重型再生障碍性贫血骨髓造血免疫损伤机制及其相关抗原的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     通过研究重型再生障碍性贫血(Severe Aplastic Anemia, SAA)患者CD8+HLA-DR+效应T细胞功能因子表达水平、对骨髓造血细胞的损伤及其作用的靶细胞,证实CD8+HLA-DR+效应T细胞与SAA患者骨髓衰竭之间的“因果效应”及“因果方式”,进一步阐明SAA免疫损伤骨髓造血的机制;同时采用差异蛋白质组学技术,对SAA患者与正常人髓样树突状细胞(myeloid dendritic cells,mDC)的蛋白质成份进行分析,筛选激活SAA免疫反应可能的抗原物质,即导致SAA发病可能的自身抗原,为开发靶向治疗药物提供依据。方法
     研究对象为天津医科大学总医院自2010年4月至2012年4月初治SAA患者、治疗后缓解的SAA患者及正常对照者。第一部分研究效应T细胞损伤骨髓造血细胞的途径,采用免疫磁珠分选24例SAA初治患者及23名健康正常人外周血CD8+HLA-DR+效应T细胞,半定量RT-PCR检测分选细胞效应因子穿孔素、颗粒酶B、肿瘤坏死因子-p(tumor necrosis factor beta, TNF-β)、FasL mRNA表达情况。第二部分验证SAA患者效应T细胞对骨髓造血细胞的损伤作用,以免疫磁珠阳性分选12例SAA初治患者、12例SAA缓解患者及12名正常健康人CD8+HLA-DR+T细胞作为效应细胞,阴性分选去除SAA缓解患者、正常健康人骨髓单个核细胞中CD3+T细胞后作为靶细胞,将SAA初治患者效应细胞分别与SAA缓解患者及正常健康人靶细胞混合培养(分别为实验组1、实验组2),同时设SAA缓解患者效应T细胞与SAA缓解患者骨髓靶细胞混合培养组及正常健康人效应T细胞与正常健康人靶细胞混合培养组作为对照(分别为对照组1、对照组2),72h后通过流式细胞术以膜联蛋白V(Annexin V)检测靶细胞凋亡状况,全自动生化分析仪检测培养体系上清液乳酸脱氢酶(lactate dehydrogenase, LDH)水平。第三部分明确SAA患者靶向损伤的骨髓造血细胞,分别将SAA患者、正常人CD8+HLA-DR+效应T细胞与正常人的CD3-细胞(免疫磁珠分选获得)混合培养,72h后采用流式细胞术检测培养系中CD14+、CD33+、CD34+,GlycoA+细胞凋亡状况;以单克隆抗体标记SAA患者和正常人骨髓CD34+、GlycoA+、CD33+、CD14+细胞,比较其Fas蛋白的表达量。第四部分探索导致SAA免疫激活的抗原物质,采用贴壁培养法将SAA患者、缓解患者及正常人单核细胞,体外诱导、分化为成熟的mDC,流式细胞仪分选得到高纯度mDC,提取总蛋白,进行双向电泳分离蛋白质,取差异蛋白质点进行比对,明确SAA患者mDC内与正常人不同的蛋白质成分,即为激活mDC,引起SAA一系列自身免疫反应可能的抗原物质。结果
     第一部分SAA初治组CD8+HLA-DR+效应T细胞穿孔素、颗粒酶B mRNA的表达量分别为(0.66±0.25)、(0.56±0.26),正常对照组表达量为(0.53±0.14)、(0.40±0.13),前者明显高于后者(P值分别为0.042、0.012);SAA初治组CD8+HLA-D时效应T细胞FasL nRNA的表达量为(0.77±0.24),明显高于正常对照组(0.61±0.16)(P=0.011);SAA初治组CD8+HLA-DR+效应T细胞TNF-β mRNA的表达量为(0.58±0.16),亦明显高于正常对照组(0.46±0.15)(P=0.011)。
     第二部分SAA初治患者效应细胞与SAA缓解患者靶细胞混合培养组(实验组1)、SAA初治患者效应细胞与正常健康人靶细胞混合培养组(实验组2)靶细胞凋亡比例分别为(41.12±24.84)%、(45.81±20.47)%,SAA缓解患者效应细胞与SAA缓解靶细胞混合培养组(缓解组)、正常人效应细胞与正常人靶细胞混合培养组(正常组)靶细胞凋亡比例分别为(35.03±22.09)%、(20.95±13.82)%,实验组1、实验组2、缓解组三组间两两比较差异无统计学意义(P>0.05),实验组1、实验组2、缓解组均明显高于正常组(P<0.05);实验组1、实验组2培养体系上清液LDH水平分别为(74.56±49.13)U/L、(62.61±31.76)U/L,明显高于正常组的LDH水平(28.60±8.91)U/L(P<0.05),与缓解组LDH水平(61.06±28.41)U/L比较差异无统计学意义(P>0.05),缓解组LDH水平明显高于正常组(P<0.05)。
     第三部分SAA组骨髓CD34+细胞Fas蛋白的表达量为46.59±27.60%,明显高于对照组(8.89±7.28%,P<0.01);SAA组CD14+、CD33+、GlycoA+细胞Fas蛋白的表达量分别为29.29±9.23%、46.88±14.30%、15.15±9.26%,明显低于对照组(51.25±38.36%、72.06±39.88%、50.38±39.88%,P<0.05)。SAA初治患者效应细胞与正常健康人靶细胞(实验组)CD34+、CD33+、CD14+细胞凋亡率分别为55.43±20.50%、38.13±20.10%、61.87±21.65%,均明显高于正常人效应细胞与正常人靶细胞混合培养组(对照组)35.02±13.95%、23.44±10.33%、37.04±22.41%(P均<0.05);实验组CD45-细胞凋亡率为26.43±24.99%,与对照组22.76±7.62%无明显差异(P>0.05)。
     第四部分SAA患者mDC细胞内蛋白成分与缓解后患者及正常人之间进行对比,其凋亡相关蛋白(p53、caspase3、Fas),核糖体连接蛋白、泛素化相关蛋白表达增高,与SAA免疫发病机制中mDC细胞激活相关。结论
     (1)SAA患者外周血CD8+HLA-DR+效应T细胞穿孔素、颗粒酶表达水平均较正常人明显升高,提示穿孔素、颗粒酶可能在SAA患者细胞毒性T淋巴细胞(cytotoxic lymphocyte, CTL)损伤骨髓造血过程起到了重要的作用;SAA患者CD8+HLA-DR+T效应细胞FasL表达亦明显增高,可能参与了骨髓造血靶细胞的凋亡损伤,同时高表达的FasL也可能参与了辅助性T细胞(helper T cell,Th)亚群的调节,但对CTL本身可能没有作用;此外,TNF-β也是参与CTL损伤骨髓造血靶细胞的重要效应因子,在SAA患者CD8+HLA-DR+效应T细胞的表达也增高。因此,上述三种途径可能均在SAA免疫发病过程中发挥了重要作用。
     (2)SAA初治患者CD8+HLA-DR+效应T细胞能够明显增加缓解患者及正常人骨髓造血靶细胞凋亡率,提示CD8+HLA-DR+效应T细胞在SAA骨髓免疫损伤中机制中居于重要地位。而缓解SAA患者CD8+HLA-DR+效应T细胞功能并未降至正常,临床应用免疫抑制治疗中应注重足量、足疗程给药,以便彻底控制患者异常免疫状态,防止复发。
     (3)SAA初治患者CD8+HLA-DR+效应T细胞能够诱导正常人CD34+、CD33+、CD14+细胞凋亡增加,对正常的骨髓造血干/祖、粒系、单核系细胞均具有杀伤作用;经检测SAA患者骨髓CD34+、CD33+、CD14+、GlycoA+细胞均表达Fas抗原,并可能因此被高表达FasL的CD8+HLA-DR+效应T细胞识别,故Fas/FasL系统介导的细胞凋亡在SAA免疫发病中发挥了重要作用;而SAA患者CD34+细胞Fas表达明显增加,可能是SAA免疫损伤的主要靶细胞。
     (4)SAA患者mDC中凋亡相关蛋白、核糖体连接及泛素化相关蛋白表达异常,可能与mDC的激活相关。
Objective
     To investigate the level of functional factors secreted from CD8+HLA-DR+effector T cells in peripheral blood (PB) of the patients with severe aplastic anemia(SAA), the damage on hematopoietic cells by this group of cells, and which were the target cells attacked by CD8+HLA-DR+effector T cells. Thus, we investigated the function of CD8+HLA-DR+cells, which were considered to be activated CTL, in peripheral blood to further explore the pathogenesis of SAA. Also, we explored the heterogenic proteins in myeloid dentritic cells between SAA patients and normal controls, which may be the pathogenic antigen in SAA.
     Methods
     Untreated SAA patients, remission paitents, as well as normal controls were enrolled in this study. Part Ⅰ The CD8+HLA-DR+cells were sorted from the PB of24untreated SAA patients and23normal controls by immunomagnetic separation. The mRNA expressions of perforin, granzyme B, tumor necrosis factor-β (TNF-β) and FasL of sorted cells were analyzed by RT-PCR. Part ⅡCD8+HLA-DR+T cells (effector cells) from untreated SAA patients, remission patients and normal controls were co-cultured with bone marrow mononuclear cells (with CD3+T cells depleted) from remission patients and normal controls (target cells). The effector T cells of untreated SAA were cocultured with the target cells of remission patients and normal controls, which were designated as SAA groups1and2, respectively. There were two control groups:one was the remission SAA group (effector cells from untreated SAA patients and target cells of remission patients), and the other was the normal control (effector cells from untreated SAA patients and target cells of normal controls). Apoptosis of target cells was detected by flow cytometry after staining with AnnexinⅤ. The levels of lactate dehydrogenase (LDH) in the supernatant were determined by automatic biochemistry analyzer. Part ⅢCD8+HLA-DR+T cells from untreated SAA patients, and normal controls were co-cultured with bone marrow mononuclear cells (with CD3+T cells depleted) from normal controls. Apoptosis of CD14+、CD33+、CD34+、GlycoA+cells was detected by flow cytometry after staining with AnnexinV. Meanwhile, the expression of Fas on the CD14+、CD33+、CD34+、 GlycoA+cells was detected by flow cytometry in untreated patients and normal controls respectively. Part Ⅳ Bone marrow mononuclear cells were isolated and inoculated in cell culture flask,2hours later the suspended cells were given up. The cells adhering to the wall cultured for7days and became myeloid dentritic cells. After that, the cells were purified by flow cytometry, and extracted total protein from them. Furtherly, explore the difference of the protein among untreated SAA, remission SAA and normal controls by two-dimensinal electrophoresis.
     Results
     Part I The mRNA of perforin, granzyme B of CD8+HLA-DR+T cells were (0.66±0.25)、(0.56±0.26) in untreated group, higher than these of controls (0.53±0.14)、(0.40±0.13)(P=0.042、0.012). The mRNA of FasL in CD8+HLA-DR+T cells of untreated SAA patients was (0.77±0.24),higher than that of controls (0.61±0.16)(P=0.011). The mRNA of TNF-β in CD8+HLA-DR+T cells of untreated SAA patients was (0.58±0.16),also higher than that of controls (0.46±0.15)(P=0.011).
     Part II The apoptosis values in SAA group1(CD8+HLA-DR+T cells from untreated SAA patients and CD3-bone marrow mononuclear cells from remission patients), SAA group2(CD8+HLA-DR+T cells from untreated SAA patients and CD3-bone marrow mononuclear cells from normal controls), the remission group (CD8+HLA-DR+T cells and CD3-bone marrow mononuclear cells from remission patients) and the normal control (CD8HLA-DR+T cells and CD3-bone marrow mononuclear cells from normal controls) were41.12±24.84%,45.81±20.47%,35.03±22.09%,20.95±13.82%. There were no significant differences between SAA group1, SAA group2, and the remission group (P>0.05). However, the apoptosis in each of these groups was higher than in the normal control (P<0.05).
     The LDH levels in SAA group1, SAA group2, the remission group and normal control were74.56±49.13U/L,62.61±31.76U/L,61.06±28.41U/L, and28.60±8.91U/L. There were no significant differences between SAA group1, SAA group2, and the remission group (P>0.05). However, the level of LDH in these groups was significantly higher than in the normal control (P<0.05).
     Part Ⅲ The ratios of Fas in the CD34+cells from SAA groups was46.59±27.60%, significantly higher than that of normal control (8.89%±7.28%, P<0.01). The ratio of Fas in the CD14+、CD33+、GlycoA+cells from SAA groups were29.29±9.23%、46.88±14.30%,15.15±9.26%, significantly lower than that of normal control (51.25±38.36%,72.06±39.88%、50.38±39.88%, P<0.05). The apoptosis values of CD34+、CD33+、CD14+cells in SAA group (CD8+HLA-DR+T cells from untreated SAA patients and CD3-bone marrow mononuclear cells from normal contros) were55.43±20.50%、38.13±20.10%、61.87±21.65%, significantly higher than that in the normal control (35.02±13.95%、23.44±10.33%、37.04±22.41%,P<0.05). However, there were no significant differences of CD45-cells between SAA group and normal control (P>0.05).
     Part IV Our studies about intracellular proteins in mDC have demonstrated that the expression of apoptotic protein (p53,caspase3,Fas), spliceosome-related protein, and ubiquitin-related protein were higher in SAA than normal controls, which seem to related to mDC activation.
     Conclusions
     (1) By RT-PCR, we found that the expression of perforin, granzyme B were elevated in the CD8+HLA-DR+T cells, suggested that CD8+HLA-DR+T cells and their functional products might contribute to bone marrow failure in SAA. We also found that the expression of FasL of CD8+HLA-DR+T cells were higher in the SAA than normal controls. Thus, FasL might take part in the pathogenesis of SAA, however, it might have no effect on CD8+HLA-DR+T cells. Moreover, the expression of tumor necrosis factor-beta (TNF-β) were elevated in the CD8+HLA-DR+T cells, which might be the important functional factor in the CD8+HLA-DR+T cells of SAA patients.
     (2) The CD8+HLA-DR+T cells from untreated SAA and remission patients were more cytotoxic than those cells from healthy controls. These observations suggest that the induction of apoptosis of hematopoietic cells by CD8+HLA-DR+T cells might play a critical role in the bone marrow failure of SAA. In our research, the cytotoxicity of CD8+HLA-DR+T cells was reduced after IST treatment, but it did not reach the level of the control subjects as the normal state. Thus, in order to decrease the risk of relapse, it is important for SAA patients to maintain the IST treatment for a longer period of time, and to taper cyclosporine very slowly.
     (3) The apoptosis of CD34+、CD33+、CD14+cells from the normal persons increased after coculture with the CD8+HLA-DR+T cells from SAA patients, which indicated that the CD8+HLA-DR+T cells from SAA patients may lead to the excessive apoptosis of hematopoietic cells in normal controls. The expression of Fas on the CD34+、CD33+、CD14+、GlycoA+cells were all positive, which may induce the damage by CD8+HLA-DR+T cells. And the expression of Fas on the CD34+cells markly increased, which may be the main target cell in the pathogenesis of SAA.
     (4) Abnomal expression of apoptotic protein, spliceosome-related protein,and ubiquitin-related protein in SAA might be involved in the activation of mDC.
引文
[1]Gidvani V, Ramkissoon S, Sloand EM, et al. Cytokine gene polymorphisms in acquired bone marrow failure. Am J Hematol,2007,82(8):721-724.
    [2]Kalto K, Otsubo H, Usui N, et al. Thl/Th2 lymphocyte balance in patients with aplastic anemia. Rinsho Byofi,2004; 52(7):569-73.
    [3]Solomou EE, Rezvani K, Mielke S,et al. Deficient CD4+ CD25+ FOXP3+ T regulatory cells in acquired aplastic anemia. Blood,2007,110(5):1603-1606.
    [4]Zonghong Shao, Meifeng T, Huaquan W, et al. Circulating myeloid dendritic cells are increased in individuals with severe aplastic anemia.Int J Hematol,2011, 93(2):156-162.
    [5]王珺,邵宗鸿,付蓉,阮二宝,瞿文,梁勇,刘鸿,吴玉红,宋嘉,王化泉,邢莉民,关晶,李丽娟,刘惠,董舒文,由莉,邹鹏.重型再生障碍性贫血患者外周血树突细胞亚群及其与淋巴细胞转录因子T-bet表达的相关性.中华血液学杂志,2008,29(11):733-736.
    [6]何广胜,邵宗鸿,和虹,刘鸿,白洁,施均,曹燕然,涂梅峰,孙娟,贾海蓉,杨崇礼.重型再生障碍性贫血患者骨髓中辅助性T细胞亚群及功能的变化.中华血液学杂志,2004,25(10):613-616.
    [7]Zonghong Shao, Meifeng Tu, Hong Liu, Guangsheng He, Jun Shi, Jie Bai, Yanran Cao, Huaquan Wang, Limin Xing, Zhenzhu Cui, Juan Sun, Hairong Jia. Quantitative Changes of T Helper Cell 3 and CD4+CD25+T Regulator Cells in Peripheral Blood and the Serum Levels of TGF-β1 of the Patients with Severe Aplastic Anemia. Blood (ASH Annual Meeting Abstracts),2006,108:3752.
    [8]Mekmullica J, Brouwers P, Charurat M, et al. Early immunological predictors of neurodevelopmental outcomes in HIV-infected children.Clin Infect Dis,2009,48:338-346.
    [9]Viallard JF, Blanco P, Andre M, et al. CD8+HLA-DR+ T lymphocytes are increased in common variable immunodeficiency patients with impaired memory B-cell differentiation. Clin Immunol,2006,119:51-58.
    [10]冯乐,邵宗鸿.重型再生障碍性贫血患者CD8+效应T细胞损伤骨髓造血途径的研究.中华血液学杂志,2011,32(9):597-601Greenberg PL, Attar E, Bennett JM, et al. Myelodysplastic syndromes. J Natl Compr Canc Netw.2011, 9(1):30-56.
    [11]Keckler MS. Dodging the CTL response:viral evasion of Fas and granzyme induced apoptosis. Front Biosci,2007,12:725-732.
    [12]Solomou EE, Gibellini F, Stewart B, et al. Perforin gene mutations in patients with acquired aplastic anemia.Blood,2007,109(12):5234-5237.
    [13]Xu JL, Nagasaka T, Nakashima N. Involvement of cytotoxic granules in the apoptosis of aplastic anaemia.Br J Haematol,2003,120(5):850-852.
    [14]Khole V, Wakle M.A testis specific auto-antigen TSA70 belongs to Odf2/Cenexin family. Soc Reprod Fertil Suppl,2007,63:159-171.
    [15]Nahm DH,Lee KH,Shin JY,et al.Identification of alpha-enolase as an autoantigen associated with severe asthma.J Allergy Clin Immunol,2006,118:376-381.
    [16]Lupi I, Broman KW, Tzou SC, Gutenberg A, Martino E, Caturegli P.Novel autoantigens in autoimmune hypophysitis. Clin Endocrinol (Oxf),2008,10.
    [17]Chen M, Zhao MH, Zhang YK, Wang HY.Antineutrophil cytoplasmic autoantibodies in patients with systemic lupus erythematosus recognize a novel 69 kDa target antigen of neutrophil granules.Nephrology (Carlton),2005,10(5): 491-495.
    [18]Schulz C, Leuschen NV, Frohlich T, et al. Identification of novel downstream targets of platelet glycoprotein VI activation by differential proteome analysis: implications for thrombus formation. Blood.2010,115(20):4102-4110.
    [19]Cummins TD,Barati MT,Coventry SC,et al.Quantitative mass spectrometry of diabetic kidney tubules identifies GRAP as a novel regulator of TGF-beta signaling [J]. Biochim Biolphys Acta 2010,1804(4):653-661.
    [20]Young NS, Bacigalupo A, Marsh JC. Aplastic anemia: pathophysiology and treatment. Biol Blood Marrow Transplant,2010,16:S19-125.
    [21]张之南,沈悌.血液病诊断及疗效标准(第3版).北京,科学出版社,2007:19.
    [22]邵宗鸿.再生障碍性贫血的研究.基础医学与临床,2007,27:233-237.
    [23]Solomou EE, Keyvanfar K, Young NS. T-bet, a Thl transcription factor, is up-regulated in T cells from patients with aplastic anemia. Blood,2006, 107:3983-3991.
    [24]李智赏,邵宗鸿,付蓉,等.重型再生障碍性贫血患者外周血自然杀伤细胞亚群百分比及功能变化[J].中华医学杂志,2011,91:1084-1087.
    [25]Passweg JR, Marsh JC. Aplastic anemia: first-line treatment by immunosuppression and sibling marrow transplantation. Hematology Am Soc Hematol Educ Program,2010:36-42.
    [26]王珺,邵宗鸿.重型再生障碍性贫血患者树突细胞刺激异体淋巴细胞增殖的 功能.中华医学杂志,2009,48(12):1040-1043.
    [27]Pipkin ME, Lieberman J. Delivering the kiss of death: progress on understanding how perforin works[J]. Curr Opin Immunol,2007,19:301-308.
    [28]Pardo J, Aguilo JI, Anel A, et al. The biology of cytotoxic cell granule exocytosis pathway:granzymes have evolved to induce cell death and inflammation [J]. Microbes Infect,2009,11:452-459.
    [29]Blaneo P, Pitard V, Viallard J F, et al. Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus [J]. Arthritis Rheum,2005,52:201-211.
    [30]Prpie Massari L, Kastelan M, Gruber F, et al. Perforin expression in peripheral blood lymphocytes and skin-infiltrating cells in patients with lichen planus[J]. Br J Dermatol,2004,151:433-439.
    [31]Lettau M, Paulsen M, Kabelitz D, et al. FasL expression and reverse signalling[J]. Results Probl Cell Differ,2009,49:49-61.
    [32]Nadeau KC, Callejas A, Wong WB, et al . Idiopathic neutropenia of childhood is associated with Fas/FasL expression [J]. Clin Immunol,2008,129: 438-47.Ogata K, Kishikawa Y, Satoh C, et al. Diagnostic application of flow cytometric characteristics of CD34+ cells in low-grade myelodysplastic syndromes. Blood,2006,108:1037-1044.
    [33]Takaoka Y, Abe Y, Haraguchi R, et al . Lymphotoxin (TNF-beta).2010, 68:93-95.
    [34]陈桂彬,邵宗鸿,贾海蓉,等.再生障碍性贫血患者骨髓造血干/祖细胞体外增殖分化特征的研究.中华血液学杂志,1999,20(10):529-531.
    [35]和虹,邵宗鸿,何广胜,等.Thl细胞在再生障碍性贫血发病机制中的作用.中华血液学杂志,2002,23(11):574-577.
    [36]涂梅峰,邵宗鸿,刘鸿,等.重型再生障碍性贫血患者Th3细胞、调节T细胞数量和转化生长因子β1的水平[J].中华血液学杂志,2006,27(11):753-756.
    [37]Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia [J].Blood,2006,108(8):2509-2519.
    [38]夏长青,储榆林,张君奎,邵宗鸿,等.严重型再生障碍性贫血患者骨髓和外周血 HLA-DR+T细胞的变化及其淋巴细胞造血抑制活性的研究[J].中华血液学杂志,1997,18(4):186-189.
    [39]邢智伟,李云霞.Fas系统与部分凋亡相关性疾病关系的研究进展[J].医学综述,2010,16(1):33-35.
    [40]Brumatti, Gabriela/G; Sheridan, Clare/C; Martin, Seamus J/SJ. Expression and purification of recombinant annexin V for the detection of membrane alterations on apoptotic cells. Methods (San Diego, Calif.).2008 Mar;44(3):235-40.
    [41]Vermes I, Hannen C, Stefens Nakken H, et al . A novel assay for apoptosis flowcytometric detection of phasphatidylseril 1 e expression on early apoptotic cells using fluoresce labeled Annexin V [J]. J ImmunolMethods,1995,184(1): 39-51.
    [42]Frickhofen, N., Heimpel, H., Kaltwasser, J.P.& Schrezenmeier, H., for the German Aplastic Anaemia Study Group (2003) Antithymocyte globulin with or without cyclosporin A: 11-year follow-up of a randomised trial comparing treatments of aplastic anaemia. Blood,101,1236-1242.
    [43]Locasciulli A, Oneto R, Bacigalupo A, et al. Outcome of patients with acquired aplastic anemia given first line bone marrow transplantation or immunosuppressive treatment in the last decade:a report from the European Group for Blood and Marrow Transplantation (EBMT). Haematologica.2007;92: 11-18.
    [44]邵宗鸿.再生障碍性贫血的规范化诊治.中国实用内科杂志,2010,30(4):311-313.
    [45]中华医学会血液学分会红细胞疾病(贫血)学组.再生障碍性贫血诊断治疗专家共识.中华血液学杂志,2010,31(11):790-792.
    [46]Nakao S. Immune mechanism of aplastie anemia[j]. Int J Hematol,1997,66: 127-134.
    [47]Randhawa, Shahid R/SR;Chahine, Bassem G/BG;Lowery-Nordberg, Mary/M;Cotelingam, James D/JD;Casillas, Adrian M/AM. Underexpression and overexpression of Fas and Fas ligand:a double-edged sword. Annals of allergy, asthma & immunology:official publication of the American College of Allergy, Asthma,& Immunology.2010 Apr; 104(4):286-92
    [48]Bohana-Kashtan O, Civin CI. Fas ligand as a tool for immunosuppression and generation of immune tolerance. Stem Cells,2004,22(6):908-924.
    [49]Otsuki, T/T;Hayashi, H/H;Nishimura, Y/Y;Hyodo, F/F;Maeda, M/M;Kumagai, N/N;Miura, Y/Y;Kusaka, M/M;Uragami, K/K. Dysregulation of autoimmunity caused by silica exposure and alteration of Fas-mediated apoptosis in T lymphocytes derived from silicosis patients. International journal of immunopathology and pharmacology.2011 Jan-Mar;24(1 Suppl):11S-16S.
    [50]Ehrenschwender, Martin/M; Wajant, Harald/H. The role of FasL and Fas in health and disease. Advances in experimental medicine and biology.2009;647: 64-93.
    [51]Pryczynicz, Anna/A;Guzinska-Ustymowicz, Katarzyna/K;Kemona, Andrzej/A. Fas/FasL expression in colorectal cancer. An immunohistochemical study. Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society.2010 Sep 30;48(3):425-9.
    [52]Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. Ⅰ. Morphology, quantitation, tissue distribution[J]. J Exp Med,1973,137(5):1142-1162.
    [53]Karni A, Abraham M, Monsonego A, et al. Innate immunity in multiple sclerosis: myeloid dendritic cells in secondary progressive multiple sclerosis are activated and drive a proinflammatory immune response [J]. J Immunol,2006,177(6): 4196-4202.
    [54]Khole V, Wakle M. A testis specific auto-antigen TS A70 belongs to Odf2/Cenexin family. Soc Reprod Fertil Suppl,2007,63:159-171.
    [55]Thebauh S, Gilbert D, Machour N, et al . Two dimensional electrophoresis and mass spectrometry identification of proteins bound by a murine monoclonal an ti-eardiolipin antibody:a powerful technique to characterize the cross-reactivity of a single autoantibody. Electrophoresis,2000,21:2531-2539.
    [56]曹雪涛.树突状细胞与肿瘤的免疫治疗和基因治疗:树突状细胞的细胞与分子生物学Keystone会议(美国)简介.中国肿瘤生物治疗杂志,1998,5(2):82-84.
    [57]Vinuesa CG, Cook MC, Angelucci C, et al . A RING. type ubiquitin ligase family member required to repressfollicular helper T cells and autoimmunity[J]. Nature,2005,435:452-458.
    [58]Stoneley M,Willis AE.Cellular internal ribosome entry segments:structures, trans-acting factors and regulation of gene expression. Oncogene,2004, 23:3200-7.
    [59]Park I H, Yeon S I, Youn J H, et al.Expression of a novel se-creted splice variant of the advanced glycation end products (RAGE) in human brain astrocytes and peripheral blood mononu-clear cells [J].Mole Immun,2004,40:1203.1211.
    [60]李建,徐惠绵,孙秀菊等.人核糖体小亚基蛋白24剪接变异体mRNA在胃癌中的表达.中华实验外科杂志.2004;21:1076-8.2007,15:292-5.
    [61]Wang GS, Cooper TA. Splicing in disease:disruption of the splicing code and the decoding machinery. Nat Rev Genet 2007,8:749-61
    [62]Srebrow A, Kornblihtt AR .The connection between splicing and cancer. J Cell Sci.2006,119:2635-41
    [63]陈宏,谢兆霞,姜浩等.核糖体蛋白L6对K562/A02细胞耐药性及凋亡的影响.中国实验血液学杂志.
    [64]Loqing WT, Eisman D.levated expression of ribosomal protein genes L37,RPP-1,and S2 in the presence of mutant p53.Cance Epidemiol Biomarkers Prev.1999,8:1011-6.
    [1]邵宗鸿.再生障碍性贫血的规范化诊治.中国实用内科杂志,2010,30(4):311-313.
    [2]Young NS, Bacigalupo A, Marsh JC. Aplastic anemia:pathophysiology and treatment. Biol Blood Marrow Transplant,2010,16:S119-125.
    [3]Hattori M, Terasawa T, Tsushita K, et al. The status of antithymocyte globulin therapy for adult patients in Japan: retrospective analysis of a nationwide survey. Int J Hematol.2008,87:48-55.
    [4]中华医学会血液学分会红细胞疾病(贫血)学组.再生障碍性贫血诊断治疗专家共识.中华血液学杂志,2010,31(11):790-792.
    [5]Marsh JC, Ball SE, Cavenagh J, et al. Guidelines for the diagnosis and management of aplastic anaemia. Br J Haematol.2009; 147:43-70.
    [6]Wassim Y, Almawi, Ohannes K, et al. Clinical and mechanistic differences between FK506(tacrolimus) and cyclosporin A. Nephrol Dial Transplant,2000,15: 1916-1918.
    [7]Alsuhan A,Goldenberg NA,Kaiser N,et al.Tacrolimus as an alternative to cyclosporine in the maintenance phase of immunosuppressive therapy for severe aplastie anemia in children[J]. Pediatr Blood Cancer,2009,52(5):626-630.
    [8]Scheinberg P, Nunez O, Wu C, Young N. Treatment of severeaplastic anaemia with combined immunosuppression:antithymocyte globulin, ciclosporin and mycophenolate mofetil. Br Jm Haematol.2006; 133:606-611.
    [1]Harry J L,Wilkins M R,Herbert B R,et al .Proteomics:capacity versus utility [J]. Electrophoresis,2000,21:1071-1081.
    [2]Nagaraj N,Lu A,Mann M,et al.Detergent-based but gel-free method allows identification of several hundred membrane proteins in single LC-MS rnns. Journal of Proteome Research,2008,7(11):5028-5032.
    [3]Gonzalez J,Cornejo A,Santos MR,et al .A novel protein phosphatase 2A(PP2A)is involved in the transformation of human protozoan parasite Trypanosoma cruzi. Biochem J,2003,374(Pt3):647-656.
    [4]Kim H,Eliuk S,Deshane J, et al.2D gel proteomies:an approach to study age-related differences in protein abundance or isoform complexity in biological samples.Methods Mol Biol,2007,371(1):349.
    [5]Brewis IA, Brennan P. Proteomics technologies for the global identification and quantification of proteins. Adv Protein Chem Struct Biol,2010,80C:1-44.
    [6]Chromy BA, Gonzales AD, Perkins J,et al. Proteomic analysis of human serum by two-dimensional differential gel electrophoresis after depletion of high-abundant proteins.J Proteome Res,2004 Nov-Dec;3(6):1120-7.
    [7]Schumacher JA, Crockett DK, Elenitoba-Johnson KS, Lim MS. Evaluation of Enrichment Techniques for Mass Spectrometry-Identification of Tyrosine Phosphoproteins in Cancer Cells.J Mol Diagn,2007 Apr;9(2):169-177.
    [8]Yuana X, Desiderio D M. Proteomics analysis of human cerebrospinal fluid. J Chromatog.B Analyt Technol Biomed Life Sci,2005,815(1-2):179.
    [9]Fic E, Kedracka-Krok S, Jankowska U,et al. Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis, 2010 Oct;31(21):3573-9.
    [10]Gorg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics[J]. Proteomics,2004,4(12):3665-3685.
    [11]Adkins JN, Varnum SM, Auberry KJ, et al. Toward a human blood serum proteome:analysis by multidimensional separation coupled with mass spectrometry. Mol Cell Proteomics,2002,1:947-955.
    [12]Barry RC, Alsaker BL, Robison-Cox J F,et al.Quantitative evaluation of sample application methods for semipreparative separations of basic proteins by two-dimensional gel electrophoresis [J].Electrophoresis,2003,24(19-20):3390-3404.
    [13]Sinha P, Poland J, Sehonozer M, et al . A new silver staining paratus and procedure for ma trixassisted laser desorption / ionization-time of flight analysis of proteins after two-dimensional electrophoresis[J].Ptrteomies,2001,1:830-840
    [14]Pink M,Verma N,Rettenmeier AW, et al.CBBstaining protocol with higher sensitivity and mass spectrometric compatibility. Electrophoresis,2010 Jan;31(4):593-598.
    [15]Lopez MF, Berggren K, Chernokalskaya EA, et al. A comparison of silver stain and SYPRO Ruby Protein Gel Stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling. Electrophoresis, 2000 Nov;21(17):3673-3683.
    [16]Friedman DB, Hill S, Keller JW, Merchant NB, et al. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry,Proteomics,2004,4(3):793-811.
    [17]Ana M, Laura GG, Willy RG,et al. Derivatization of biomolecules for chemiluminescent detection in capillary electrophoresis[J].Analyt Teohnol Biomed Life Sci,2003,793(1):49-74.
    [18]Janine B.Mills, Colin T.Mant, Robert S.Hodges. One-step purification of a recombinant protein from a whole cell extract by reversed-phase high-performance liquid chromatography [J]. J ChromatogrA,2006,1133 (1-2):248-253.
    [19]Santiago-Rivas S, Moreda-Pineiro A, Bermejo-Barrera A, Bermejo- Barrera P. Fractionation metallothionein-like proteins in mussels with on line metal detection by high performance liquid chromatography inductively coupled plasma-optical emission spectrometry [J].Talanta,2007,71 (4):15802 1586.
    [20]Bayram T, Pekmez M, Arda N, Yalcin AS. Antioxidant activity of whey protein fractions isolated by gel exclusion chromatography and protease treatment[J]. Talanta, 2008,75 (3):705-709.
    [21]Neverova Ⅰ, Van Eyk JE.Role of chromatographic techniques in proteomic analysis.J Chromatogr B Analyt Technol Biomed Life Sci,2005; 815 (1-2):51-63.
    [22]Gevaert K,Vandekerckhove J. Protein identification methods in proteomics. Electrophoresis,2000; 21(6):1145-1154.
    [23]Wisniewski J R. Mass spectrometry-based proteomics:principles, perspectives, and challenges[J]. Arch Pat hol Lab Med,2008,132 (10):1566-1569.
    [24]Kolkman A, Slijper M, Heck AJ. Development and application of proteomics technologies in Saccharomyces cerevisiae. Trends Biotechnol,2005 Dec;23(12): 598-604. Epub 2005 Oct 3.
    [25]Rebecca D P, Stephen M S, DeAnne M M, et al. The rotavirus enterotoxin NSP4 directly interacts with the caveolar structural protein caveolin-1[J].J Virol,2006, 80(6):2842-2854.
    [26]van Criekinge W, Schotte P, Heyninck K, Beyaert R. The yeast three-hybrid system as a tool to study caspases. Methods Mol Biol,2004;282:243-254.
    [27]Carvalho MF, Turgeon R, Lazarowitz SG. The geminivims nuclear shuttle protein NSP inhibits the activity of ATNSI, a vascular-expressed Arabidopsis acetyltransferase regulated with the sink-to-source transition. Plant Physiol,2006 Apr; 140(4):1317-30.
    [28]Nelson TJ, Alkon D L. Protection against beta-amyloid-induced apoptosis by peptides interacting with beta-amyloid. J Biol Chem,2007,282(43):31238-31249.
    [29]Hsiao K C, Brissette R E, Wang P, et al . Peptides identify multiple hotspots within the ligand binding domain of the TNF receptor 2 [J]. Proteome Sci,2003, Jan 24;1(1):1.
    [30]Garufi G, Minenkova O, Lo Passo C, et al.Display libraries on bacteriophage lambda capsid.Biotechnol Annu Rev,2005; 11:153-90.
    [31]Paradis V, Degos F, Dargere D, et al.Identification of a new marker of hepatocellular carcinoma by serum protein profiling of patients with chronic liver diseases[J]. Hepatology,2005,41 (1):40-47
    [32]Houseman BT, MrksichM. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification [J]. Chem Biol,2002,9(4):443-454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700