抗体封闭趋化蛋白受体5对1型糖尿病发病的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1型糖尿病旧称胰岛素依赖性糖尿病(IDDM),系T淋巴细胞介导的器官特异性自身免疫性疾病,以胰腺β细胞浸润、胰岛炎症、β细胞凋亡、胰岛素分泌不足为特点。其发病机理目前尚不完全明了。
    根据氨基酸序列中两个半胱氨酸的位置,趋化因子可分为四个亚家族:CXC、CC、C和CX3C。近年来的研究显示CC趋化因子及其受体家族在诸如实验性过敏反应性脑脊膜炎、多发性硬化症、类风湿性关节炎和1型糖尿病等自身免疫性疾病的发病过程中有重要作用。
    目 的:
    本研究拟用我实验室保存的抗小鼠CCR5膜外第一襻多克隆抗体,在1型糖尿病模型动物体内封闭CCR5分子,观察动物发病的变化,并对其中可能的机制作初步的研究。
    方 法:
    NOD.Scid(severe combined immunodeficiency)小鼠系先天性缺乏T淋巴细胞、B淋巴细胞和NK细胞的严重联合免疫缺陷鼠,利用自身免疫疾病可以通过过继致敏淋巴细胞被动转移的原理,我们将发病的1型糖尿病模型动物-NOD(Nonobese diabetic)鼠的脾细胞过继至上述NOD.Scid小鼠体内,建立过继性1型糖尿病小鼠模型。
    将20接受过继的NOD.Scid小鼠随机分成3组(A组6、B组7、C组7)。A组腹腔注射上述抗CCR5膜外第一襻抗体,一周3次,共12次;B组用相同方法注射PBS;C组在细胞过继后4~5周开始注射抗体,一周3次,共12次。测定三组小鼠血糖和体重。细胞过继10周或小鼠出现重度糖尿病临床表现时处死。取小鼠胰腺组织作H&E染色,观察其病理学变化,作胰岛炎性积分;取胰腺组织作免疫组织化学染色,检测CCR5在发病小鼠胰腺中的表达。取小鼠脾细胞制成单细胞悬液,用尼龙毛分离得到T淋巴细胞作为反应细胞,以NOD.Scid小鼠胰腺组织作为刺激物,在二氧化碳孵箱中培养,于24小时和48小时分别收集细胞上清作IL-2和IL-10、INF-γ的ELISA分析。
    
    
    结 果:
    (1)早期注射抗CCR5抗体可部分抑制1型糖尿病。在细胞过继后70天,A组中有2只小鼠出现血糖升高(1只死亡),而B组中所有小鼠均出现血糖升高、多尿、体重减轻的糖尿病临床表现,其中2只死亡。
    (2)晚期注射抗CCR5抗体未对1型糖尿病的发展产生影响。
    (3)早期注射抗CCR5抗体可抑制胰岛炎的发生。从胰腺的H&E染色切片上可见,A组未发病小鼠呈正常状态,B组小鼠胰岛单核细胞浸润明显,且数量减少,面积减小。炎性积分A组与B组差异显著。(A组:0.3±0.1,n=5;B组:2.5±0.2,n=4;p<0.001)
    (4)免疫组织化学检测显示发病的小鼠胰腺CCR5较正常NOD.Scid小鼠有明显提高。
    (5)抗CCR5抗体对T淋巴细胞产生细胞因子的影响。A组小鼠T细胞上清中所含的IL-2、IL-10、INF-γ水平分别为25.2pg/ml、27.3pg/ml、0.24ng/ml,而B组小鼠T细胞上清中含三种细胞因子水平为57.7pg/ml、31.6pg/ml、18.03ng/ml,统计学分析,两组小鼠的IL-2和INF-γ水平间有显著差异,而IL-10间无显著差异。
    结 论:
    本实验进行了趋化因子蛋白受体5(CCR5)同1型糖尿病发生关系的研究。结果表明早期运用体内注射抗CCR5膜外第一襻多克隆抗体封闭过继性1型糖尿病模型小鼠体内CCR5分子,可部分的抑制疾病的发生。起潜在机制,我们认为可能同封闭CCR5分子后影响小鼠的单核细胞向胰腺聚积、浸润,以及影响Th1类细胞因子的分泌有密切的关系。
Type 1 diabetes is an autoimmune disease characterized by the destruction of pancreatic islet β-cells by invading leukocytes and the consequent deterioration of the insulin-dependent glucose homeostasis. Although the pathway of the disease has not yet clarified, many studies show that chemokines and chemokine receptors are critically involved in this autoimmune disease by activating migration monocytes and recruitment of T cells into islets.
    Depending on the juxtaposition of the first two cysteine residues in amino acid sequence, chemokines are divided into four classes: the CXC, CC, C and CX3C families. Chemokines act through specific receptors that belong to the 7-transmenbrane spanning, G-protein-coupled receptor family. Recent observations suggested CC chemokines might play an important role in autoimmune diseases such as experimental allergic encephalomyelitis, active multiple sclerosis and type 1 diabetes.
    Objective:
     We used a specific polyclonal antibody targeting the first extracellular loop of CCR5, in the well-established NOD mouse transfer model, which has higher incidence of diabetes than the spontaneous one, to explore: 1) whether the development of diabetes could be affected by blocking part of CCR5; 2) whether they can serve as the potential therapeutic targets?
    Methods:
     Two diabetic female NOD mice, with blood glucose of 27.2mmol/L and 29.4mmol/L respectively, were killed and suspensions of splenocytes were washed twice in RPMI1640 medium containing 10% fetal calf serum. Each NOD.Scid mouse was injected i.p. with 1×107 splenocytes.
     20 NOD.Scid mice were randomly divided into three groups. One group was injected i.p. with 200 μl PBS. The other two were injected with 10μg of anti-CCR5 Ab (diluted in 200 μl PBS) per mouse each time. PBS,
    
    
    anti-CCR5Ab were injected i.p. into NOD.Scid mice respectively 1 h before cell transfer and then the injection continued for 4 wks three times a week after transfer (a total of 12 injections of 120 μg of Ab per mouse). Blood glucose levels were measured to observe the anti-diabetogenic effect of the antibody. Histological examination, immunohistochemical analysis and ELISA analysis were performed to find the underlying mechanism.
    Results:
    (1) Early administration of anti-CCR5Ab prevents diabetes. Within 70 days, all of the control mice developed diabetes while 4 of the 6 mice treated with anti-CCR5 Ab were diabetes-free.
    (2) Late administration of anti-CCR5Ab does not affect the development of diabetes and insulitis.
    (3) Early administration of anti-CCR5Ab inhibits insulitis. The results of H&E staining and histological examination showed that the mice treated with PBS (7 wks after transfer) had extensive insulitis, whereas anti-CCR5-treated mice revealed no insulitis). The difference of inflammation scores between two groups was significent. (mean±SD: PBS: 2.5±0.2 n=4 mice/group; anti-CCR5: 0.3±0.1 n=5 mice/group; p<0.001 anti-CCR5 vs PBS, Student’s-t test)
    (4) Immunohistochemical analysis of pancreatic sections prepared from diabetic recipient mice showed that the islet cells were intensively stained after incubation with anti-CCR5 Ab. The pancreatic islet of normal NOD.Scid mice failed to be stained with the same concentration of anti-CCR5 Ab.
    (5) Effects of Anti-CCR5 on the secretion of islet Ag-reactive Th1 cells. The supernatant of cultured T cells derived from anti-CCR5-treated mice contained little amounts of IFN-γ (0.24ng/ml) and IL-2 (25.2pg/ml) whereas that from control mice contained much more amounts of IFN-γ (18.03ng/ml) and IL-2 (57.7pg/ml). There was no significant difference in IL-10 (anti-CCR5 vs control Ab 27.3pg/ml vs 31.6pg/ml) produced by islet Ag-specific T cells.
    Conclusion:
    Early administration of polyclonal antibody, targeting the first extracellular
    
    
    loop of CCR5, could induce the resistance to type 1 diabetes in the adoptive transfer model. The mechanisms by which anti-CCR5 Ab prevents the diabetes may be included the remission in insulitis by direct inhibition of migration of monocytes int
引文
Atkinson, M., and Eisenbarth, G. 2001. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358: 221.
    Dimitrios Balomenos, Carla Carvalho-Pinto and Carlos Martínez-A. 2002. Still waiting for the end. EMBO reports 3:104.
    Mark A. Atkinson and S. Brian Wilson. 2002. Fatal attraction: chemokines and type 1 diabetes. J. Clin. Invest. 110:1611.
    Sami T. AZAR, Hala Tamim, Hayfa N. Beyhum, M. Zouhair Habbal, and Wassim Y. Almawi. 1999. Type I (insulin-dependent) diabetes is a Th1- and Th2-mediated autoimmune disease. Clin. Diagn. Lab. Immunol. 6:306.
    Linda M. Bradley, Valérie C. Asensio, Li-Karine Schioetz, Judith Harbertson, Troy Krahl, Gail Patstone, Nigel Woolf, Iain L. Campbell, and Nora Sarvetnick. 1999. Islet-specific Th1, but not Th2, cells secrete multiple chemokines and promote rapid induction of autoimmune diabetes. J. Immunol. 162:2511
    Rossi, D., and Zlotnik, A. 2000. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18:216.
    Karpus, W. J., and R. M. Ransohoff. 1998. Chemokine regulation of experimental autoimmune encephalomyelitis: temporal and spatial expression patterns govern disease pathogenesis. J. Immunol. 161:2667.
    R. M. Ransohoff, T. Wei, K.D. Pavelko, J.-C. Lee, P.D. Murray, and M.Rodriguez. 2002. Chemokine expression in the central nervous system of mice with a viral disease resembling multiple sclerosis: roles of CD4+ and CD8+ T cells and viral persistence. J. Virol. 76:2217.
    Balashov, K. E., J. B. Rottman, H. L. Weiner, and W. W. Hancock. 1999. CCR5+ and CXCR3+ T cells are increased in multiple sclerosis and their ligands MIP-1a and IP-10 are expressed in demyelinating brain lesions. Proc. Natl. Acad. Sci. USA 96:6873.
    Mark J. Cameron, Guillermo A. Arreaza, Marsha Grattan, Craig Meagher, Shayan Sharif, Marie D. Burdick, Robert M. Strieter, Donald N. Cook, and Terry L. Delovitch. 2000.
    
    
    Differential expression of CC chemokines and the CCR5 receptor in the pancreas is associated with progression to type I diabetes. J. Immunol. 165:1102.
    Simon Vassiliadis, Vassiliki Balabanidou, George K Papadopoulos, Irene Athanassakis. 2002. Localization and expression of CCR3 and CCR5 by interleukin-1β in the RIN-5AH insulin-producing model system: a protective mechanism involving down-regulation of chemokine receptors. JOP. 3:66.
    T. Lohmann, S. Laue, U. Nietzschmann, T.M. Kapellen, I. Lehmann, S. Schroeder, R. Paschke, and W. Kiess. 2002. Reduced expression of Th1-associated chemokine receptors on peripheral blood lymphocytes at diagnosis of type 1diabetes. Diabetes 51:2474.
    C. Szalai, A. Csaszar, A. Czinner, T. Szabo, P. Panczel, L. Madacsy, and A. Falus. 1999. Chemokine receptor CCR2 and CCR5 polymorphisms in children with insulindependent diabetes mellitus. Pediatr. Res. 46:82.
    Masako Murai, Hiroyuki Yoneyama, Akihisa Harada, Zhang Yi, Christian Vestergaard, Baoyu Guo, Kenji Suzuki, Hitoshi Asakura, and Kouji Matsushima. 1999. Active participation of CCR5+CD8+ T lymphocytes in the pathogenesis of liver injury in graft-versus-host disease. J. Clin. Invest. 104:49.
    Lola Weiss, Shimon Slavin, Shoshana Reich, Patrizia Cohen, Svetlana Shuster, Robert Stern, Ella Kaganovsky, Elimelech Okon, Ariel M. Rubinstein, and David Naor. 2000. Induction of resistance to diabetes in non-obese diabetic mice by targeting CD44 with a specific monoclonal antibody. Proc. Natl. Acad. Sci. USA 97:285.
    Tisch, R., X.-D. Yang, S. M. Singer, R. S. Liblau, L. Fugger, and H. O. McDevitt. 1993. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366:72.
    Matthias Mack, Josef Cihak, Christopher Simonis, Bruno Luckow, Amanda E. I. Proudfoot, Hilke Brühl, Michael Frink, Hans-Joachim Anders, Volker Vielhauer, Jochen Pfirstinger, Manfred Stangassinger, and Detlef Schl?ndorff. 2001. Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice. J. Immunol. 166:4697.
    Christian Weber, Kim S.C. Weber, Christiane Klier, Songhai Gu, Rudolf Wank,Richard Horuk, and Peter J.Nelson. 2001. Specialized roles of the chemokine receptors CCR1 and
    
    
    CCR5 in the recruitment of monocytes and TH1-like/CD45RO+ T cells. Blood 97:1144.
    Eric J. Kunkel, Judie Boisvert, Kristine Murphy, Mark A. Vierra, Mark C. Genovese, Andrew J. Wardlaw, Harry B. Greenberg, Martin R. Hodge, Lijun Wu, Eugene C. Butcher, and James J. Campbell. 2002. Expression of the chemokine receptors CCR4, CCR5, and CXCR3 by human tissue infiltrating lymphocytes. Am. J. Pathol. 160:347.
    Yasuhiro Uekusa, Wen-Gong Yu, Takao Mukai, Ping Gao, Nobuya Yamaguchi, Masako Murai, Kouji Matsushima, Satoshi Obika, Takeshi Imanishi, Yuji Higashibata, Shintaro Nomura, Yukihiko Kitamura, Hiromi Fujiwara, and Toshiyuki Hamaoka. 2002. A pivotal role for CC chemokine receptor 5 in T-cell migration to tumor sites induced by interleukin-12 treatment in tumor-bearing mice. Cancer Res. 62:3751.
    Elodie Belnoue, Michèle Kayibanda, Jean-Christophe Deschemin, Mireille Viguier, Matthias Mack, William A. Kuziel, and Laurent Rénia. 2003. CCR5 deficiency decreases susceptibility to experimental cerebral malaria. Blood 101:4253.
    James W. Lillard, Jr, Udai P. Singh, Prosper N. Boyaka, Shailesh Singh, Dennis D. Taub, and Jerry R. McGhee. 2003. MIP-1α and MIP-1β differentially mediate mucosal and systemic adaptive immunity. Blood 101:807.
    Takao Mukai, Masayuki Iwasaki, Ping Gao, Michio Tomura, Yumi Yashiro-Ohtani, Shiro Ono, Masako Murai, Kouji Matsushima, Masashi Kurimoto, Mikihiko Kogo, Tokuzo Matsuya, Hiromi Fujiwara, and Toshiyuki Hamaoka. 2001. IL-12 plays a pivotal role in LFA-1-mediated T cell adhesiveness by up-regulation of CCR5 expression. J. Leukoc. Biol. 70:422.
    Brigitte G. Dorner, Alexander Scheffold, Michael S. Rolph, Martin B. Hüser, Stefan H. E. Kaufmann, Andreas Radbruch, Inge E. A. Flesch, and Richard A. Kroczek. 2002. MIP-1α, MIP-1β, RANTES, and ATAC/lymphotactin function together with IFN- as type 1 cytokines. Proc. Natl. Acad. Sci. USA 99:6181.
    Ping Gao, Xu-Yu Zhou, Yumi Yashiro-Ohtani, Yi-Fu Yang, Naotoshi Sugimoto, Shiro Ono, Tsuyoshi Nakanishi, Satoshi Obika, Takeshi Imanishi, Takeshi Egawa, Takashi Nagasawa, Hiromi Fujiwara, and Toshiyuki Hamaoka. 2003. The unique target specificity of a nonpeptide chemokine receptor antagonist: selective blockade of two Th1 chemokine receptors CCR5 and CXCR3. J. Leukoc. Biol. 73:273.
    
    Hilke Brühl, Josef Cihak, Manfred Stangassinger, Detlef Schl?ndorff, and Matthias Mack. 2001. Depletion of CCR5-expressing cells with bispecific antibodies and chemokine toxins: a new strategy in the treatment of chronic inflammatory diseases and HIV. J. Immunol. 166:2420.
    Craig Murdoch and Adam Finn. 2000. Chemokine receptors and their role in inflammation and infectious diseases. Blood 95:3032.
    Dídac Mauricio and Thomas Mandrup-Poulsen. 1998. Apoptosis and the pathogenesis of IDDM. Diabetes 47:1537.
    Xiao Su, Qile Hu, Jane M. Kristan, Cristina Costa, Yamin Shen, Demokos Gero, Louis A. Matis, and Yi Wang. 2000. Significant role for Fas in the pathogenesis of autoimmune diabetes. J. Immunol. 164:2523.
    Martine I. Darville and Décio L. Eizirik. 2001. Cytokine induction of Fas gene expression in insulin-producing cells requires the transcription factors NF-kB and C/EBP. Diabetes 50:1741.
    Huub T. C. Kreuwel, David J. Morgan, Troy Krahl, Alice Ko, Nora Sarvetnick, and Linda A. Sherman. 1999. Comparing the relative role of perforin/granzyme versus Fas/Fas ligand cytotoxic pathways in CD8+ T cell-mediated insulin-dependent diabetes mellitus. J. Immunol. 163:4335.
    Balaji Balasa, Kurt Van Gunst, Nadja Jung, Deepika Balakrishna, Pere Santamaria, Toshiaki Hanafusa, Naoto Itoh, and Nora Sarvetnick. 2000. Islet-specific expression of IL-10 promotes diabetes in nonobese diabetic mice independent of Fas, perforin, TNF receptor-1, and TNF receptor-2 molecules. J. Immunol. 165:2841.
    Chang H. Kim, Lusijah Rott, Eric J. Kunkel, Mark C. Genovese, David P. Andrew, Lijun Wu, and Eugene C. Butcher. 2001. Rules of chemokine receptor association with T cell polarization in vivo. J. Clin. Invest. 108:1331.
    Sallusto F, Palermo B, Lenig D, Miettinen M, Matikainen S, Julkunen I, Forster R, Burgstahler R, Lipp M, Lanzavecchia A. 1999. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29:1617.
    Falko R. Fischer, Yi Luo, Moli Luo, Laura Santambrogio, and Martin E. Dorf. 2001. RANTES-induced chemokine cascade in dendritic cells. J. Immunol. 167:1637.
    
    孙敬方 主编,动物实验方法学[M]. 北京:人民卫生出版社,2001;477-480.
    Ma S W,Zhao D L,Yin Z Q,et a1. Transgenic plants expressing autoantigens fed to mice to induce oral immune tolerance[J]. Nat Med,1997;3(7):793—796.
    施美莲,朱冬琴,高静华 et al. NOD小鼠的遗传学特性和部分生物学特性观察[J]. 上海交通大学学报(农业科学版),2002;20(3),207-211.
    余传霖,熊思东 主编,分子免疫学[M]. 上海:复旦大学出版社,上海医科大学出版社,2001;1100-1150.
    Satoru Yamada, Akira Shimada, Keiichi Kodama, Jiro Morimoto, Ryuji Suzuki, Yoichi Oikawa, Junichiro Irie, and Takao Saruta. 2003. Relationship between ? Cell Mass of NOD Donors and Diabetes Development of NOD-scid Recipients in Adoptive Transfer System. Ann. N.Y. Acad. Sci., Nov; 1005: 211 - 214.
    Sarah E. Eckenrode, Qingguo Ruan, Ping Yang, Weipeng Zheng, Richard A. McIndoe, and Jin-Xiong She. Gene Expression Profiles Define a Key Checkpoint for Type 1 Diabetes in NOD Mice. Diabetes, Feb 2004; 53: 366 - 375.
    Helen E. Thomas, Windy Irawaty, Rima Darwiche, Thomas C. Brodnicki, Pere Santamaria, Janette Allison, and Thomas W.H. Kay. IL-1 Receptor Deficiency Slows Progression to Diabetes in the NOD Mouse. Diabetes, Jan 2004; 53: 113 - 121.
    Marie-Louise Bergman, Nadia Duarte, Susana Campino, Marie Lundholm, Vinicius Motta, Kristina Lejon, Carlos Penha-Gon?alves, and Dan Holmberg. Diabetes Protection and Restoration of Thymocyte Apoptosis in NOD Idd6 Congenic Strains. Diabetes, Jul 2003; 52: 1677 - 1682.
    Karine Thébault-Baumont, Danielle Dubois-Laforgue, Patricia Krief, Jean-Paul Briand, Philippe Halbout, Karine Vallon-Geoffroy, Jo?lle Morin, Véronique Laloux, Agnès Lehuen, Jean-Claude Carel, Jacques Jami, Sylviane Muller, and Christian Boitard. Acceleration of type 1 diabetes mellitus in proinsulin 2–deficient NOD mice. J. Clin. Invest., Mar 2003; 111: 851 - 857.
    M Koulmanda, A Qipo, H Auchincloss Jr, and RN Smith. Effects of streptozotocin on autoimmune diabetes in NOD mice. Clin Exp Immunol, Nov 2003; 134(2): 210-6.
    M Horiki, E Yamato, S Noso, H Ikegami, T Ogihara, and J Miyazaki. High-level expression of interleukin-4 following electroporation-mediated gene transfer
    
    
    accelerates Type 1 diabetes in NOD mice. J Autoimmun, Mar 2003; 20(2): 111-7.
    Y. Clare Zhang, Antonello Pileggi, Anupam Agarwal, R. Damaris Molano, Matthew Powers, Todd Brusko, Clive Wasserfall, Kevin Goudy, Elsie Zahr, Raffaella Poggioli, Marda Scott-Jorgensen, Martha Campbell-Thompson, James M. Crawford, Harry Nick, Terence Flotte, Tamir M. Ellis, Camillo Ricordi, Luca Inverardi, and Mark A. Atkinson. Adeno-Associated Virus-Mediated IL-10 Gene Therapy Inhibits Diabetes Recurrence in Syngeneic Islet Cell Transplantation of NOD Mice. Diabetes, Mar 2003; 52: 708 - 716.
    T Yamamoto, E Yamato, F Tashiro, T Sato, S Noso, H Ikegami, S Tamura, Y Yanagawa, and JI Miyazaki. Development of autoimmune diabetes in glutamic acid decarboxylase 65 (GAD65) knockout NOD mice. Diabetologia, Feb 2004; 47(2): 221-4.
    GR Rayat, RV Rajotte, JG Lyon, JM Dufour, BV Hacquoil, and GS Korbutt. Immunization with streptozotocin-treated NOD mouse islets inhibits the onset of autoimmune diabetes in NOD mice. J Autoimmun, Aug 2003; 21(1): 11-5.
    Elmar Jaeckel, Ludger Klein, Natalia Martin-Orozco, and Harald von Boehmer. Normal Incidence of Diabetes in NOD Mice Tolerant to Glutamic Acid Decarboxylase. J. Exp. Med., Jun 2003; 197: 1635 - 1644.
    Malin Flodstr?m-Tullberg, Deepak Yadav, Robert H?gerkvist, Devin Tsai, Patrick Secrest, Alexandr Stotland, and Nora Sarvetnick. Target Cell Expression of Suppressor of Cytokine Signaling-1 Prevents Diabetes in the NOD Mouse. Diabetes, Nov 2003; 52: 2696 - 2700.
    Stuart P. Berzins, Emily S. Venanzi, Christophe Benoist, and Diane Mathis. T-Cell Compartments of Prediabetic NOD Mice. Diabetes, Feb 2003; 52: 327 - 334.
    Linlin Ma, Shiguang Qian, Xiaoyan Liang, Lianfu Wang, Jennifer E. Woodward, Nick Giannoukakis, Paul D. Robbins, Suzanne Bertera, Massimo Trucco, John J. Fung, and Lina Lu. Prevention of Diabetes in NOD Mice by Administration of Dendritic Cells Deficient in Nuclear Transcription Factor-B Activity. Diabetes, Aug 2003; 52: 1976 - 1985.
    Qing-Sheng Mi, Dalam Ly, S.-E. Lamhamedi-Cherradi, Konstantin V. Salojin, Li
    
    
    Zhou, Marsha Grattan, Craig Meagher, Peter Zucker, Youhai H. Chen, James Nagle, Dennis Taub, and Terry L. Delovitch. Blockade of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Exacerbates Type 1 Diabetes in NOD Mice. Diabetes, Aug 2003; 52: 1967 - 1975.
    M Cetkovic-Cvrlje, AL Dragt, A Vassilev, XP Liu, and FM Uckun. Targeting JAK3 with JANEX-1 for prevention of autoimmune type 1 diabetes in NOD mice. Clin Immunol, Mar 2003; 106(3): 213-25.
    
    M Horiki, E Yamato, S Noso, H Ikegami, T Ogihara, and J Miyazaki. High-level expression of interleukin-4 following electroporation-mediated gene transfer accelerates Type 1 diabetes in NOD mice. J Autoimmun, Mar 2003; 20(2): 111-7.
    N. Petrovsky, D. Silva, L. Socha, R. Slattery, and B. Charlton. The Role of Fas Ligand in Beta Cell Destruction in Autoimmune Diabetes of NOD Mice. Ann. N.Y. Acad. Sci., Apr 2002; 958: 204 - 208.
    P Augstein, A Dunger, P Heinke, G Wachlin, S Berg, B Hehmke, and E Salzsieder. Prevention of autoimmune diabetes in NOD mice by troglitazone is associated with modulation of ICAM-1 expression on pancreatic islet cells and IFN-gamma expression in splenic T cells. Biochem Biophys Res Commun, May 2003; 304(2): 378-84.
    Elmar Jaeckel, Ludger Klein, Natalia Martin-Orozco, and Harald von Boehmer. Normal Incidence of Diabetes in NOD Mice Tolerant to Glutamic Acid Decarboxylase. J. Exp. Med., Jun 2003; 197: 1635 - 1644.
    Pedro B. Simpson, Monica S. Mistry, Richard A. Maki, Weidong Yang, David A. Schwarz, Eric B. Johnson, Francisco M. Lio, and David G. Alleva. Cutting Edge: Diabetes-Associated Quantitative Trait Locus, Idd4, Is Responsible for the IL-12p40 Overexpression Defect in Nonobese Diabetic (NOD) Mice. J. Immunol., Oct 2003; 171: 3333 - 3337.
    Malin Flodstr?m-Tullberg, Deepak Yadav, Robert H?gerkvist, Devin Tsai, Patrick Secrest, Alexandr Stotland, and Nora Sarvetnick. Target Cell Expression of Suppressor of Cytokine Signaling-1 Prevents Diabetes in the NOD Mouse. Diabetes,
    
    
    Nov 2003; 52: 2696 - 2700.
    LM Araujo, J Lefort, MA Nahori, S Diem, R Zhu, M Dy, MC Leite-de-Moraes, JF Bach, BB Vargaftig, and A Herbelin. Exacerbated Th2-mediated airway inflammation and hyperresponsiveness in autoimmune diabetes-prone NOD mice: a critical role for CD1d-dependent NKT cells. Eur J Immunol, Feb 2004; 34(2): 327-35.
    Schmidt, Denise A. Dorsey, Lucie N. Beaudet, Kathy E. Frederick, Curtis A. Parvin, Santiago B. Plurad, and Matteo G. Levisetti. Non-Obese Diabetic Mice Rapidly Develop Dramatic Sympathetic Neuritic Dystrophy: A New Experimental Model of Diabetic Autonomic Neuropathy. Am. J. Pathol., Nov 2003; 163: 2077 - 2091.
    Cyndi Chen, Wen-Hui Lee, Pen Yun, Peter Snow, and Chih-Pin Liu. Induction of Autoantigen-Specific Th2 and Tr1 Regulatory T Cells and Modulation of Autoimmune Diabetes. J. Immunol., Jul 2003; 171: 733 - 744.
    I-Fang Lee, Huilian Qin, Jacqueline Trudeau, Jan Dutz, and Rusung Tan. Regulation of Autoimmune Diabetes by Complete Freund’s Adjuvant Is Mediated by NK Cells. J. Immunol., Jan 2004; 172: 937 - 942.
    Yoichi Oikawa, Akira Shimada, Akira Kasuga, Jiro Morimoto, Tadashi Osaki, Hideaki Tahara, Tatsushi Miyazaki, Fumi Tashiro, Eiji Yamato, Jun-ichi Miyazaki, and Takao Saruta. Systemic Administration of IL-18 Promotes Diabetes Development in Young Nonobese Diabetic Mice. J. Immunol., Dec 2003; 171: 5865 - 5875.
    Sylvie Trembleau, Giuseppe Penna, Silvia Gregori, Nadia Giarratana, and Luciano Adorini. IL-12 Administration Accelerates Autoimmune Diabetes in Both Wild-Type and IFN--Deficient Nonobese Diabetic Mice, Revealing Pathogenic and Protective Effects of IL-12-Induced IFN-. J. Immunol., Jun 2003; 170: 5491 - 5501.
    Alexei Y. Savinov, Andrew Tcherepanov, E. Allison Green, Richard A. Flavell, and Alexander V. Chervonsky. Contribution of Fas to diabetes development. Proc. Natl. Acad. Sci. USA, Jan 2003; 100: 628 - 632.
    HUGH McDEVITT. The T Cell Response to Glutamic Acid Decarboxylase 65 in T Cell Receptor Transgenic NOD Mice. Ann. N.Y. Acad. Sci., Nov 2003; 1005: 75 - 81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700