甲苯法生产己内酰胺废液的综合利用工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中石化石家庄化纤有限责任公司采用意大利SNIA公司的甲苯法制备己内酰胺生产工艺,生产能力为17万吨/年,排出的废液就达10万吨以上/年,该工艺产生的废水成分复杂,COD为518 000 mg/L,NH3-N为125.8 mg/L,pH值为11,属于难处理的高浓度有机废水,无法直接排放。目前企业采用高温焚烧进行处理,存在能耗高、喷嘴易堵塞、废液中有价值成分没有进行回收利用、操作费用高等缺点。针对这些不足,本实验采用直接蒸馏、共沸蒸馏和溶剂萃取洗涤,将己内酰胺废液分离成水、盐和油,对分离出来的盐进行了定性与定量分析,对主要组分环己烷羧酸磺酸进行脱色提纯、精制及其应用研究;对油建立反相离子对色谱法分析其组成和含量,并测定油的主要技术指标。
     实验研究表明:废液共沸蒸馏的条件为m(甲苯):m(苯):m(废液)=1:1:2,共沸温度82℃,搅拌速度300 r/min,洗涤剂为甲醇,萃取、搅拌洗涤3次,得其水、油和盐的质量比为55:34:11,出水COD为1886 mg/L,NH3-N为14.6 mg/L,pH值为9,满足公司现有的废水处理系统的要求,可直接排入公司现有的处理系统,最大限度地提高原有设施的利用率,节约投资成本。
     采用液相色谱分析确定盐的主要组分为环己烷羧酸磺酸,含量约为90%,粗盐为褐色,经工艺过程分析,约10%的未知物可能为有机胺类物质,实验采用双氧水氧化-活性炭吸附进行脱色和精制,精制条件为m(活性炭):m(双氧水):m(粗盐)=0.50:0.75:15,氧化时间为10 min,氧化温度为65℃,吸附时间为30 min,精制后的环己烷羧酸磺酸纯度达98.5%,收率达90.2%。
     环己烷羧酸磺酸利用硫酸磺化历程的逆反应,H+作为亲电试剂,进攻连接磺基的脂肪环碳原子,含磺酸基团的有机物会发生水解使磺基脱落,而发生的亲电取代。选用稀盐酸在150℃下的高压釜中,压力为0.35 Mpa,转速为400 r/min,环己烷羧酸磺酸脱去磺酸基,得到产物经紫外可见分光光度计、傅立叶变换红外分光计、核磁共振仪以及液相色谱进行鉴定分析,确定为环己基甲酸,该产品是有机化工原料和合成药物的中间体的原料,具有广阔的应用前景,可以外销,创造出经济价值。
     对分离出来的油建立的反相离子对色谱分离条件为色谱柱:Agilent Eclipse XDB-C18 (4.6 mm×150 mm,5μm),流动相:v(甲醇):v(水)=30:70,离子对试剂为4 mmol/L的四丁基溴化铵,缓冲修饰剂为16 mmol/L的磷酸二氢钾,pH=6,紫外检测波长为220 nm,柱温为25℃,流速为1 mL/min,进样量为20μL。用外标法进行定性和定量分析得w(己内酰胺)= 6.36%,w(环己烷羧酸)= 4.53%,w(环己醇)= 8.76%,w(环己酮)=12.96%,w(苯酚)=20.31%,w(环己羧酸磺酸)=0.25%,可进行回收利用;同时测定了油的主要技术指标:燃烧热为20 384 J/g,28℃下黏度为30.78°E,w(硫)=1.07%,闪点为108.5℃,w(水)=0.8%,w(机械杂质)=0.09%和w(灰分)=0.08%,达到了炉用燃料油(重油)的技术指标,可用于工业窑炉、锅炉、焚烧炉、冶炼炉等,具有显著的环境效益、经济效益和社会效益。
The technology of the production of caprolactam from toluene in Shijiazhuang Chemical Fiber Company Ltd. is Italian SNIA's technology. Annual output of 5 million tons of waste fliud was discharged from the annual production of 5 million tons of caprolactam. The waste liquid generated by this process is a complex composition, with COD of 518 000 mg/L, NH3-N of 125.8 mg/L, pH value of 11, belonging to the high concentration of refractory organic wastewater which can not be directly discharged. Presently, high-temperature incineration the enterprise approach to has many disadvantages, such as high energy consumption, high operating costs, pluging the nozzle and lack of recycling valuable ingredients. According to these deficiencies, by direct distillation, azeotropic distillation and solvent extraction washing, the waste liquid is separated into water, salt and oil in this study. The qualitative and quantitative analysis, refining, refined and utilization of the separated salt were discussed, as well as the analysis and utilization of the oil by the establishment of reversed-phase ion-pair chromatography.
     Experimental studies showed that: the waste fluid was segregated into three parts with m(water): m(salt): m(oil)= 55:34:11 with m(toluene): m(benzene): m(waste) = 1:1:2, azeotropic temperature of 82℃, stirring speed 300 r/min, methanol for detergent and extraction, mixing washing for three times. The effluent water can be incorporated into the company's existing deal with drainage system, with COD of 1886 mg/L, NH3-N of 14.6 mg/L, pH of 9, which can maximize use of the existing facilities and reduce investment costs.
     Crude salt is brown in which Cyclohexyl carboxylic acid-sulphonic acid content is more than 90% and about 10% is unknown by HPLC methods. Through analysis of the process, the unknown may be organic material of amine. The purification of the salt is achieved by using hydrogen peroxide and activated carbon. The optimum condition are found :when m(activated carbon):m(hydrogen peroxide):m(the beginning of salt) = 0.50:0.75:15, oxidation temperature is 65℃, oxidation time is 10 min and adsorption time is 30 min. The purity of cyclohexane carboxylic acid-sulfonic acid was 98.5% and the yield reached 90.2%.
     Cyclohexane carboxylic acid-sulphonic acid causing the pro-electrophilic substitution, using sulfuric acid sulfonation process of the reverse reaction, H+ as an electrophilic reagent attacking the fat ring connected sulfosalicylic carbon atoms, containing sulfonic groups hydrolysis of organic matter and making sulfosalicylic off. The conditions are found: diluted hydrochloric acid at 150℃under the autoclave, the pressure of 0.35 Mpa, speed of 400 r/min. Cyclohexane carboxylic acid sulfonic acid made sulfonic acid off. The product was identified as cyclohexyl carboxylic acid by UV-Vis spectrophotometer, fourier transform infrared spectrometer, NMR and liquid chromatography. The product is raw materials of organic chemical and synthetic drugs intermediate, with broad application prospects. It can be export to create economic values.
     The main components of the oil and their relative contents were identified and determined by the reversed-phase ion-pair chromatography. The separation conditions are as follows: Agilent Eclipse XDB-C18 (4.6 mm×150 mm,5μm) as column, v(methanol): v (water) = 30:70 as mobile phase, 4 mmol/L tetrabutylammonium bromide as ion-pair reagent, 16 mmol/L of potassium dihydrogen phosphate as a buffer modifier, pH = 6, flow rate at 1 mL/min, UV detection wavelength of 220 nm, column temperature 25℃, injection volume at 20μL. The results of qualitative and quantitative analysis by the external standard method are as follow: w(caprolactam)=6.36%, w(cyclohexane carboxylic acid)=4.53%, w(cyclohexanol)=8.76%, w(cyclohexanone)=12.96%, w(phenol) =20.31%, w(cyclohexyl carboxylic acid-sulfonic acid)=0.25%. All of them can be recycled. The main technical indicators of the oil were determined. The results showed that the heat of combustion was 20 384 J/g, the viscosity of 30.78°E at 28℃, w(S)= 1.07%, flash point was 108.5℃, w(water)= 0.8%, w(mechanical impurities)= 0.09% and w(ash) = 0.08%, in accord with technical indicators of a furnace fuel oil (heavy oil). It can be used in boilers, industrial furnace, smelting furnace, burning furnace and so on, which has significant social, environmental and economic benefits.
引文
[1]王峰,李丽英.甲苯法生产己内酰胺废水治理技术探讨[J].石油化工环境保护,2002,25(2):20-22.
    [2]张雪红,温学友,赫彦良.甲苯法生产己内酰胺污水治理研究[J].环境工程,2004,22(4):31-33.
    [3]高俊发.石家庄高含氮高浓度化纤废水处理改造工程试验研究[J].中国给水排水,2002,28(9):36-39.
    [4]凌文华.A/O工艺处理己内酰胺生产废水及运行控制[J].工业废水与用水,2004,34(3):50-52.
    [5]范冰.己内酰胺生产中皂化废液的处理及综合利用[J].石油化工,1997,26(10):710-714.
    [6]高存刚.甲苯法己内酰胺九级串联连续搅拌釜式反应器模型化研究[硕士学位论文].北京:北京化工大学硕士学位论文,2002,25-28.
    [7]刘冲.斯尼亚公司甲苯法己内酰胺工艺[J].现代化工,1994(4):46-51.
    [8]王雪梅.己内酰胺生产技术及应用[J].河北化工,2005(5):22-25.
    [9]张立云.酰胺化单元操作规程[G].石家庄化纤有限责任公司,1997.
    [10]己内酰胺操作手册[G].石家庄化纤有限责任公司,1997.
    [11]AbrahamH,DeR,Geleen.ReijerGoettsch[P].US3859278,1975.
    [12]蔡锐,管国锋.络合萃取法处理己内酰胺废水[J].南京化工大学学报,2000,22(5):73-75.
    [13]温学友,张雪红,曹凯成,等.影响己内酰胺废水处理效果的因素及控制措施[J].河北工业科技,2005,22(5):257-259.
    [14]胡跃华,于萍,朱泽华,等.膜分离技术在己内酰胺生产废水中的应用研究[J].化工进展,2004,23(10):1134-1137.
    [15]沈炜,陈季华.生物膜法A/O系统处理己内酰胺废水[J].化工环保,2000,20(3):24-26.
    [16]高廷耀,顾国维,周琪.水污染控制工程下册(第二版)[M].北京:高等教育出版社,2005:320-330.
    [17]王文祝,孙立明,郑二丽.化纤厂高浓度有机废液处理及综合利用[J].河北化工,2006,29(12):59-60.
    [18]GB1194-89.水质化学需氧量的测定,325-328.
    [19]GB7478-87.水质铵的测定,67-67.
    [20]隋振英,邹东雷.共沸蒸馏中共沸剂的选择[J].化学工程师,1996,54:27-28.
    [21]一些溶剂与水形成的二元共沸物[OL].中国橡胶化工网,[2007-7-10].http://www.s-rubber.com/rzs/content.aspx?id=2301.
    [22]jianguo616.常用溶剂的沸点、溶解性和毒性[OL].小木虫学术科研第一站,[2007-01-30].http://emuch.net/html/200701/400836.html.
    [23]朱洪涛.uV-Fenton催化氧化处理印染废水的实验研究[J].工业水处理,2006,3,269(3):53-55.
    [24]顾晓扬,汪晓军,林德贤等.O3和Fenton试剂化学氧化处理酸性玫瑰红印染废液[J].染料与染色,2006,43(1):35.
    [25]胡文伟,屠继延,刘娣.“流炭法”处理印染废水[J].印染助剂,2006,2,23(2):37-38.
    [26]张小璇,叶李艺,沙勇,邸婧.活性炭吸附法处理染料废水[J].厦门大学学报,2005,44(4):542-545.
    [27]胡志军,李友明.制浆造纸工业废水的脱色方法[J].黑龙江造纸,2006,2:35-37.
    [28]黄敬.膜生物反应器处理己内酰胺生产废水[J].工业废水与用水,2007,38(4):58-61.
    [29]边凌风,高宝玉.BT-04复合混凝剂应用于活性染料印染废水的脱色研究[J].天津化工,2006,20(4):53-55.
    [30]蒋少军.FMC絮凝剂处理印染废水[J].染整技术,2006,2,28(2):26-29.
    [31]庞建峰,费学宁,王连生,张金鸿.印染废水处理中混凝剂的研究与进展[J].天津城市建设学院学报,2003,9(1):16-18.
    [32]CenekN.BiodegeradationofsyntheticdyesbyIrpexLacteusundervariousgrowthconditions[J].Internationalbiodeteri-orationandbiodegeradation,2004,54:215-223.
    [33]JianJunQin,MaungH,KiranAK.Nanofihrationforrecoveringwastewaterfromaspecificdyeingfacility[J].SeparationandPurificationTechnology,2007,56:199-203.
    [34]屈计宁,何群彪,张东曙,等.利用高效好氧生物反应器处理石化废水的中试研究[J].化学世界,2002,4:126-129.
    [35]韩小卫,阮文权,邹华,堵国成.高强度好氧生物反应器处理制药废水的启动和稳定性试验研究[J].环境工程学报,2007,1(1):78-81.
    [36]刘乐文,欧义芳,黄秋莲.纸浆碱处理段废水的电化学降解降解研究[J].林产化学与工业,2002,22(2):51-53.
    [37]张良林,徐晓军,郭建.均相Fenton氧化-混凝法强化处理印染废[J].化工环保,2006,6(1):38-40.
    [38]谢凯娜,吴浩汀,胡晓华.水解-接触氧化-混凝工艺处理印染废水实例-工业用水与废水[J].2006,6,37(3):87-89.
    [39]朱乐辉,魏善彪,邵莉等.混凝沉淀-曝气生物滤池-纳米材料复合膜技术在印染废水回用处理中的应用[J].水处理技术,2006,7,32(7):58-60.
    [40]陆辟疆,李春燕.精细化工工艺[M].北京:化学工业出版社,1996:186-190.
    [41]李硕文.活性炭吸附-H2O2氧化法处理染色废水的试验研究[J].化工环保,1997,17(3):131-134.
    [42]湘潭大学.甲苯法生产己内酰胺工艺体系中环己烷羧酸磺酸的液相色谱定量分析方法:中国,200610031894.6[P].2007-03-28.
    [43]高鸿宾.有机化学(第三版)[M].北京:高等教育出版社,1999:302.
    [44]余中林,余卫国.苯甲酸催化加氢合成环己基甲酸的研究[J].浙江化工,2004,35(9):1-3.
    [45]中科院长春应用化学研究所.苯甲酸加氢合成环己基甲酸新方法获国家发明专利授权[J].中国西部科技,2008(3):33.
    [46]王宝顺.重油燃烧与检验[J].河北冶金,1995,86:44-46.
    [47]silliyun.燃料油的自然属性和分类[OL].百度百科,(2006-04-23)[2010-04-01]http://baike.baidu.com/view/29507.htm?fr=ala0_1#3.
    [48]KirklandJJ,VanStratenMA,ClaessensHA.Reversed-phasehigh-performanceliquidchromatographyofbasiccompoundsatpH11withsilica-basedcolumnpackings[J].JournalofChromatographyA,1998,2:111-120.
    [49]JanderaP,BocianS,MolikovaM,etal.Characterizationofthepropertiesofstationaryphasesforliquidchromatographyinaqueousmobilephasesusingaromaticsulphonicacidsasthetestcompounds[J].JournalofChromatographyA,2009,1:237-248.
    [50]李生华.消烟/助燃添加剂化学[J].环境化学,1991,10(5):1-5.
    [51]张信芳,顾先锋,沙金.一种高效重质燃料油催化燃烧添加剂[J].复旦学报,2003,42(3):302-305.
    [52]程阿金.锅炉与炉窑燃料油使用中的常见问题及解决方法[J].能源工程,2004,(1):53-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700