Ma. Multiuser power and channel allocation algorithm in cognitive radio [A]. The 39th International Conference on Parallel Processing [C]. San Diego, CA: IEEE, 2007: 72-72.
    [48] Wang Xia, Zhu Qi. Power control for cognitive radio base on game theory [A], 3rd IEEE International Conference on Wireless and Mobile Computing, Networking and Communications [C]. New York, USA: IEEE, 2007: 1256-1259.
    [49] Lijun Qian, Xiangfang Li, John Attia, Zoran Gajic. Power Control for Cognitive Radio Ad Hoc Networks [A]. 15th IEEE Workshop on Local and Metropolitan Area Networks [C]. New Jersey, USA: IEEE, 2007: 7-12.
    [50] Anh Tuan Hoang, Ying-Chang Liang. A two-phase channel and power allocation scheme for cognitive radio networks [A]. Proceeding of IEEE International Symposium on Personal Indoor and Mobile Radio Communications [C]. Helsinki, Finland: IEEE, 2006: 1-5.
    [51] Anh Tuan Hoang, Ying-Chang Liang. Maximizing spectrum utilization of cognitive radio networks using channel allocation and power control [A]. Proceeding of IEEE64th Vehicular Technology Conference [C]. Montréal, Québec, Canada: IEEE, 2006: 1-5.
    [52] Farah J., Marx F. Combining strategies for the optimization of resource allocation in a wireless multiuser OFDM system [J]. International Journal of Electronics and Communications (AEü), 2007, 61(10):665-677.
    [53] Lan Zhang, Ying-Chang Liang, Yan Xin. Joint admission control and power allocation for cognitive radio networks [A]. Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing [C]. Honolulu, Hawaii: IEEE, 2007: 673-676.
    [54] Hoven N., Sahai A. Power scaling for cognitive radio wireless networks [J], Communications and Mobile Computing, 2005: 250-255.
    [55] Jianwei Huang, Randall Berry, Michael L. Honig. Auction based spectrum sharing [J]. ACM Mobile Networks And Applications Journal,2006, 11(3): 405-418.
    [56]曾志民,郭彩丽.认知无线电网络的MAC层关键技术[J].中兴通讯技术, 2009 (2) : 20-24.
    [57] Dawei Chen, Qian Zhang, Weijia Jia. Aggregation aware spectrum assignment in cognitive ad-hoc networks [A]. IEEE CrownCom [C]. Singapore: IEEE, 2008:1-6.
    [58] Poston J D,Horne W D. Discontiguous OFDM considerations for dynamic spectrum access in Idle TV channels [A].IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks [C]. Baltimore: IEEE, 2005: 607-610.
    [59] Lee J., So J. Analysis of cognitive radio networks with channel aggregation [A]. Proceeding of IEEE WCNC [C]. Sydney, Australia: IEEE, 2010: 1-6.
    [60] Xu Guisen, Tan Xuezhi. A novel spectrum allocation mechanism based on graph coloring and bidding theory [A]. Proceedings of the International Conference on Computational Intelligence and Natural Computing [C]. Wuhan, China: IEEE, 2009:155-158.
    [61] Zhang Jian-Wu. Advanced graph-coloring spectrum allocation algorithm for cognitive radio [A]. Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing [C]. Beijing, China: IEEE, 2009: 1-4.
    [62]吴非,陈劼,廖楚林,李少谦.认知无线电网络中基于需求的多小区频谱分配算法[J].计算机应用, 2008, 28(1): 14-16.
    [63] Shukla A., Willamson B., Burns J., Burbidge E., Taylor A., Robinson D. A study for the provision of aggregation of frequency to provide wider bandwidth services [R]. Farnborough: QinetiQ Ltd, 2006.
    [64] Rajbanshi R., Wyglinski A. M. Peak-to-average power ratio analysis for NC-OFDM transmissions [A]. Proceeding of IEEE Vehicle Technology of Conference [C].Dublin, Ireland: IEEE, 2007: 1351-1355.
    [65] Rajbanshi R.,Wyglinski A.M. An efficient implementation of NC-OFDM transceives for cognitive radios [A].Proceeding of 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications [C].Mykonos, Greece: IEEE, 2006: 1-5.
    [66] Shen Z., Andrews J.G., Evans B.L. Optimal power allocation in multiuser OFDM system [A]. Proceeding of IEEE Global Communications Conference [C]. San Francisco, CA: IEEE, 2003: 337-341.
    [67] Zukang Shen, Andrews J.G, Evans B.L.Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,wireless communications [J]. IEEE Transactions on Wireless Communications, 2005, 4(6): 2726-2737.
    [68] Rhee W., Cioffi J.M. Increase in capacity of multiuser OFDM system using dynamic subchannel allocation [A]. Proceeding of IEEE Vehicle Technology Conference [C]. Tokyo,Japan: IEEE, 2000: l085-l089.
    [69] FCC. ET Doeket NO 03-289, Establishment of interference temperature metric to quantify and manage interference and to expand available unlicensed operation in certain fixed mobile and statellite frequency bands[R]. Washington: Federal Communications Commission, 2003.
    [70]李维英,陈东,邢成文等.认知无线电系统中OFDM多用户资源分配算法[J].西安电子科技大学学报,2007, 34(3): 368-372.
    [71] Bansal G, Hossain J, Bhargava V, K. Adaptive power loading for OFDM-based cognitive radio systems [A]. Proceeding of IEEE International Communication Conference [C]. Glasgow: IEEE, 2007: 5137-5142.
    [72] Kang X, Liang Y.C., Nallanathan A, et al. Optimal power allocation for fading channels in cognitive radio networks: ergodic capacity and outage capacity [J]. IEEE Transaction Wireless Communication, 2009, 8 (2): 940-950.
    [73] Zhang Lan, Xin Yan, Liang Ying-Chang. Optimal power allocation for multiple access channels in cognitive radio networks [A]. Vehicular Technology Conference [C]. Marina Bay, Singapore: IEEE, 2008: 1549-1553.
    [74] Wang P, Zhong X, Xiao L, et al. A general power allocation algorithm in OFDM-basedcognitive radio systems [A]. Proceeding of IEEE ICC [C]. Dresden: IEEE, 2009: 1-5.
    [75] Lu Qianxi, Peng Tao, Wang Wei, et al. Utility-based resource allocation in uplink of OFDMA-based cognitive radio networks [J]. Wiley International Journal of Communication Systems (IJCS), 2010, 23(2): 252 - 274.
    [76]李红岩,贺志强,牛凯等.感知无线电网络中最优的分布式功率分配[J].北京邮电大学学报,2008, 31(5): 112- 116.
    [77]佟学俭,罗涛.OFDM移动通信技术原理与应用[M].北京:人民邮电出版社,2003.
    [78]尹长川,罗涛,乐光新.多载波宽带无线通信技术[M].北京:北京邮电大学出版社,2004.
    [79] Richard Van Nee, Ramjee Prasad. OFDM wireless multimedia communications [M].Boston,London : Artech House,2000.
    [80] Qiu X,Chawla K. On the performance of adaptive modulation in cellular systems [J]. IEEE Transactions on Communications, 1999, 47: 884-895.
    [81] Tao Qin, Cyril Leung. Fair adaptive resource allocation for multiuser OFDM cognitive radio systems [A]. Proceedings of the Second International Conference on Communications and Networking [C]. Shanghai, China: IEEE, 2007: 115-119.
    [82] Dong Huang, Cyril Leung, Chunyan Miao. Memetic Algorithm for Dynamic Resource Allocation in Multiuser OFDM based cognitive radio systems [A]. 2008 IEEE Congress on Evolutionary Computation [C]. Washington DC., IEEE, 2008: 3860-3865.
    [83] Wei Wang, Wenbo Wang, Qianxi Lu, Tao Peng. An uplink resource allocation scheme for OFDMA-based cognitive radio networks [J]. International Journal of Communication Systems, 2009, 22(5): 603-623.
    [84] Qing Zhao, Lang Tong, Ananthram Swami, Yunxia Chen. Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: a POMDP framework [J]. IEEE Journal on Selected Areas in Communications, 2007, 25(3): 589-600.
    [85] Xing Y, Chandramouli R., Mangold S., Shankar N. S. Dynamic spectrum access in open spectrum wireless networks [J]. IEEE Journal on Selected Areas Communications, 2006, 24(3): 626-637.
    [86] Hang Su, Xi Zhang. Opportunistic MAC protocols for cognitive radio based wireless networks. IEEE Information Sciences and Systems, 2007, 26(1): 363-368.
    [87] Adamis A.V., Prof.Philip Constantinou. Performance study of CSMA/CA over spectrum pooling environment for cognitive radios [A]. The 3rd IEEE Conference on Wireless and Mobile Computing, Networking and Communications [C]. White Plains,NY: IEEE, 2007: 31-31.
    [88] Beibei Wang, Zhu Ji, Liu K J R. Primary-Prioritized Markov Approach for Dynamic Spectrum Access [A]. The 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks [C]. Dublin, Ireland: IEEE, 2007: 507-515.
    [89] Chau Pham Thi Hong, Youngdoo Lee, Insoo Koo. Spectrum sharing with buffering in cognitive radio networks [A]. 2010 Asian Conference on Intelligent Information and Database Systems [C]. Hue City, Vietnam: IEEE, 2010:261-270.
    [90] Waqas Ahmed, Jason Gao, Michael Faulkner. Channel allocation for fairness in opportunistic spectrum access networks [A]. IEEE Wireless Communications and Networking Conference [C]. Sydney, Australia: IEEE, 2010:1-6.
    [91] Waqas Ahmed, Jason Gao, Hong Zhou, Michael Faulkner. Throughput and proportional fairness in cognitive radio networks [A]. International Conference on Advanced Technologies for Communications [C]. Sydney, Australia: IEEE, 2009:248-252.
    [92] Han Hu, Qi Zhu. Dynamic spectrum access in underlay cognitive radio system with SINR constraints [A]. International Conference on Wireless Communications, Networking and Mobile Computing [C]. Beijing, China: IEEE, 2009: 1-4.
    [93] Tao Luo, Tao Jiang, Hsiao-Hwa Chen. A subcarriers allocation scheme for cognitive radio systems based on multi-carrier modulation [J]. IEEE Transactions on Wireless Communications, 2008, 7(9): 3335-3340.
    [94] Unnikrishnan J., Venugopal V. V. Algorithms for dynamic spectrum access with learning for cognitive radio. IEEE Transactions on Signal Processing, 2010, 58(2): 750 -760.
    [95] Chau-Pham Thi Hong, Hyung-Seo Kang, Insoo Koo. An efficient radio resource management scheme for cognitive radio networks [A]. ICIC [C]. Changsha: IEEE, 2010: 376-383.
    [96] Yu F.R., Sun Bo, Krishnamurthy V., Ali S. Application layer QoS optimization for multimedia transmission over cognitive radio networks. ACM/Springer Wireless Networks, 2011, 17(2): 371-383.
    [97] Wang X., Wong Alexander, Ho P. Dynamic Markov-Chain Monte Carlo channel negotiation for cognitive radio [A]. Proceedings of IEEE INFOCOM [C]. San Diego: IEEE, 2010:1-5.
    [98] Keqin Liu, Qing Zhao, Bhaskar Krishnamachari. Dynamic multichannel access with imperfect channel state detection [J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2795-2808.
    [99] Chen S., Tong L. Multiuser cognitive access of continuous time markov channels:maximum throughput and effective bandwidth regions [A]. Proceeding of Information Theory and Applications Workshop [C]. San Diego, CA: IEEE, 2010: 1-10.
    [100] Pla V., Vidal J.-R., Martinez-Bauset J., Guijarro L. Modeling and characterization of spectrum white spaces for underlay cognitive radio networks [A]. IEEE International Conference on Communications (ICC) [C]. Cape Town, South Africa: IEEE, 2010: 1-5.
    [101] Kelly F. Charging and rate control for elastic traffic [J]. European Transactions on Telecommunications, 1997, 8(1): 33-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700