天基预警雷达微弱动目标检测与定位方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天基预警雷达监视空中和空间目标具有重要的军用价值,但面临低信噪比下机动目标检测、跟踪和定位等技术的挑战,引起国内外的广泛重视。增加积累时间可以达到提高信噪比的要求,但由于目标的高速运动和大机动飞行等特点,进行长时间积累时易发生距离徙动与回波非平稳,使得传统基于FFT的相参积累方法性能恶化。检测前跟踪技术(TBD)通过对多帧图像数据作相关处理,几乎没有信息积累损失,特别适合低信杂噪比下的目标检测与跟踪。此外,识别空间目标要求发射宽带信号,而星上资源相对有限,利用宽带信号对目标进行识别的同时对目标进行定位可充分挖掘信号资源。本文紧密围绕天基雷达微弱运动目标检测与定位中的实际问题,对机动目标长时间相参积累、微弱目标的TBD算法、宽带信号的波达方向(DOA)估计等关键技术进行了深入的研究。本文的具体工作安排如下:
     1.讨论天基雷达微弱信号检测技术所涉及的运动目标信号模型和微弱目标长时间能量积累等方面的问题,为后续的研究提供参考。
     2.长时间相参积累是提高弱目标检测能力的有效手段,针对积累期间的距离徙动和多普勒展宽问题,提出两种解决途径。方法一首先根据回波高阶相位对包络补偿效果的影响对数据进行分段处理;然后对每个数据段采用速度滤波器组进行划分和keystone变换补偿回波包络走动,并且对包络补偿后的数据采用分数阶傅立叶变换估计回波相位历程;最后采用最小二乘方法拟合出目标的运动参数并对目标回波进行长时间相参积累。方法二针对目标作匀加速运动,且高速目标存在多普勒模糊的情况,将脉冲压缩后的目标回波信号转换到距离-多普勒二维频率域,通过对加速度的一维搜索构造补偿函数进行匹配处理。该方法仅需对加速度参数进行估计,由目标径向速度引起的距离走动和径向加速度引起的距离弯曲均能得到很好的消除。另外,所提算法可以有效地利用快速傅立叶变换实现而无需进行插值操作,运算量小。两种方法均采用计算机仿真进行了验证。
     3.基于粒子滤波的TBD算法由于可以有效处理非线性、非高斯和多模式的状态估计问题,特别适用于机动微弱目标的检测与跟踪。针对传统基于粒子滤波的TBD算法中出现的退化现象以及粒子多样性缺失等问题,论文提出了两种改进算法。方法一通过几点改进策略以提高算法的性能,即采用对权重最低的部分“存活”粒子用“新生”粒子将其替换的粒子更新策略,而在每次重采样后,实施马尔科夫链蒙特卡洛(MCMC)移动步骤,引导粒子朝着多样性方向发展,在提升粒子多样性的同时缓解了粒子的退化,保证了目标的持续跟踪。同时将门限的选取转换为与之等价的分辨单元集大小的选取,这种选取方法只与SNR有关,适用于不同的背景噪声下。分析了粒子数量和门限的选取对跟踪性能的影响,分析结果表明只要采取恰当的策略,在粒子数较少时也能取得较好的性能。方法二是在粒子滤波的基础上融合无迹卡尔曼滤波(UKF)算法,融合后的新算法在利用重要性密度函数产生粒子时充分考虑当前时刻的量测,从而引导粒子向高似然区域移动,使得粒子的分布更接近状态的后验概率分布。同时,在每次重采样后实施MCMC移动步骤。计算机仿真验证了算法的有效性。
     4.将基于改进粒子滤波的TBD算法应用于雷达微弱信号的积累检测中。通过分析得到了接收信号的表达形式,从而采用与雷达信号处理相匹配的量测数据模型,能克服传统点扩散函数的模型误差。粒子滤波过程中,采用上述的改进算法,即采用“新生”粒子从强度最高的分辨单元集内均匀产生,且按概率对权重最低的部分“存活”粒子用“新生”粒子将其替换的粒子更新策略。仿真实验验证了算法的有效性。
     5.识别空间目标一般是利用宽带信号所具有的高距离分辨率进行的,然而星上资源相对有限,为充分挖掘信号资源,利用宽带信号进行目标识别的同时对DOA进行估计很有意义。针对基于相干信号的聚焦(CSM)算法在短数据情况下,观测协方差矩阵估计偏差易导致算法性能下降的问题,提出一种新的解决思路,即利用粒子滤波对不同频率点处的目标阵列流形进行跟踪从而实现宽带DOA估计。该算法基于当前时刻的观测信息,无需估计观测协方差矩阵,使得在短数据情况下能够取得优良的估计性能。同时算法从一组随机的初始值出发,无需预估计波达方向,并且递推过程是基于极大似然估计的思想,具有解相关的能力。计算机仿真验证了算法在短数据、低信噪比和相干源情况下具有比CSM算法更为优良的估计性能。
The modern space-based early warning radars play an importantly military role in surveiling the air and space moving targets. However, it encounters with the challenge of detection, tracking, and positioning of maneuvering targets under low signal noise rate (SNR), which has attracted the attention of researchers all over the world. The SNR can be improved by increasing integration time. However, the signal energy could not be effectively accumulated by FFT-based traditional methods, because the high-speed and maneuvering motion of a target induces range migration in the long-time coherent integration period. Track-before-detect (TBD) technology directly makes correlation between multiple image data, which reserves most of information. Therefore, TBD is especially applicable for the target detection and tracking in the case of low SNR. In addition, in order to detect the space target, it is reqired to transmit wideband signal. In the meantime, the signal information can be sufficiently exploited using the wideband signal to position the moving target. This thesis investigates the challenging problem of detection and positioning for the weak targets in the terms of long-time coherent integration, TBD based on particle filter (PF) and wideband direction-of-arrival (DOA) estimation. The main content of this thesis can be summarized as follows:
     1. In this section, the model of a moving target and the long-time energy accumulation for the weak targets, which involve in the detection and tracking for the weak targets by the space-based early warning radar, is introduced. This provides reference for the subsequent research.
     2. Increasing integration time can improve the detection performance of weak targets. However, the signal energy could not be effectively accumulated, because the high-speed motion of a target induces range migration in long-time coherent integration period. In Chapter two, two different approaches are addressed for long-time coherent integration. Firstly, the signal is segmented based on the influence of echo's high order phase history on motion compensation. Secondly, the range migration is corrected with keystone transform and then the phase history is estimated with Fractal Fourier transform (FRFT) for each sub-segment. Finally, the motion parameters are refined by using least square algorithm among sub-segments and thus the long-term coherent accumulation can be achieved. For the moving target with constant acceleration and Doppler ambiguity, a new method is proposed by constructing the two-dimensional compression function in range-Doppler frequency domain, which can eliminate the coupling effect between range and azimuth directions. This method makes matching processing by one-dimensional search for the acceleration and does not require target velocity parameters. This method can correct the range migration caused by radial velocity and radial acceleration. The proposed algorithm can be efficiently implemented by using fast Fourier transform without interpolation and thus has low computational complexity. Simulation results show that the proposed algorithm improves the performance for detecting high-speed maneuvering targets.
     3. TBD based on particle filter algorithm can effectively handle the problem of the nonlinear, non-Gaussian and multi-modal state estimation, especially applicable for the detection for maneuvering and weak targets. Unfortunately, the traditional PF methods are apt to induce collapse and diversity loss of particles. Two improved TBD algorithms based on the particle filter are proposed to detect and track the weak target in low SNR. Firstly, an updating strategy is proposed by replacing the existing particles with low weights with new particles and then performing Markov chain Monte Carlo (MCMC) moving step after resampling particles. This strategy can improve the diversity among the particles, and simutanouesly guarantee that the particles are effective. Simulation analysis is given for the effect of the number of particles and the detection threshold on target detection. The other algorithm is presented by combining the particle filter with unscented Kalman filter (UKF). Because in the proposed method, the important probability density distribution is calculated based on the current measurement, the sampling particles are most likely to be in the region of high likelihood, which makes the particles distribution more approach to the posterior distribution of the state. Simulation results show that the proposed algorithm provides an improved performance of detecting and tracking weak targets compared with the conventional particle filter.
     4. An improved TBD algorithm based on the particle filter is applied for high-speed weak target detection. This method uses a unique measurement model for radar range-Doppler compression, which can effectively reduce the model error of the traditional sensor point spread function. An updating strategy is developed by the following step:newborn particles are uniformly distributed within the set with high-intensity bins and then that the existing particles with low weights are replaced by new particles with probability. This strategy can improve the diversity among the particles, and mitigate the effects of degeneracy. Simulation results show that the proposed algorithm has an improved performance of detecting and tracking dim target compared with the standard particle filter.
     5. It is generally to use the high resolution in range direction to indentify space target. However, the resource in the satellitic plateform is limited and thus it is necessary to exploit the signal resource. Therefore, it is significantly meaningfull to estimate DOA along with indentifying the target with wideband signals. It is known that the performance of the coherent signal-subspace method (CSM) algorithm degrades due to the estimation difference of the covariance matrix in the case of small data. Aiming to address this problem, chapter 5 proposes a new method for estimating the DOA of wideband signal, which employs particle filters to track array manifold at different frequency bands. Compared with the CSM, the proposed method utilizes the current observed data and does not require the estimated covariance matrix, thus it performs better in the case of a small sample set. In the meantime, since initial values of the parameters in this method can be selected arbitrarily, thus this method does not require the preliminary DOA estimates. Moreover, the proposed method can localize completely correlated sources because it is based on the idea of maximum likelihood. Simulation results show that the performance of the propose method is better than CSM when the sample set is small, the SNR is low, and the signal sources are correlated.
引文
[1]李盾,周一宇,吕彤光,苗雨.空间预警系统对弹道导弹的监视与跟踪[J].系统工程与电子技术,2002,24(3):52-56.
    [2]王达,龚建兴,邱晓刚,等.天基系统支持地面作战的建模与仿真研究[J].计算机仿真,2005,22(11):11-14.
    [3]于泽,周荫清,陈杰,等.天基雷达预警系统星座设计方法[J].宇航学报,2006,27(1):103-107.
    [4]位寅生,许诺,侯颖辉.星载雷达弱目标长时间积累算法研究[J].系统工程与电子技术,2007,29(10):1638-1642.
    [5]赵阳,易先清,罗雪山.面向任务的天基预警系统应用体系结构研究[J].中国电子科学研究院学报,2008,3(3):247-251.
    [6]刘铁,刘建.天基预警系统弱小目标检测技术研究[J].飞行器测控学报,2009,28(3):85-88.
    [7]申镇,张寅生,易东云.基于大椭圆单星无源探测弹道导弹射向估计[J].飞行器测控学报,2010,29(3):54-57.
    [8]冯明月,汤绍勋,何俊,等.基于改进粒子群算法的天基预警系统资源调度方法[J].2010,5(1):97-101.
    [9]保铮.雷达信号的长时间积累[C].第7届全国雷达学术年会,1999,南京,9-15.
    [10]L. M. Garth, H. V. Poor. Detection of non-Gaussian signals:a paradigm for modern statistical signal processing[C]. Proc. of IEEE,1994,82(7):1061-1095.
    [11]赵建宏,杨建宇,熊金涛,等.回波越距离单元走动的MTD研究[J].电波科学学报,2007,22(3):481-485.
    [12]H. Rohling. Radar CFAR thresholding in clutter and multiple targets situations [J]. IEEE Trans. on Aerosp. Electron. Syst.,1983,19(4):608-621.
    [13]S. L. Wilson. Two CFAR algorithms for interfering targets and nonhomogeneous clutter [J]. IEEE Trans. on Aerosp. Electron. Syst.,1993,29(1):57-72.
    [14]何友,关键,彭应宁,等.雷达自动检测与CFAR处理[M].北京:清华大学出版社,1999.
    [15]何友,关键,孟祥伟,等.雷达自动检测和CFAR处理方法综述[J].系统工程与电子技术,2001,23(1):9-14.
    [16]M. I. Skolnik著,左群声等译.雷达系统导论(第三版)[M].北京:电子工业出版社,2006.
    [17]C. C. Chen, H. C. Andress. Target-motion-induced radar imaging [J]. IEEE Trans. on Aerosp. Electron. Syst.,1980,16 (1):2-14.
    [18]王琨,罗琳ISAR成像中包络对齐的幅度相关全局最优法[J].电子科学学刊,1998,20(3):369-373.
    [19]J. F. Wang, X. Z. Liu. Automatic correction of range migration in SAR imaging[J]. IEEE Geosci. Remote Sens. Letters,2010,7(2):256-260.
    [20]王根原,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法[J].电子学报,1998,26(6):5-8.
    [21]X. Li, G. S. Liu, J. L. Ni. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Trans. on Aerosp. Electron. Syst.,1999,35(4):1240-1251.
    [22]刘爱芳,李或晟,朱晓华.用改进的包络最小嫡法进行包络对齐[J].信号处理,2005,21(1):49-51.
    [23]汪玲,朱兆达.一种基于最大修正峰度的ISAR距离对准算法[J].南京航空航天大学学报,2006,38(6):722-726.
    [24]B. C. Flores, A. Martiez, C. J. Chen. Radial motion compensation based on adaptive profile estimation[J]. Proc. SPIE,1995,2562:9-20.
    [25]朱永锋,李为民,陈远征,等.Chirp雷达对高速运动目标有效相参积累的算法研究[J].系统工程与电子技术,2004,26(10):1396-1456.
    [26]陈远征,朱永锋,赵洪钟,等.基于包络插值移位补偿的高速运动目标的积累检测算法研究[J].信号处理,2004,20(4):387-390.
    [27]R. P. Perry, R. C. Dipietro, R. L. Fante. SAR imaging of moving targets [J]. IEEE Trans. on Aerosp. Electron. Syst.,1999,35(1):188-199.
    [28]张顺生,曾涛.基于keystone变换的微弱目标检测[J].电子学报,2005,33(9):1675-1678.
    [29]王俊,张守宏,刘宏伟.步进频率信号长相参积累实现方法[J].西安电子科技大学学报,2001,28(3):373-377.
    [30]王俊,张守宏.微弱目标积累检测的包络移动补偿方法[J].电子学报,2000,28(12):56-60.
    [31]N. C. Mohanty. Computer tracking of moving point targets in space[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1981, PAMI-3(5): 606-611
    [32]P. M. Djuric, S. M. Kay. Parameter estimation of chirp signal [J]. IEEE Trans, on Acoustics, Speech and Signal Processing,1990,38(12):2118-2126.
    [33]S. Peleg, B. Porat. Linear FM signal parameter estimation from discrete-time observations[J]. IEEE Trans. on Aerosp. Electron. Syst.,1991,27(4):607-615.
    [34]毛用才,保铮.估计时变幅值复线性调频信号的循环平稳方法及其统计性能分析[J].电子学报,1999,27(4):135-136.
    [35]张贤达.时间序列分析—高阶统计量方法[M].北京:清华大学出版社,1996.
    [36]李宏伟,程乾生.高阶统计量与随机信号分析[M].武汉:中国地质大学出版社,2002.
    [37]Shimon Peleg and Benjamin Friedlander. The Discrete Polynomial-phase Transform [J]. IEEE Transactions on Signal Processing,1995,43(8):1901-1914.
    [38]李宏伟,袁保宗.高阶模糊函数的收敛性分析[J].电子学报,2000,28(6):64-67.
    [39]毛用才,保铮.估计时变幅值复线性调频信号的循环平稳方法及其统计性能分析[J].电子学报,1999,27(4):135-136.
    [40]F. Cakrak, P. J. Loughlin. Multiwindow time-varying spectrum with instantaneous bandwidth and frequency constraints [J]. IEEE Trans. on Signal Processing,2001, 49(8):1656-1666.
    [41]H. K. Kwok, D. L. Jones. Improved instantaneous frequency estimation using an adaptive short-time Fourier transform[J]. IEEE Trans. on Signal Processing,2000, 48(10):2964-2972.
    [42]王俊,张守宏,杨克虎.利用自适应子波变换提高对微弱运动目标的检测性能[J].电子学报,1999,27(12):80-83.
    [43]P. Rao, F. J. Taylor. Estimation of instantaneous frequency using the discrete Wigner distribution[J]. Electronic Letters,1990,26(4):246-248.
    [44]D. Igor, S. LJubivsa. Nonparametric algorithm for local frequency estimation of multidimensional signals[J]. IEEE Image Processing,2004,13(4):467-474.
    [45]B. Barkat, B. Boashash. Instantaneous frequency estimation of polynomial FM signals using the peak of the PWVD:statistical performance in the presence of additive Gaussian noise [J]. IEEE Trans. on Signal Processing,1999,47(9):2480-2490.
    [46]Y. Wang, Y. C. Jiang. ISAR imaging of maneuvering target based on the L-class of fourth-order complex-lag PWVD [J]. IEEE Trans. on Geosci. Remote Sens., 2010,48(3):1518-1527.
    [47]H. Choi,W.J.Williams.Improved time-frequency representation of multicomponent signal using exponential kernels [J]. IEEE Trans. on Acoustics, Speech and Signal Processing,1988,37(6):862-871.
    [48]J. Jeony, W. J. Williams. Kernel design for reduced interference distributions [J]. IEEE Trans. on Signal Processing,1992,40(2):402-412
    [49]S. Barbarossa. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform [J]. IEEE Trans. on Signal Processing,1995,43(6):1511-1515.
    [50]刘建成,王雪松,肖顺平,等.基于Wigner-Hough变换的径向加速度估计[J].电子学报,2005,33(12):2235-2238.
    [51]刘建成,王雪松,刘忠,等.基于Wigner-Hough变换的LFM信号检测性能分析[J].电子学报,2007,35(6):1212-1217.
    [52]齐林,陶然,周思永,等.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J].中国科学(E辑),2003,33(8):749-759.
    [53]李靖,王树勋,汪飞.基于分数阶傅立叶变换的chirp信号时频分析[J].系统工程与电子技术,2005,27(6):988-990
    [54]杜文超,王国宏,高学强.低信噪比条件下在短时信号中提取目标径向加速度方法研究[J].中国科学(E辑),2007,37(7):923-943.
    [55]Tao R, Li Y L, Wang Y. Short-time fractional fourier transform and its applications [J]. IEEE Trans. on Signal Processing,2010,58(5):2568-2580.
    [56]B. D. Carlson, E. D. Evans, S. L. Wilson. Search radar detection and track with the Hough transform[J]. IEEE Trans. on Aerosp. Electron. Syst.,1994,30(1):102-125.
    [57]J. Zeng, J. Zhang, L. Xiang, et al. An improved hough transform algorithm for radar detection [J]. Journal of Circuits, Systems and Computers,2010,19(3):549-555.
    [58]Y. B. Shalomm, T. E. Fortmann. Tracking and data association [M]. New York: Academic Press.1988.
    [59]D. Reid. An algorithm for tracking multiple targets [J]. IEEE Trans. on Automatic Control,1979,24(6):843-854.
    [60]H. Leung. Nonlinear clutter cancellation and detection using a memory-basedpredictor[J], IEEE Transactions on Aerospace and Electronic Systems,1996, 32(4):1249-1256.
    [61]V. Markandey, A. Reid, S. Wang. Motion estimation for moving target detection [J]. IEEE Trans. on Aerosp. Electron. Syst.,1996,32(3):866-874.
    [62]H. Im, T. Kim. Optimization of multiframe target detection schemes [J]. IEEE Trans. on Aerosp. Electron. Syst.,1999,35(1):176-187.
    [63]H. Leung, A. Young. Small target detection in clutter using recursive nonlinear prediction [J]. IEEE Trans. on Aerosp. Electron. Syst.,2000,36(2):713-718.
    [64]张惠娟,梁彦,程咏梅,潘泉,张洪才.运动弱小目标先跟踪后检测技术的研究进展[J].红外技术,2006,28(7):423-430.
    [65]I. S. Reed, R. M. Gagliardi, H. M. Shao. Application of three dimensional filtering to moving target detection[J]. IEEE Trans. on Aerosp. Electron. Syst.,1983, 19(6):898-905.
    [66]I. S. Reed, R. M. Gagliardi, L. Stotts. Optical moving target detection with 3-D matched filtering [J]. IEEE Trans. on Aerosp. Electron. Syst.,1988,24 (4):327-336.
    [67]W. B. Kendall, A. D. Stocker, W. J. Jacobi. Velocity filter algorithms for improved target detection and tracking with multiple-scan data [C]. Proc. SPIE. 1989(1096):127-137.
    [68]A. D. Stocker, P. Jensen. Algorithm and architectures for implementing large velocity filter banks [C]. Proc. SPIE,1991(1481):140-155.
    [69]Y. Chen. On suboptimal detection of 3-dimensional moving targets [J]. IEEE Trans. on Aerosp. Electron. Syst.,1989,25(3):343-350.
    [70]R. Lion, M. R. Azimi-Sadjadi. Dim target detection using high order correlation method[J]. IEEE Trans. on Aerosp. Electron. Syst.,1993,29(3):841-856.
    [71]R. Lion, M. R. Azimi-Sadjadi. Multiple target using modified high order correlations[J]. IEEE Trans, on Aerosp. Electron. Syst.,1998,34(2):553-567.
    [72]S. D. Blostein, T. S. Huang. Detecting small moving objects in image sequences using sequential hypothesis testing[J]. IEEE Trans. on Signal Processing,1991, 39(7):1611-1629.
    [73]S. D. Blostein, H. S. Richardson. A sequential detection approach to target tracking[J]. IEEE Trans. on Aerosp. Electron. Syst.,1994,30(1):197-212.
    [74]Van Keuk G. Multiple hypothesis tracking with electronically scanned radar [J]. IEEE Trans. on Aerosp. Electron. Syst.,1995,31(3):817-828.
    [75]李红艳,吴成柯.一种基于小波与遗传算法的小目标检测算法[J].电子学报,2001,21(4):81-83.
    [76]李红艳,吴成柯.一种基于小波变换的序列图像中小目标检测与跟踪算法[J].电子与信息学报,2001,23(10):943-948.
    [77]Y. Barniv. Dynamic programming solution for detecting dim moving target[J]. IEEE Trans. on Aerosp. Electron. Syst.,1985,21(1):144-155.
    [78]Y. Bamiv,O. Kella. Dynamic programming solution for detecting dim moving targets Part II:Analysis[J]. IEEE Trans. on Aerosp. Electron. Syst.,1987,23(6): 776-788.
    [79]J. Arnold, S. Shaw, H. Pasternack. Efficient target tracking using dynamic programming[J]. IEEE Trans. on Aerosp. Electron. Syst.,1993,29(1):44-56.
    [80]S. M. Tonissen, R. J. Evans. Performance of dynamic programming techniques for track-before-detect[J]. IEEE Trans. on Aerosp. Electron. Syst.,1996,32(4):1440-1451.
    [81]强勇,焦李成,保铮.动态规划算法进行弱目标检测的机理研究[J].电子与信息学报,2003,25(6):721-727.
    [82]曲长文,黄勇,苏峰.基于动态规划的多目标检测前跟踪算法[J].电子学报,2006,34(12):2138-2141.
    [83]宋慧波,高梅国,田黎育,毛二可,顾文彬.一种基于动态规划法的雷达微弱多目标检测方法[J].电子学报,2006,34(12):2142-2145.
    [84]孙立宏,王俊.高速运动雷达弱小目标检测方法研究[J].系统工程与电子技术,2008,30(2):257-260.
    [85]W. Yi, L. J. Kong, J. Y. Yang, et al. A tracking approach based on dynamic programming track before detect [C]. IEEE Radar Conference, Pasadena, CA, 2009:1-4.
    [86]L. D. Stone, C. A. Barlow, T. L. Corwin. Bayesian multiple target tracking. Norwood, MA:Artech House,1999.
    [87]R. E. Kalman. A new approach to linear filtering and prediction problems[J]. Transactions of the ASME-Journal of Basic Engineering,1960,82(D):35-45.
    [88]Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with applications to tracking and navigation [M]. New York:John Wiley & Sons,2001.
    [89]B. Ristic, S. Arulampalam, N. Gordon. Beyond the kalman filter:particle filters for tracking application [M]. Boton-London:Artech House,2004.
    [90]H. W. Sorenson. Kalman Filtering:Theory and Application[M]. IEEE Press,1985.
    [91]Julier, J. K. UhhTlann. A new extension of the Kalman filter to nonlinear systems[C]. Signal processing, sensor fusion, and target recognition Proceedings of SPIE,1997,30(68):182-193.
    [92]B. D. Anderson, J. B. Moore. Optimal filtering[M]. New Jersey:Prentice-Hall, 1999.
    [93]N. Gordon, D. Salmond, A. F. M. Smith. Novel approach to non-linear and non-Gaussian Bayesian state estimation. Proc. Inst. Elect. Eng. F.1993,140: 107-113.
    [94]S. Arulampalam, S. Maskell, N. Gordon, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Trans. on Signal Processing.2002,50(2):174-188.
    [95]D. J. Salmond, H. Birch. A particle filter for track-before-detect[C]. IEEE Proceedings of the American Control Conference, Washington,2001:3755-3760.
    [96]Y. Boers, J. N. Driessen. A particle-filter-based detection scheme[J]. IEEE Signal Processing Letter,2003,10(10):300-302.
    [97]Y. Boers, J. N. Driessen. Multitarget particle filter track before detect application [J]. IEE Proceedings-Radar, Sonar and Navigation,2004,151(6):351-357.
    [98]M. G. Rutten, B. Ristic, N. J. Gordon. A comparison of particle filters for recursive track-before-detect[C]. Proc. of information fusion, Australia,2005: 169-175.
    [99]M. G. Rutten, N. J. Gordon, S. Maskell. Recursive track-before-detect with target amplitude fluctuations[J]. IEE Proc.-Radar Sonar Navig.,2005,152(5):345-352.
    [100]龚亚信,杨宏文,胡卫东,等.基于多模粒子滤波的机动弱目标检测前跟踪[J].电子与信息学报,2008,30(4):941-944.
    [101]H. T. Su, T. P. Wu, H. W. Liu, et al. Rao-Blackwellised particle filter based track before-detect algorithm [J]. IET Signal Processing,2008,2(2):169-176.
    [102]李翠芸,姬红兵.新遗传粒子滤波的红外弱小目标跟踪与检测[J],西安电子科技大学学报,2009,36(4):619-623.
    [103]李翠芸.基于粒子滤波的红外弱小目标检测与跟踪方法研究[D].西安电子科技大学博士学位论文,2009.
    [104]龚亚信.基于粒子滤波的弱目标检测前跟踪算法研究[D].国防科学技术大学博士学位论文,2009.
    [105]M. R. Morelande, C. M. Kreucher, K. Kastella. A bayesian approach to multiple target detection and tracking[J]. IEEE Trans. on Signal Processing,2007,55(5): 1589-1604.
    [106]I. Kyriakides, D. Morrell, A. P. Suppappola. Sequential Monte Carlo methods for tracking multiple targets with deterministic and stochastic constraints [J]. IEEE Trans. on Signal Processing,2008,56(3):937-948.
    [107]M. F. Sabahi, M. M. Hashemi, A. Sheikhi. Radar detection based on Bayesian estimation of target amplitude [J]. IET Radar, Sonar and Navigation,2008,2(6): 458-467.
    [108]Y. Zhai, M. B. Yeary, S. Cheng, et al. An object-tracking algorithm based on multiple-model particle filtering with state partitioning [J]. IEEE Trans. on Instrumentation and Measurement,2009,58(5):1797-1809.
    [109]G. Su, M. Morf. Signal subspace approach for multiple wideband emitter location [J]. IEEE Trans. on Acoustics, Speech, Signal Processing,1983,31(12):1502-1522.
    [110]M. Max, T. J. Shan, T. Kailath. Spatio-temporal spectral analysis by eigens-tructure methods [J]. IEEE Trans. on Acoustics, Speech, Signal Processing,1984, 32(4):817-827.
    [111]M. Allam, A. Moghaddamjoo. Two-dimensional DFT projection for wideband direction- arrival estimation[J]. IEEE Trans. on Signal Processing,1995,43(7): 1728-1732.
    [112]T. J. Shan, M. Wax, T. Kailath. On spatial smoothing for direction of arrival estimation of coherent signals [J]. IEEE Trans. on Acoustics, Speech, Signal Processing,1985,33(4):806-811.
    [113]H. Wang, M. Kaveh. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources [J]. IEEE Trans. on Acoustics, Speech, Signal Processing,1985,33(4):823-831.
    [114]H. Hung, M. Kaveh. Focusing matrices for coherent signal-subspace [J]. IEEE Trans. on Signal Processing,1988,36(8):1272-1281.
    [115]M. A. Doron, A. J. Weiss. On focusing matrices for wide-band array processing [J]. IEEE Trans. on Signal Processing,1992,40(6):1294-1302.
    [116]S. Valaee, B. Champagne. Localization of wideband signals using least-squares and total least-squares approaches [J]. IEEE Trans. on Signal Processing,1999, 47(5):1213-1222.
    [117]S. Valaee, P. Kabal. Wideband array processing using a two-sided correlation transformation[J]. IEEE Trans. on Signal Processing,1995,43(1):160-172.
    [118]T. S. Lee. Efficient wideband source localization using beamforming invariance technique [J]. IEEE Trans. on Signal Processing,1994,42(6):1376-1386.
    [119]D. B. Ward, Z. Ding, R. A. Kennedy. Broadband DOA estimation using frequency invariant beamforming [J]. IEEE Trans. on Signal Processing,1998,46(5):1463-1469.
    [120]陈洪光,余圣发,沈振康.基于一致聚焦的宽带信号波达方向估计[J].通信学报,2006,27(1):64-68.
    [121]T. E. Tuncer, T. K. Yasar, B. Friedlander. Direction of arrival estimation for nonuniform linear arrays by using array interpolation. Radio Science,2007, 42(4):4002-+.
    [122]雷中定,黄绣坤,张树京.宽带波达方向估计新方法及性能分析[J].电子学报,1998,26(3):58-61.
    [123]雷中定.相干及宽带源波达方向估计方法的研究.北方交通大学博士学位论文,1997.
    [124]曲毅.机载阵列雷达动目标检测与定位方法研究.西安电子科技大学博士学位论文,2009.
    [125]李平安,孙进才,俞卞章.基于插值圆阵的宽带信号二维空间谱估计[J].电子科学学刊,1996,18(4):334-348.
    [126]M. A. Doron, E. Doron, A. J. Weiss. Coherent wide-band processing for arbitrary array geometry[J]. IEEE Trans. on Signal Processing,1993,41(1):414-417.
    [127]B. Friedlandar, A. J. Weiss. Direction finding for wide-band signals using an interpolated array[J]. IEEE Trans. on Signal Processing,1993,41 (4):1618-1634.
    [128]T. K. Yasar, T. E. Tuncer. Wideband DOA estimation for nonuniform linear arrays with wiener array interpolation[C].5th IEEE Sensor Array and Multichannel Signal Processing Workshop, July 2008:207-211.
    [129]L. Yip, C. E. Chen, R. E. Hudson, et al. DOA estimation method for wideband color signals based on Least-Squares joint approximate aiagonalization[C].5th IEEE Sensor Array and Multichannel Signal Processing Workshop,2008:104-107.
    [130]G. Gelli, L. Izzo. Cyclostationary based coherent methods for wideband signal source location [J]. IEEE Trans. on Signal Processing,2003,51(10):2471-2482.
    [131]H. Q. Yan, H. Howard Fan. Signal-selective DOA tracking for wideband cyclostationary source[J]. IEEE Trans. on Signal Processing,2007,55(5):2007-2015.
    [132]Z. T. Huang, Y. Y. Zhou, W. L. Jiang. TDOA and Doppler estimation for cyclostationary signals based on multi-cycle frequencies [J]. IEEE Trans. on Aerosp. Electron. Syst.,2008,44(4):1251-1264.
    [133]刘章孟,黄知涛,周一宇.基于多循环频率聚焦的宽带循环平稳信号阵列侧向方法[J].电子与信息学报,2009,31(10):2449-2454.
    [1]K. Gerlach, S. D. Blunt, M. L. Picciolo. Robust adaptive matched filtering using the FRACTA algorithm [J]. IEEE Trans. on Aerosp. Electron. Syst.,2004,30(3): 929-945.
    [2]D. B. Shannon, G Karl. Efficient robust AMF using the FRACTA algorithm [J]. IEEE Trans. on Aerosp. Electron. Syst.,2005,41(2):537-548.
    [3]D. B. Shannon, G Karl, R. Muralidhar. STAP using knowledge-aided covariance estimation and the FRACTA algorithm [J]. IEEE Trans. on Aerosp. Electron. Syst., 2006,2(3):1043-1057.
    [4]A. K. Shackelford, K. Gerlach, S. D. Blunt. Partially adaptive STAP using the FRACTA algorithm [J]. IEEE Trans. on Aerosp. Electron. Syst.,2009,45(1): 58-69.
    [5]T. K. Sarkar, N. Sangruji. An adaptive nulling system for a narrow-band signal with a look-direction constraint utilizing the conjugate gradient method [J]. IEEE Trans, on Antennas Propag.,1989,37(7):940-944.
    [6]C. Cpararo, G. Capraro, D. Weiner, M. Wicks. Improved STAP performance using knowledge-aided secondary data selection [J]. Proceedings of the 2004 IEEE radar conference, Philadelphia, PA,2004:361-365.
    [7]O. Kreyenkamp, R. Klemm. Doppler compensation in forward-looking STAP radar [J]. IEE Proc. Radar, Sonar, Navig.,2001,148(5):253-258.
    [8]F. D. Lapierre, J. G. Verly, M. V. Droogenbroeck. New solutions to the problem of range dependence in bistatic STAP radars. Proc. of the 2003 IEEE Radar Conf., the Huntsville Marriott, Huntsville, Alabama,2003:452-259.
    [9]S. M. Kogon, M. A. Zatman. Bistatic STAP for airborne radar systems. ASAP Workshop, MIT Lincoln Laboratory, Lexington,2001.
    [10]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社,2003.
    [11]白鹤峰,吴瑞林.战术弹道导弹(TBM)弹道的构造方法[J].现代防御技术,1998,26(1):39-43.
    [12]顾铁军,刘键,聂成.反TBM作战仿真中TBM弹道的生成[J].现代防御技术,2001,29(4):23-25.
    [13]肖滨,郭鹏程,衡军,张丛智.战术弹道导弹的弹道仿真[J].系统仿真技术,2008,4(4):213-217.
    [14]肖滨,郭鹏程,衡军,张丛智.弹道导弹极限能量弹道的求解与仿真[J].系统仿真技术,2009,5(1):12-17.
    [15]朱永锋,李为民,陈远征,等.Chirp雷达对高速运动目标有效相参积累的算法研究[J].系统工程与电子技术,2004,26(10):1396-1456.
    [16]王俊,张守宏.微弱目标积累检测的包络移动补偿方法[J].电子学报,2000,28(12):56-60.
    [17]R. P. Perry, R. C. Dipietro, R. L. Fante. SAR imaging of moving targets [J]. IEEE Trans. on Aerosp. Electron. Syst.,1999,35(1):188-199.
    [18]张顺生,曾涛.基于keystone变换的微弱目标检测[J].电子学报,2005,33(9):1675-1678.
    [1]保铮.雷达信号的长时间积累[C].第7届全国雷达学术年会,1999,南京,9-15.
    [2]王俊.微弱目标信号积累检测的方法研究.西安电子科技大学博士学位论文,1999.
    [3]C. C. Chen, H. C. Andress. Target-motion-induced radar imaging [J]. IEEE Trans. on Aerosp. Electron. Syst.,1980,16 (1):2-14.
    [4]王琨,罗琳.ISAR成像中包络对齐的幅度相关全局最优法[J].电子科学学刊,1998,20(3):369-373.
    [5]J. F. Wang, X. Z. Liu. Automatic correction of range migration in SAR imaging[J]. IEEE Geosci. Remote Sens. Letters,2010,7(2):256-260.
    [6]王根原,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法[J].电子学报,1998,26(6):5-8.
    [7]X. Li, G. S. Liu, J. L. Ni. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Trans. on Aerosp. Electron. Syst.,1999,35(4):1240-1251.
    [8]汪玲,朱兆达.一种基于最大修正峰度的ISAR距离对准算法[J].南京航空航天大学学报,2006,38(6):722-726.
    [9]朱永锋,李为民,陈远征,等.Chirp雷达对高速运动目标有效相参积累的算法研究[J].系统工程与电子技术,2004,26(10):1396-1456.
    [10]王俊,张守宏.微弱目标积累检测的包络移动补偿方法[J].电子学报,2000,28(12):56-60.
    [11]R. P. Perry, R. C. Dipietro, R. L. Fante. SAR imaging of moving targets [J]. IEEE Trans. on Aerosp. Electron. Syst.,1999,35(1):188-199.
    [12]张顺生,曾涛.基于keystone变换的微弱目标检测[J].电子学报,2005,33(9):1675-1678.
    [13]王俊,张守宏,杨克虎.利用自适应子波变换提高对微弱运动目标的检测性能[J].电子学报,1999,27(12):80-83.
    [14]M. S. Wang, A. K. Chan, C. K. Chui. Linear frequency modulated signal detection using Radon-ambiguity transform [J]. IEEE Trans. on Signal Processing, 1998,26(3):571-586.
    [15]B. Barkat, B. Boashash. Instantaneous frequency estimation of polynomial FM signals using the peak of the PWVD:statistical performance in the presence of additive Gaussian noise [J]. IEEE Trans. on Signal Processing,1999,47(9):2480-2490.
    [16]Y. Wang, Y. C. Jiang. ISAR imaging of maneuvering target based on the L-class of fourth-order complex-lag PWVD [J]. IEEE Trans. on Geosci. Remote Sens., 2010,48(3):1518-1527.
    [17]B. Carlson B, D. E. D. Evans, S. L. Wilson. Search radar detection and track with the Hough transform[J]. IEEE Trans. on Aerosp. Electron. Syst.,1994,30(l):102-125.
    [18]刘建成,王雪松,刘忠,等.基于Wigner-Hough变换的LFM信号检测性能分析[J].电子学报,2007,35(6):1212-1217.
    [19]J. Zeng, J. Zhang, L. Xiang, et al. An improved hough transform algorithm for radar detection [J]. Journal of Circuits, Systems and Computers,2010,19(3):549-555.
    [20]齐林,陶然,周思永,等.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J].中国科学(E辑),2003,33(8):749-759.
    [21]杜文超,王国宏,高学强.低信噪比条件下在短时信号中提取目标径向加速度方法研究[J].中国科学(E辑),2007,37(7):923-943.
    [22]Tao R, Li Y L, Wang Y. Short-time fractional fourier transform and its applications [J]. IEEE Trans. on Signal Processing,2010,58(5):2568-2580.
    [23]S. Q. Zhu, G. S. Liao, Y. Qu, et al. Ground moving targets imaging algorithm for synthetic aperture radar[J], IEEE Trans. on Geosci. Remote Sens.,to be published.
    [24]朱圣棋.高速运动平台雷达GMTI关键技术研究.西安电子科技大学博士学位论文,2010.
    [25]J. Curlander, R. McDonough. Synthetic aperture radar:systems and signal processing [M]. John Wiley & Sons, New York,1991.
    [26]S. Q. Zhu, G. S. Liao, Y. Qu. A new slant-range velocity ambiguity resolving approach of fast moving targets for SAR system [J]. IEEE Trans. on Geosci. Remote Sens.,2010,48(1):432-451.
    [1]刘建成,王雪松,刘忠,等.基于Wigner-Hough变换的LFM信号检测性能分析[J].电子学报,2007,35(6):1212-1217.
    [2]J. Zeng, J. Zhang, L. Xiang, et al. An improved hough transform algorithm for radar detection [J]. Journal of Circuits, Systems and Computers,2010,19(3):549- 555.
    [3]S. Z. Du, W. B. Van, C. L. Tu, et al. An improved Hough transform neighborhood map for straight line segments [J]. IEEE Trans. on Image Processing,2010,19(3): 573-85.
    [4]S. M. Tonissen, Y. Bar-Shalom. Maximum likelihood track-before-detect with fluctuating target amplitude [J]. IEEE Trans. on Aerosp. Electron. Syst.,1998, 34(3):796-809.
    [5]S. M. Tonissen, R. J. Evans. Performance of dynamic programming techniques for track-before- detect. IEEE Trans. on Aerosp. Electron. Syst.,1996,32(4): 1440-1451.
    [6]Y. Barniv. Dynamic programming solution for detecting dim moving target [J]. IEEE Trans. on Aerosp. Electron. Syst.,1985,21(1):144-155.
    [7]强勇,焦李成,保铮.动态规划算法进行弱目标检测的机理研究[J].电子与信息学报,2003,25(6):721-727.
    [8]宋慧波,高梅国,田黎育,等.一种基于动态规划法的雷达微弱多目标检测方法[J].电子学报,2006,34(12):2142-2145.
    [9]孙立宏,王俊.高速运动雷达弱小目标检测方法研究[J].系统工程与电子技术,2008,30(2):257-260.
    [10]W. Yi, L. J. Kong, J. Y. Yang, et al. A tracking approach based on dynamic programming track before detect [C]. IEEE Radar Conference, Pasadena, CA, 2009:1-4.
    [11]D. J. Salmond, H. Birch. A particle filter for track-before-detect [C]. IEEE Proceedings of the American Control Conference, Washington,2001:3755-3760.
    [12]B. Ristic, S. Arulampalam, N. Gordon. Beyond the kalman filter:particle filters for tracking application [M]. Boton-London:Artech House,2004.
    [13]Y. Boers, J. N. Driessen. Multitarget particle filter track before detect application [J]. IEE Proceedings-Radar, Sonar and Navigation,2004,151(6):351-357.
    [14]M. G. Rutten, B. Ristic, N. J. Gordon. A comparison of particle filters for recursive track-before-detect[C]. Proc. of information fusion, Australia,2005: 169-175.
    [15]M. G. Rutten, N. J. Gordon, S. Maskell. Recursive track-before-detect with target amplitude fluctuations [J]. IEE Proc.-Radar Sonar Navig.,2005,152(5):345-352.
    [16]龚亚信,杨宏文,胡卫东,等.基于多模粒子滤波的机动弱目标检测前跟踪[J].电子与信息学报,2008,30(4):941-944.
    [17]龚亚信.基于粒子滤波的弱目标检测前跟踪算法研究[D].国防科学技术大学 博士学位论文,2009.
    [18]H. T. Su, T. P. Wu, H. W. Liu, et al. Rao-Blackwellised particle filter based track before-detect algorithm [J]. IET Signal Processing,2008,2(2):169-176.
    [19]李翠芸,姬红兵.新遗传粒子滤波的红外弱小目标跟踪与检测[J],西安电子科技大学学报,2009,36(4):619-623.
    [20]李翠芸.基于粒子滤波的红外弱小目标检测与跟踪方法研究[D].西安电子科技大学博士学位论文,2009.
    [21]M. R. Morelande, C. M. Kreucher, K. Kastella. A bayesian approach to multiple target detection and tracking [J]. IEEE Trans. on Signal Processing,2007,55(5): 1589-1604.
    [22]I. Kyriakides, D. Morrell, A. P. Suppappola. Sequential Monte Carlo methods for tracking multiple targets with deterministic and stochastic constraints [J]. IEEE Trans. on Signal Processing,2008,56(3):937-948.
    [23]M. F. Sabahi, M. M. Hashemi, A. Sheikhi. Radar detection based on Bayesian estimation of target amplitude [J]. IET Radar, Sonar and Navigation,2008,2(6): 458-467.
    [24]S. Arulampalam, S. Maskell, N. Gordon, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Trans. on Signal Processing.2002,50(2):174-188.
    [25]韩崇昭,朱洪艳,段战胜.多源信息融合[M].北京:清华大学出版社,2006.
    [26]Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with applications to tracking and navigation [M]. New York:John Wiley & Sons,2001.
    [27]V. E. Benes. Exact finite-dimensional filters with certain diffusion non linear drift [J]. Stochastics,1981,5:65-92.
    [28]F. E. Daum. Beyond Kalman filters:practical design of nonlinear filters [J]. Proc. SPIE,1995,2561:252-262.
    [29]B. D. Anderson, J. B. Moore. Optimal filtering [M]. New Jersey: Prentice-Hall, 1999.
    [30]S. Julier, J. Uhlmann, H. F. Durrant-White. A new method for nonlinear transformation of means and covariances in filters and estimators [J]. IEEE Trans. on Automatic Control,2000,45(3):477-482.
    [31]O. Ravn, M. Norgaard, N. K. Pottlsen, New developments in state estimations for nonlinear systems [J]. Automatica,2000,36(11):1627-1638.
    [32]K. Ito, K. Xiong. Gaussian filters for nonlinear filtering problems [J]. IEEE Trans. Automat. Contr.2000,45(5):910-927.
    [33]H. W. Sorenson, D. L. Alspach. Recursive Bayesian estimation using Gaussian sums [J]. Automatica,1971,7(4):465-479.
    [34]P. J. Davis, P. Rabinowitz. Methods of numerical integration [M]. New York: Academic Press,1984.
    [35]A. W. Marshall. The use of multi-stage sampling schemes in Monte Carlo computations[M]. New York:John Wiley & Sons,1956.
    [36]A. Doucet, S. Godstill, C. Andriew. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing,2000,10(3):197-208.
    [37]N. J. Gordon, D. J. Salmond, A. F. M. Smith. Novel approach to nonlinear/ non-Gaussian Bayesian state estimation[J]. IEE Proceedings F, Radar and Signal Precessing,1993,140(2):107-113.
    [38]G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models [J]. Journal of Computational and Graphical Statistics,1996, 5(1):1-25.
    [39]J. S. Liu, R. Chen. Sequential Monte Carlo methods for dynamical systems[J]. Journal of the American Statistical Association,1998,93(443):1032-1044.
    [40]J. W. Austin, C. T. Leondes. Statistically linearized estimation of reentry trajectories [J]. IEEE Trans. on Aerosp. Electron. Syst.,1981,17(1):54-61.
    [41]A. Doucet, S. Godsill, M. West. Monte Carlo filtering and smoothing with application to time-varying spectral estimation[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing,2000, Ⅱ701-Ⅱ704.
    [42]C. Musso, N. Oudjane, F. LeGland. Improving regularized particle filters: Sequential Monte Carlo Methods in Practice[M]. New York:Springer,2001.
    [1]Kretsch J L, Shuttle radar topography mission overview[C]. Applied Imagery Pattern Recognition Workshop, USA,2000, Proceedings 29th:276-282.
    [2]位寅生,许诺,侯颖辉.星载雷达弱目标长时间积累算法研究[J].系统工程与电子技术,2007,29(10):1638-1642.
    [3]D. J. Salmond, H. Birch. A particle filter for track-before-detect[C]. IEEE Proceedings of the American Control Conference, Washington,2001:3755-3760.
    [4]R. Ristic, S. Arulampalam, N. Gordon. Beyond the kalman filter:particle filters for tracking application [M]. Boston-London:Artech House,2004.
    [5]M. G. Rutten, B. Ristic, N. J. Gordon. A comparison of particle filters for recursive track-before-detect[C]. Proc. of information fusion, Australia,2005: 169-175.
    [6]M. G. Rutten, N. J. Gordon, S. Maskell. Recursive track-before-detect with target amplitude fluctuations [J]. IEE Proc. Radar Sonar Navig.,2005,152(5):345-352.
    [7]龚亚信,杨宏文,胡卫东,等.基于多模粒子滤波的机动弱目标检测前跟踪[J].电子与信息学报,2008,30(4):941-944.
    [8]Su H. T., Wu T. P., Liu H. W., et al. Rao-Blackwellised particle filter based track before-detect algorithm [J]. IET Signal Processing,2008,2(2):169-176.
    [9]李翠芸,姬红兵.新遗传粒子滤波的红外弱小目标跟踪与检测[J],西安电子科技大学学报,2009,36(4):619-623.
    [10]李翠芸.基于粒子滤波的红外弱小目标检测与跟踪方法研究[D].西安电子科技大学博士学位论文,2009.
    [11]M. R. Morelande, C. M. Kreucher, K. Kastella. A Bayesian approach to multiple target detection and tracking [J]. IEEE Trans. on Signal Processing,2007,55(5): 1589-1604.
    [12]I. Kyriakides, D. Morrell, A. P. Suppappola. Sequential Monte Carlo methods for tracking multiple targets with deterministic and stochastic constraints [J]. IEEE Trans. on Signal Processing,2008,56(3):937-948.
    [13]M. F. Sabahi, M. M. Hashemi, A. Sheikhi. Radar detection based on Bayesian estimation of target amplitude [J]. IET Radar, Sonar and Navigation,2008,2(6): 458-467.
    [14]吴孙勇,廖桂生,杨志伟.基于粒子滤波的检测前跟踪改进算法[J].控制与决 策,待发表.
    [15]吴孙勇,廖桂生,杨志伟.改进粒子滤波的弱目标跟踪与检测[J].宇航学报,2010,31(10):2395-2401.
    [16]S. M. Kay. Fundamentals of statistical signal processing [M]. Englewood Cliffs: Prentice Hall,1993.
    [1]G. Su, M. Morf. Signal subspace approach for multiple wideband emitter location [J]. IEEE Trans. on Acoustics, Speech, Signal Processing,1983,31(12):1502-1522.
    [2]M. Max, T. J. Shan, T. Kailath. Spatio-temporal spectral analysis by eigens-tructure methods [J]. IEEE Trans. on Acoustics, Speech, Signal Processing,1984, 32(4):817-827.
    [3]M. Allam, A. Moghaddamjoo. Two-dimensional DFT projection for wideband direction-arrival estimation [J]. IEEE Trans. on Signal Processing,1995,43(7): 1728-1732.
    [4]T. J. Shan, M. Wax, T. Kailath. On spatial smoothing for direction of arrival estimation of coherent signals [J]. IEEE Trans. on Acoustics, Speech, Signal Processing,1985,33(4):806-811.
    [5]H. Wang, M. Kaveh. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide- band sources [J]. IEEE Trans. on Acoustics, Speech, Signal Processing,1985,33(4):823-831.
    [6]H. Hung, M. Kaveh. Focusing matrices for coherent signal-subspace [J]. IEEE Trans. on Signal Processing,1988,36(8):1272-1281.
    [7]M. A. Doron, A. J. Weiss. On focusing matrices for wide-band array processing [J]. IEEE Trans. on Signal Processing,1992,40(6):1294-1302.
    [8]S. Valaee, B. Champagne. Localization of wideband signals using least-squares and total least-squares approaches [J]. IEEE Trans. on Signal Processing,1999, 47(5):1213-1222.
    [9]S. Valaee, P. Kabal. Wideband array processing using a two-sided correlation transformation [J]. IEEE Trans. on Signal Processing,1995,43(1):160-172.
    [10]T. S. Lee. Efficient wideband source localization using beamforming invariance technique [J]. IEEE Trans. on Signal Processing,1994,42(6):1376-1386.
    [11]D. B. Ward, Z. Ding, R. A. Kennedy. Broadband DOA estimation using frequency invariant beamforming [J]. IEEE Trans. on Signal Processing,1998,46(5): 1463-1469.
    [12]陈洪光,余圣发,沈振康.基于一致聚焦的宽带信号波达方向估计[J].通信学报,2006,27(1):64-68.
    [13]G. Gelli, L. Izzo. Cyclostationarity based coherent methods for wideband signal source location [J]. IEEE Trans. on Signal Processing,2003,51(10):2471-2482.
    [14]H. Q. Yan, H. Howard Fan. Signal-selective DOA tracking for wideban cyclostationary source[J]. IEEE Trans. on Signal Processing,2007,55(5):2007-2015.
    [15]Z. T. Huang, Y. Y. Zhou, W. L. Jiang. TDOA and Doppler estimation for cyclostationary signals based on multi-cycle frequencies [J]. IEEE Trans. on Aerosp. Electron. Syst.,2008,44(4):1251-1264.
    [16]刘章孟,黄知涛,周一宇.基于多循环频率聚焦的宽带循环平稳信号阵列侧向方法[J].电子与信息学报,2009,31(10):2449-2454.
    [17]雷中定,黄绣坤,张树京.宽带波达方向估计新方法及性能分析[J].电子学报,1998,26(3):58-61.
    [18]雷中定.相干及宽带源波达方向估计方法的研究.北方交通大学博士学位论文,1997.
    [19]曲毅.机载阵列雷达动目标检测与定位方法研究.西安电子科技大学博士学位论文,2009.
    [20]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [21]N. William, P. R. James, T. Kirubarajian, et al. Wideband array signal processing using MCMC methods [J]. IEEE Trans. on Signal Processing,2005,53(2): 411-426.
    [22]S. Arulampalam, S. Maskell, N. Gordon, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Trans. on Signal Processing.2002,50(2):174-188.
    [23]R. Ristic, S. Arulampalam, N. Gordon. Beyong the kalman filter:particle filters for tracking application [M]. Boston-London:Artech House,2004.
    [24]刘先省,胡振涛,金勇等.基于粒子优化的多模型粒子滤波算法[J].电子学报,2010,38(2):301-306.
    [25]J. R. Larocque, J. P. Reilly, and W. Ng, Particle filters for tracking an unknown number of sources [J], IEEE Trans. on Signal Processing,2002,50(2):2926-2937.
    [26]N. Kabaoglu. Target tracking using particle filters with support vector regression [J]. IEEE Trans. on Vehicular Technology,2009,58(5):2569-2573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700