D5反胶束体系的制备及其在活性染料染色中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国内外,反胶束技术作为一种新兴的技术,在蛋白质的萃取分离、酶的固定化以及纳米微粒的制备等方面均显示了良好的可行性和优越性,在生物工程、医药、食品科学等领域展现了其巨大的发展潜力和应用价值。此外,近年来在反胶束技术基础上发展的微乳技术,通过与其他技术的结合,在微乳燃料、微乳洗涤、涂料、化妆品、织物染整、皮革加工和保护等诸多其他领域也显示了巨大的应用潜力。
     本文以对生态环境友好的D5(十甲基环五硅氧烷)替代传统反胶束体系中的烷烃作为连续相介质成功制备了新型的D5反胶束体系,并对该体系的增溶行为进行研究,分别比较了阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂的D5反胶束体系的增溶水量,研究了中性电解质、温度、pH、陈化时间对D5反胶束体系稳定性、饱和增溶水量的影响以及TX-10/正辛醇/D5反胶束体系含水量与胶束粒径、体系电导率之间的关系,结果表明:用非极性的D5替代传统反胶束体系中的烷烃来制备对生态环境友好的反胶束体系的方法可行。研究揭示:助表面活性剂醇的用量和表面活性剂的类型及其浓度都影响着D5反胶束体系的增溶水量;TX-10/正辛醇/D5和1831/正辛醇/D5反胶束体系的增溶水量都随着中性电解质加入而急剧下降;TX-10/正辛醇/D5体系的最高稳定温度随着反胶束体系含水量的增大总体呈下降趋势,而1831/正辛醇/D5体系的稳定性基本不受温度影响;TX-10/正辛醇/D5反胶束的饱和增溶水量基本不受增溶水相pH值的影响,而1831/正辛醇/D5反胶束的饱和增溶水量在酸性条件下稳定,在碱性条件下则随着pH值的升高而降低;陈化时间对TX-10/正辛醇/D5和1831/正辛醇/D5反胶束的饱和增溶水量基本没有影响;TX-10/正辛醇/D5反胶束的粒径、粘度随其含水量W0的增加而变大,且粒径的分布也变宽,体系的电导率随着W0的增加出现一个突变点,突变的发生表明体系的反胶束中开始出现自由水。
     研究中对活性染料在D5反胶束体系中的染色进行了系统探索,优选了适合于活性染料染色用的MOA-3/正辛醇/D5反胶束体系,确立了活性染料在D5反胶束中染棉的工艺路线和方法,建立了反胶束残液吸光度的测试方法,并研究了中性电解质、反胶束含水量、织物带液率对D5反胶束中活性染料染色性能的影响,结果表明:纤维素纤维在碱液中预先溶胀,并携带一定量碱液入染反胶束体系的染色方法是可行的,可以成功实现活性染料的无盐染色;对于复合活性基团活性染料,预浸轧所用碱液含40g/L的Na_2CO_3,染色温度60℃,染色时间30min可以得到最佳染色效果;中性电解质对MOA-3/正辛醇/D5反胶束中活性染料的染色无明显促染作用;研究中还发现,预轧碱液的织物入染时带液率高低对染料的吸尽率有较大影响,带液率越低,染料的吸尽率越高,但是吸尽率与织物固色后的K/S值之间并没有正向相关性,其原因有待进一步研究;D5反胶束的染色不会影响织物的色光,具有替代水做为染色介质的潜力。
Presently, the reverse micelle technology as an emerging technology at home and abroad showed its good feasibility and superiority in protein extraction separation, enzyme immobilization, as well as preparation of nano-particles, and demonstrated enormous development potential and application value in the fields of bio-engineering, medicine, food science and so on. In addition, in recent years, the micro emulsion technique which based on the reverse micelle technique, combined with other technologies shows great application potential in micro emulsion fuel, micro emulsion washing, paints, cosmetics, fabric dyeing and finishing, leather processing and protecting and many other areas.
     In this paper, the novel D5 reverse micelle systems had been successfully prepared by substituting the eco-friendly D5(Decamethyl Cyclopentasiloxane) for the alkanes of traditional reverse micelle systems as continuous phase medium, the water solubilization behaviors of the systems had been investigated by comparing with the water solubilization amount of D5 reverse micelle systems prepared with anionic surfactants, cationic surfactants and non-ionic surfactants respectively, the influence of the neutral electrolyte, temperature, pH, aging time on the stability and the saturated solubilization amount of D5 reverse micelle systems, and the influence of the water content of the TX-10/ octanol/ D5 system on the conductivity and the particle size had been also stieded. The results showed that it’s feasible to prepare the environment-friendly reverse mecelles by using the non-polar D5 to substitute for the alkanes of the traditional reverse micelle system; both the usage of cosurfactant alcohol and concentration of surfactant affect water solubilization of the system; the water solubilization ability of TX-10/octanol/D5 and 1831/octanol/D5 reverse micelle systems sharply decline when adding neutral electrolyte. The saturated water solubilization of TX-10 / octanol / D5 reverse micelles is basically unaffected to the pH values of solubilizing aqueous phase. When the solubilizing water phase is acidic, the saturated water solubilization of 1831/octanol/D5 reverse micelle remains stable, but when the solubilizing water phase is alkaline, the saturated water solubilization decreases with the increase of the pH values. The aging time does not affect the water solubilization of TX-10/octanol/D5 reverse micelles. The particle size and viscosity of TX-10/octanol/D5 reverse micelles increase with the augmentation of water content and the particle size distributions broaden at the same time. The system conductivity emerges a mutation point with the increase of W0, which proves the appearing of free solubilization water in the reverse micelles.
     The dyeing of cotton fiber with reactive dyes in D5 reverse micelle system was studied systematically. Thereby, the MOA-3/octanol/D5 reverse micelle system that is suitable for reactive dyeing was selected and optimized, process for cotton reactive dyeing in D5 reverse micelle systems and test method for reverse micelles residue absorbance were established and the influences of the neutral electrolyte, reverse micelles water conten, liquid pick up rate of fabric on the D5 reverse micelle reactive dyeing properties were investigated, The results showed that the method for reactive dyeing of cotton fabric in D5 reverse micelle system is feasible, in which the fabric was pretreated with alkali solution and squeezed to a certain liquid pick up rate before immerged into dye bath, the alkali solution contained 40g/L of Na_2CO_3, the dyeing temperature was 60℃and process duration 30min. Neutral electrolyte Na2SO4 had no significant dyeing promoting effect for MOA-3/octanol/D5 dyeing of reactive dyes. Study also found that the liquid pick-up of pretreated fabric with alkali solution showed significant impact on the dye exhaustion rate, i.e. the lower the pick–up, the higher the rate of dye exhaustion, but between exhaustion rate and K / S value of dyed fabric after fixing, there is no positive correlation, the reason remains to be further studied; D5 reverse micelles of the dye will not affect the shade of dyed fabric, it can be the potential alternative of water as novel dyeing medium.
引文
[1]张永金,张波兰.非水染色研究进展[J].印染,2003(增刊): 34~35.
    [2]刘昌龄.还原染料泡沫染色[J].印染译丛,1994, (2): 95~100.
    [3]宋心远.纺织品生态染色和染色新技术[J].染料与染色,2003,40(2): 80~83.
    [4]Jianling Zhang, Buxing Han. Supercritical CO2-continuous microemulsions and compressed CO2-expanded reverse microemulsions [J]. The Journal of Supercritical Fluids. 2009(47): 531~536.
    [5]S Lori Brown, Barbara G Silverman, Wendie A Berg. Rupture of silicone-gel breast implants: causes, sequelae, and diagnosis[J]. The Lancet 1997, 350:1531~1537.
    [6]Charles N,Falany,Ge Li.Effect of age pregnancy on cytochrome p450 induction by octamethyltetracyclosiloxane in female Sprague-dawley rats[J].J Biochem molecular toxicology,2002,2(19): 129~138.
    [7]Marina L, Jovanovic. In vitro and In vivo percutaneous absorption of 14C-octamethylcyclotetrasiloxane( 14C-D4 ) and 14C- decamethylcyclopentasiloxane ( 14C-D5 ) [J]. Regulatory Toxicology and Pharmacology. 2008, 50: 239~248.
    [8]Leigh Ann Burns-Naas, Richard W M, Robert G. M. Inhalation Toxicology of Decamethylcyclopentasiloxane (D5) Following a 3-Month Nose-Only Exposure in Fischer 344 Rats [J]. Toxicological Sciences, 1998, 43: 230~240.
    [9]D.M. Naylor, V.T. Stannett, A. Deffieux, P. Sigwalt.The radiation-induced polymerization of dimethylcyclosiloxanes in the liquid state: 3. Copolymerization of D3 with D4 and D4 with D5, reactivities and interpretation[J]. Polymer, 1994, 35(8): 1764~1768.
    [10]Reddy MB, Looney RJ, Utell MJ. Modeling of human dermal absorption of octamethylcyclotetrasiloxane (D(4)) and decamethylcyclopentasiloxane (D(5)) [J]. Toxicological sciences. 2007, 99(2): 422~431.
    [11]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1984.
    [12]王世荣,李祥高,刘东至.表面活性剂化学[M].北京:化学工业出版社,2005:14~15.
    [13]龚福忠,刘力恒,马培华.反胶束、W/O微乳液的特性及其萃取机理[J].广西大学学报, 2005, 30(2): 119~122.
    [14]崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社,1999:66~71.
    [15]颜肖慈,罗明道.界面化学[M].北京:化学工业出版社,2005:83~97.
    [16]Hoar T P, Schulman J H. Transparent water-in-oil dispersions oleophatics hydromicdle[J].Nature, 1943, 152:102.
    [17]Shinoda K, Friberg S. Microemulsions:colloidal aspects [J]. Adv Colloid InteHace Sci, 1975(4): 281~300.
    [18]Moulik S P, Paul B K. Structure,dynamics and trailsport properties of microemulsion [J]. Adv Colloid Interface Sci, 1998, 78:99~195.
    [19]刘会洲.微乳相萃取技术及应用.北京:科学出版社,2005:130.
    [20]段金友,方积年.反胶束萃取分离生物分子及相关领域的研究进展[J].分析化学, 2002, 30(3): 365~371.
    [21]Faeder, Landanyi B M. Molecular, dynamics, simulations of the interior of aqueous reverse micelles [J]. The Journal of Physical Chemistry B, 2000, 104(5): 1033~1046.
    [22]Belletete M, Lachapelle M, Durocher G. Dynamics of interfacial interactions between the molecular probe 2- (p- (dimethylamino) phenyl) -3, 3-dimethyl-3H-indole and the Aerosol OT inverted micelles [J]. The Journal of Physical Chemistry, 1990, 94(19): 7642~7648.
    [23]Moran P D, Bowmaker G A, Cooney R P, et al. Vibrational spectroscopic study of the structure of sodium bis (2-ethylhexyl) sulfosuccinate reverse micelles and water-in-oil microemulsions [J]. Langmuir, 1995, 11: 738~743.
    [24]Microemulsions [J]. Advances in Colloid and Interface Science, 1984, 20(3-4): 167~272.
    [25]R. Zana and J. Lang, in”Solution Behavior of Surafctants”, Vol. 2 (K. L. Mittal and E. J. Fendler, eds), P. 1195, Plenum Press New York(1982).
    [26]D Roux, A M Bellocq, et al. An interpretation of the phase diagrams of microemulsions[J]. Chemical Physics Letters. 1983: 94(2), 156~161.
    [27]P N Pusey, R J A. ToughDynamic light scattering, a probe of brownian particle dynamics [J]. Advances in Colloid and Interface Science, 1982, 16(1): 143~159.
    [28]D’Angelo M, Onori G, Santucci A. Study of aerosel OT reverse micelle formation by infrared spectroscopy [J]. The Journal of Physical Chemistry, 1994, 98: 3. 89~3193.
    [29]Gianmmona G, Goffredi F, Livri V T, et al. Water structure in water/AOT/n-heptane microemulsions by FT-IR spectroscopy [J]. Journal of Colloid and Interface Science, 1992, 154: 411~415.
    [30]Jahn W, Strey R. Microemulsions by freeze electron microscopy [J]. The Journal of Physical Chemistry, 1998, 92: 2294~2301.
    [31]徐宝财,王媛,肖阳等.反胶团萃取分离技术研究进展[J].日用化学工业, 2004, 34(6): 390~393.
    [32]段金友,方积年.反胶束萃取分离生物分子及相关领域的研究进展[J].分析化学,2002, 30(3): 365~371.
    [33]刘波,王英锋,郭雪清.新型萃取分离技术在生物技术中的应用[J].首都师范大学学报(自然科学版),2005, 26(2): 49~54.
    [34]赵国华,周文斌.反胶束萃取蛋白质的研究进展[J].食品与机械,1998,(4):6~7.
    [35]王永涛,赵国群,张桂.反胶束萃取技术及其在食品中的应用[J].食品研究与开发,2008, 29(7): 171~173.
    [36]陈复生,赵俊庭.利用反胶束萃取技术同时分离植物蛋白和油脂[J].食品科学, 1997,18(8): 43~46.
    [37]陆强,李宽宏.反胶束萃取蛋白质技术的新进展[J].化工进展,1995,(1):25~28.
    [38]Pires M J,Aires-Barros M R,Cabral J M S.Liquid-liquid extraction of proteins with reversed micelles[J].Biotechnology Progress,1996,12(3):290~301.
    [39]陈海光,成坚.反胶束技术及应用[J].仲恺农业技术学院学报,2000,13(4):52~57.
    [40]成国祥,沈锋,张仁柏等.反相胶束微反应器及其制备纳米微粒的研究进展[J].化学通报,1997,3:14~19.
    [41]Barnickel P,Workaun A,Sager W,et al.Size tailoring of silver colloids by reduction in W/O microemulsions[J].Journal of Colloid and Interface Science,1992,14(1)8:80~90.
    [42]Lisiecki I,Pileni M P.Sythesis of copper metallic clusters using reverse micelles as microreactors[J].Journal of the American Chemical Society,1993,115(10):3887~3896.
    [43]Arturo M.Lopez-Quintela,Jose Rivas.Chemical reactions in microemulsions:a powerful method to obtain ultrafine particles[J].Journal of Colloid and Interface Science,1993,158(2): 446~451.
    [44]Tanori J,Duxin N,Petit C,et al.Sythesis of nanosize metallic and alloyed particles in ordered phased[J].ColloidPolymSci,1995,273:886~892.
    [45]Lianos P,Thomas J K.Dispersion stability of non aqueous calcium carbonate dispersion drepared in water core of W/O microemulsion[J].Journal of Colloid and InterfaceScience,1987,115:579~582.
    [46]Takayuki Hirai, Hiroshi Sato, Isao Komasawa. Mechanism of formation of CdS and ZnS ultrafine particles in reverse micelles [J].Indian English Chemical Research, 1994, 33: 3262~3266.
    [47]陈龙武,甘礼华,岳天仪等.微乳液反应法制备α-Fe2O3超细粒子的研究[J].物理化学学报,1994, 10(8): 750~754.
    [48]Ernesto Joselevich, Itamar Willner. Photos esitization of quantum-size TiO2 particles in water-in-oil microemulsion [J].The Journal of Physical Chemistry,1994, 98(31):7628~7635.
    [49]Arriagada F J.Osseo-Asarek.sythesis of nanosize silica in aerosolOT reverse microemulsions [J]. Journal of Colloid and Interface Science, 1995,170: 8~17.
    [50]Moumen N, Bonville P, Pileni MP. Control of the size of cobalt ferrite magnetic fluids2mossbauer spectroscopy [ J ] . Phys. Chem. 1996 ,100 :14410~14416.
    [51]Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization [J]. Nature, 1999 ,402 :393~395.
    [52]陈磊,陈建敏,周惠娣.微乳化技术在无机纳米材料制备中的应用及发展[J].材料科学与工程学报, 2004, 22: 138~141.
    [53]Kortan A R,Hull R, Opila RL, et al.Nucleation and growth CdSe on ZnS quantum crystallite seeds,and vice versa in inverse micelle media[J].Journal of the American Chemical Society,1990,112:1327~1332.
    [54]Shuichiro Ogawa, KaiHu, Fu-Ren F Fan, et al. Photoelectrochemistry of films of quanrum size lead sulfide particles in corporated in self-assembled monoleyers on gold[J].The Journal of Physical Chemistry B,1997,101: 5707~5711.
    [55]Susumu Shiojiri, Takaguki Hirai, Irao Komasawa. Immobilization of semiconductor nanoparticles formed in reverse micelles into polywrea via in situ polymerization of disocry anates[J].Chem Commun,1998,14:1439~1440.
    [56]Gaynor A G, Gonzalz R J, Davis R M, et al.Characterization of nanophase titania particles synthesized using in situ steric stabilization [J].J Mater Res,1997,12(7): 1755~1765.
    [57]Stathotos E, Lianos P. Formation of TiO2 nanoparticles in reverse micelles and their deposition as thin films on glass substrates [J].Langmuir,1997,13:4295~4300.
    [58]杨振强,谢文磊,李海涛等.反胶束体系下酶催化反应研究进展[J].粮食与油脂,2006,1:15~18.
    [59]夏仕文.反胶束的酶催化研究进展[J].化学通报,1998,(2):8~13.
    [60]Prazeres D M F,Garcia,F A P,Cabral J M S J.Chem.Techno1.Biotechno1. l992,53:l59.
    [61]Martinek K, Klyachko N L, Kabanov A V, Micellar enzymology: its relation to membranology [J]. Biochimica et Biophysica Acta(BBA)-Biomembranes, 1989, 981: 161~172.
    [62]K Sawada, S Tokino, M Ueda. Bioscouring of cotton with pedinase enzyme in a non-aqueous system [J].JSDC,1991,148(12):355~358.
    [63]K Sawada, M Ueda. Enzyme processing of wool fabrics in a non-ionic surfactant reverse micellar system[J]. Journal of Chemical Technology and Biotechnology, 2004,79:376~380.
    [64]K Sawada, M Ueda. Adsorption behavior of direct dye on cotton in non-aqueous media[J]. Dyes and Pigments, 2003,58: 37~40.
    [65]K Sawada, M Ueda, K Kajiwara. Simultaneous dyeing and enzyme processing of fabrics in a non-ionic surfactant reverse micellar system[J]. Dyes and Pigments,2004 63: 251~258.
    [66]K Sawada, M Ueda.Dyeing of protein fiber in a reverse micellar system [J].Dyes and Pigments,2003,58 : 99~103.
    [67]华东理工大学分析化学教研组编,成都科技大学分析化学教研组编.分析化学(第四版)[M].北京:高等教育出版社,1995.
    [68]王亮,反胶束的制备及其在真丝纤维染色中的应用[D].苏州:苏州学,2005.
    [69]RosenM J. Surfanctants and Interfacial Phenomina[M].2nd ed.New York:Wiley&Snos,1989: 190-198.
    [70]肖进新,赵振国,表面活性剂应用原理[M].北京:化学工业出版社, 2003.
    [71]滕弘霓,孙镛,黄斌等.以非离子型表面活性剂形成微乳液的碳原子数相关性研究[J].高等学校化学学报.1999, 20(5): 772~776.
    [72]秦承宽,柴金岭,陈景飞.微乳液的研究及应用进展[J].山西化工,2006, 26(10): 21~25.
    [73]李雪梅,邵华,印志磊等.萃取体系中的分子有序现象及其对萃取的影响[J].化学通报, 2001, 9: 559~663.
    [74]刘进涛.表面活性剂在微乳液聚合中的应用[J].石油化工应用.2007, 26(5):4~7.
    [75]Lang J, Lalem N, Zana R. Quaternary Water in Oil Microemulsions.1.Effect of Alcohol ChainLength and Concentration on Droplet Size and Exchange of Material betweenDroplets[J].J.Phys.Chem., 1991, 95: 9533~9541.
    [76]程时远,闫翠娥.表面活性剂在乳液聚合中的应用[J].湖北化工,1995,2:19~23.
    [77]张积树,薛美玲,于永良等.盐类及pH值对微乳液变型的影响[J].青岛化工学院学报, 1997, 18(1): 13~16.
    [78]彭春玉,周海晖,曾伟.影响反相微乳液导电性能的因素[J].物理化学学报,2006,22(4): 409~413.
    [79]沈兴海,王文清,顾国兴.W/O型微乳液活化能和导电机理研究[J].高等学校化学学报,1993,5(14): 717~719.
    [80]Lana Mukhopadhyay, P.K. Bhattacharya, S.P. Moulik. Additive effects on the percolation of water/AOT/decane microemulsion with reference to the mechanism of conduction[J]. Colloids and Surfaces,1990,50:295~308.
    [81]裘俊红,董树杰,谢海英.AOT/异辛烷反胶束体系含水量研究[J].高校化学工程学报,2008, 22(3): 515~518.
    [82]李许可,刘丽军.活性染料低盐染色工艺方法研究[J].苏盐科技,2009,1:9~11.
    [83]宋心远,沈煜如.活性染料及其染色的近年进展(四)[J].印染, 2002(5):43~46.
    [84]Wu T S, Chen K M, New Cationic Agens for Improving the Dyeability of Cellulose Fibers[J].JSDC,1993(109):153.
    [85]杨锦宗.棉纤维改性与无盐染色[J].印染,1999(3):40-43.
    [86]谢孔良,孙燕.活性染料无盐染色技术研究进展[J].染整技术,2005(7):73~82
    [87]伏宏彬.棉纤维化学改性与染色性能研究[J].染料与染色,2003(3):134~137.
    [88]Gedye R,Smith F,Westaway K,etal.The use of Microwave ovens for Rapid Organic nthesis [J].Tetrahe dron Letter,1986,27(3):279~282.
    [89]Horiguchi S,Abe Y. Method for Porducing Metal Phthalocya-nine Type Pigment[P].US 37631.
    [90]Chaiyapat P,Nantaya Y,Edga rA. Surface Modification to Improve Dyeing of Cotton Fabric with a Cationic Dye [J].Color Tech,2002(118):64.
    [91]K Sawada, M Ueda.Adsorption and fixation of a reactive dye on cotton in non-aqueous systems . Coloration Technology [J]. 2003,119:182~186.
    [92]张永金,张波兰.棉纤维活性染料无盐染色理论研究进展[J].印染,2001,8:47~49.
    [93]赵涛.染整工艺学教程第二分册[M].北京:中国纺织出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700