非均相电催化氧化处理硝基苯废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将自制Fe3+/TiO2催化剂引入电解体系中,利用Fe3+/TiO2-电解体系处理硝基苯废水,显著提高反应速率和COD及硝基苯去除率,形成非均相电催化氧化处理硝基苯废水工艺。通过对煅烧温度及煅烧时间的考察确定Fe3+/TiO2催化剂制备的最佳条件,通过电解实验中对电解时间,电流强度,溶液pH值,支持电解质Na2SO4浓度,催化剂用量,及搅拌速率的考察确定COD及硝基苯去除效果的最佳条件,并对催化剂的催化效率进行分析,从而对催化剂的催化条件有一定的了解,为以后扩大催化剂及催化剂载体的考察范围,将多相催化技术与电解工艺更好的结合提高有机物的降解效率提供数据参考。同时对分别将催化剂载体和催化剂加入到电解体系中的水样的去除效果进行了比较,确定了催化剂载体亦有催化能力,但效果弱于催化剂。并对催化剂的重复使用进行了初步探索,证明了Fe3+/TiO2催化剂系可回收。
Nitrobenzene is the high poisonous substance which is difficult to be biodegraded and can inhibit and poison biochemical reaction. Wastewaters contain Nitrobenzene come widely and can cause a large pollution, its popular treatment include biological, physical and chemical methods. These years, Advanced Oxidation Processes which can degrade organic pollutants effectively is becoming a hot field, creating hydroxyl radical which has a wonderful oxidant performance is the primary characteristic of AOP.
     Electrode Oxidation Methods is useful in the degradation of persistent pollutants, but there are also some shortcomings in the treatment by classical Electrod Oxidation Methods, such as a low reaction rate, a rigorous reaction condition, a large energy consumption. This article put Fe3+ / TiO2 catalyst into electrode oxidation system, to decompose nitrobenzene in wastewater, with a view to enhance the reaction rate and improve the removal rate of nitrobenzene and COD.
     Electrode was made by thermal decomposition method and electric deposition of lead dioxide electrode, and the catalyst is maded by titanium dioxide as the carrier and Ferric chloride as activating agent, mixed with distilled water and then produced at a high temperature calcination.By changing the electrolysis conditions and catalyst preparation conditions determine the best treatment conditions of electrode oxidation with non-homogeneous catalytic system.
     By changing the electrolysis time, current intensity, solution pH value, electrolyte concentration, the amount of catalyst, stirring rate compared the removal effect of COD and nitrobenzene in oder to determine the optimal electrolysis conditions, by changing the catalyst calcination time and calcination temperature determine the Optimal catalyst preparation conditions. The experimental results show that the reaction rate of non-homogeneous which adding the catalysts in the electrolysis system is higher than ordinary electrolysis system. Under the conditions of the adequate reaction time,catalysts can make the nitrobenzene degradation products be oxidized further, which can improve the removal of COD significant. In this experiment, we determine the electrolysis time is 4h. In a certain range of current intensity, with the addition of the catalysts, current efficiency can be raised. Accourding to the comprehensive analysis we choose the current intensity is 0.6A. PH value in the traditional electrolysis system has a great influence, in ordinary electrolysis system, the effect of neutral or acidic is better than alkaline. But in the system which contains catalysts, the impact of the pH value is relatively weak. So we chose 5 as the pH value. Whether or not to add the catalysts, the electrolyte concentration could affect the removal of the effect of water samples. Both the degradation rate of nitrobenzene and COD would be changed. So accourding to the result of the experiment we choose the electrolyte concentration is 1500mg/L. In the experiment, the amount of the catalysts is not better to use more, we should according to specific experimental conditions to select the appropriate dosage. And choose a suitable stirring rate to raise the overall efficiency of electrolysis is the key to improve the removal efficiency. Change the catalyst preparation conditions can optimize the catalyst performance, experimental results show that the catalyst could has the best effect if we calcined at 400℃under 2 hours. Taking all these experimental conditions to draw the ultimate removal of nitrobenzene and COD could achieve 98.41% and 87.68%.
     In order to analyze the effect of the catalysts in the experiment, we analyse the catalytic efficiency, the result show that in the more demanding conditions, the catalytic efficiency is more better. And this may provide the data infrastructure for taking full usage of the catalyst and choosing suitable catalytic conditions.
     In the experimengt of the comparison of carrier and catalyst for the removal of the water samples we found that the carrier in the electrolysis system also played a catalytic role, but it is mainly physical catalyst, however, the addition of the catalysts which contained the active component includes the physical and chemical catalysis.
     The re-use of the Fe3+/TiO2 catalyst is good. After repeated use, the trend of wastewater treatment effect is still gently downward. By 5 times after use, the nitrobenzene and COD removal efficiency of wastewater is still considerable.
     Treatment of organic wastewater contains high poisonous and bio-refractory substance will be a difficulty and a emphasis in environment fathering of our country for a long time. Fe3+/TiO2 is an effective and environment-friendly catalyst because of its good reusing ability and recycling ability.
引文
[1]左玉辉.环境学[M].北京:高等教育出版社, 2003. 116~117.
    [2]童智尤,周集体,陈毓琛.有机污染物在大连近海海水中生物降解速度的研究[J].环境科学, 1997, 18(4): 41~44.
    [3]GB8978—1996中华人民共和国国家标准,污水综合排放标准[S].1996.
    [4]钱易,汤鸿霄,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理[M].北京:中国环境科学出版社, 2000.
    [5]徐寿昌.有机化学[M].北京:高等教育出版社, 1993. 254~256.
    [6]W. J. Ng, J. Y. Hu, S. L. Ong. Effect of Acidogenic Stage on Aerobic Toxic Organic Removal [J]. Journal of Evironmental Engineering(Reston, Virginia). 1999, 125(6): 495~500.
    [7]韦朝海,侯轶,任源等.硝基苯好氧降解的共基质及生物协同作用[J].中国环境科学. 2000, 20(3): 241~244.
    [8]王庆生,李捍东,席兆斗等.利用白腐菌处理含硝基苯类化工废水的研究[J].环境科学研究. 2002, 15(2): 19~21.
    [9]李湛江,韦朝海,任源等.硝基苯降解菌生长特性及其降解活性[J].环境科学.1999,20(5):20~24.
    [10]林忠祥,鞠昭年,高光风.萃取—汽提法处理硝基苯废水的研究[J].环境导报. 1998, (1): 14~17.
    [11]林忠祥,程康华.萃取法去除硝基苯生产废水中硝基酚.环境导报.2000,(2):18~20.
    [12]杨义燕,戴猷元.络合萃取法处理高浓度有机废水[J].现代化工. 1997, (3): 10~14.
    [13]沙耀武,赵文超.含硝基苯或硝基氯苯的废水处理研究[J].精细化工. 1996, 13(5): 57~58.
    [14]林中祥等.萃取-汽提法处理硝基苯废水的研究[J].环境导报. 1998, (1): 14~16.
    [15]威阳环境科学学会.环境评价指南[M].咸阳天则出版社. 1989, 467~480.
    [16]金辉,徐德才.新型有机膨润土对苯胺,硝基苯,十二烷基硫酸钠的吸附性能研究[J].重庆环境科学. 1998, 20(3): 29~32.
    [17]沈耀良.废水处理中几种廉价吸附剂[J].重庆环境科学. 1995, 17(3): 49~53.
    [18]顾曼华,沈小强,沈学优等.有机膨润土吸附硝基苯的性能及其在废水处理中的应用[J].水处理技术. 1994, 20(4): 236~240.
    [19]Rajagopal. C, Kapoor. J. C. Development of adsorptive removal process for treatment of explosives contaminated wastewater using activatd carbon [J]. Journal of Hazardous Materials. 2001, 87(1-3): 73~98.
    [20]Nakai Toshihiro. Supercritical CO2 Extraction Treatment of Organic Compoumd in Aqueous Solution by CountercurrentExtraction [J].Journal of the Society on Water Environment,1999,22(10):854~858.
    [21]Guha Asim K, et al. Multiphase ozonolysis of organics in wastewater by a novel membrane reactor [J]. AICHE Journal.1995,41(8):1998-2012.
    [22]赵军. O3氧化处理苯胺,硝基苯废水的试验研究[J].环境保护科学. 1997, 23(3): 12~14.
    [23]安立超,余宗学,严学亿,胡磊.利用芬顿试剂处理硝基苯类生产废水的研究[J].环境科学与技术.2001,24:3~4.
    [24]Chamarro E, et al. Use of Fenton reagent to improve organic chemical biodegradability [J]. Water Research.2001, 35(4): 1047~1051.
    [25]黄晓东,徐寿昌.用芬顿试剂预氧化提高硝基苯废水的可生化性[J].江汉石油学院学报. 1994, 16(3): 74-78.
    [26]杨合,薛向欣,赵娜等.半导体多相光催化技术研究进展[J].环境科学. 2003, (6): 21~22.
    [27]程沧沧,肖忠海,胡德文等. UV/TiO2—Fenton试剂系统处理制药废水研究[J].环境科学研究. 2001, 14(2): 33~35.
    [28]韦朝海,陈传好,王刚等. Fenton试剂催化氧化降解含硝基苯废水的特性[J].环境科学. 2001, 22(5): 60~64.
    [29]Makarova Olga V, et al. Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene [J]. Environmental Science and Technology. 2000, 34(22): 4797-4803.
    [30]Ma J, Sui M, Zhang T. et al. Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene [J]. Wateer Research, 2005, 39: 779~786.
    [31]杨文忠,陈戈,王海峻. Fenton试剂和紫外光—Fenton试剂联合作用处理硝基苯废水[J].南京化工大学学报. 1998, 20(1): 24~26.
    [32]胡德文,程沧沧.紫外—双氧水和亚铁离子体系对硝基苯光降解的研究[J].重庆环境科学. 1999, 21(3): 34~36.
    [33]Miguel Rodriguez, et al. Influence of H2O2 and Fe(Ⅲ) in the photodegradation [J]. Journal of Photochemistry and Photobiology. A: Chemistry, 2000, 133: 123~127.
    [34]陈继章,赵一先,盛兆其.水中硝基苯的光催化降解初步研究[J].化学世界. 2002(增刊): 58~59.
    [35]Sandra Contreras. UV—and UV/Fe(Ⅲ)—enhanced ozonation of nitrobenzene in aqueous solution [J]. Journal of Photochemistry and Photobiology. A: Chemistry, 2001, 142: 79~83.
    [36]苑宝玲,王洪杰.水处理技术原理与应用[M].北京:化学工业出版社, 2006: 21~22.
    [37]Cheng FengQiu, Wu Su Fang, Cheng Ji Zhong et al. COD Removal Efficiencies of Some Aromatic Compounds in SuperCritical Water Oxidation [J]. China Journal Chemical Engineering, 2001, 9(2): 137~140.
    [38]赵朝成,赵东风.超临界水氧化技术处理硝基苯废水研究[J].重庆环境科学, 23(3): 45~48.
    [39]卞华松,张大年,刘静等.水溶液中硝基苯的超声微电场降解[J].环境化学. 2002,21(3): 264~269.
    [40]熊宜栋,硝基苯制药废水的超声处理研究[J].工业水处理, 2003, 23(1): 44~46.
    [41] Enrigue Brillas. Electrochemical Destraction of Aniline and 4-Chloroaniline for Wastewater Treatment Using a Carbon-PTFE O2-Fed Cathode[J].Journal of Electrochemical soci-ety,1995,142(6):1733~1741.
    [42]宋卫峰,吴斌,马前,等.电解法降解有机污染物机理及动力学的研究[J].化工环保,2001,21(3):131~136.
    [43]顾桂松,胡湖生,杨明德.含氰废水的处理技术最近进展[J].环境保护,2001,2:16~19.
    [44]陶龙骧,谢茂松.电催化和粒子群电极用于处理有机工业污水[J].工业水处理,2000,20(9):1~3.
    [45]陈卫国,朱锡海.电催化产生H2O2和·OH机理及在有机物降解中的应用[J].水处理技术,1997,23(6):354~357.
    [46] Thoma G.Environmental Progess[J].1998,17(3):154~160.
    [47]冯玉杰,李晓岩,龙宏等电化学技术在环境工程中的应用〔北京化学工业出版社,2002,76-94.
    [48]孙晓君,冯玉杰.废水中难降解有机物的高级氧化技术[J]化工环保,2001,21(5):264-269.
    [49] Rodgers J.D.,Bunce N.J.Electrochemical Treatment of 2,4,6-Trinitrotoluene and related compounds [J].Enbiron.Sci.Technol.2001,35(2):406-410.
    [50]Comninellis C..Electrocatalysis in the electrochemical conbersoin/combus for wastewater treatment [J].Electrochimi.Acta,1994,39(11-12):1857-1862.
    [51]谢茂松,王学林,徐桂芬等用电一多相催化反应处理二硝基苯酚工业废水的方法[P]中国专利961155.45.0
    [52]李炳焕,黄艳娥,刘会媛电化学催化降解水中有机污染物的研究进展[J].环境污染治理技术与设备,2002,3(2):23-27.
    [53]谢茂松,王学林,徐桂芬等治理难降解有机工业废水新技术一电-多相催化技术[J]大连铁道学院学报,1998,19(2):35-37.
    [54] Comninellis C,Nerini A.. Anodic oxidation of phenol in the presence of NaCl fof wastewater treatment[J].J.Appl.Electrochem.,1995.25(1):23-28.
    [55]陈武,李凡修,梅平废水处理的电化学方法研究进展[J].湖北化工,2001,(1):10-12.
    [56]熊英健,范娟,朱锡海三维电极电化学水处理技术研究现状及方向[J].工业水处理,1998,18(1):5-8.
    [57]桥本和仁,藤岛昭.Titanium Dioxide:New Uses Through Nano-Technology[J].NATURE,1997,88(8):431~432.
    [58] Polcaro A. M. Palmas S. Renoldi F. Et al.. On the performamce of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wasterwater treatment [J]. J. Appl. Electrochem., 1999, 29(2): 147-151.
    [59]孙德智,于秀娟,冯玉杰环境工程中的高级氧化技术[M].北京化学工业出版社,2002.169-204.
    [60]朱宏丽,王书惠三元电极电解在水处理中的应用[J],环境科学,1985,6(6):36-40.
    [61] Kirk D.W.,Sharifian H. And Foulkes F.R.. Anodic oxidation of aniline for wastewater treatment [J].J.Appl.Electrochem.,1985,59(1):52-59
    [62] Smith V., De Sucre and Watkinson A.P..Anodic oxidation of phenol for wastewater treatment [J]. J. Of Chenm.Enf.Can.,1981,59(1):52-59
    [62] Comninellis Ch..Electrocatalysis in the electrochemical conversion/combussion of organic pollutants for waste water treatment[J]. Electrochemica Acta, 1994, 39(11-12):1857-1862.
    [64] Beck F. And Schulz H..Cr-Ti-Sb oxide composite anodes: Electro-organic oxidation [J].J.Applied Electrochem.,1987,17(5):914-924.
    [65] Do J.S. And Chen C.P.. In situ oxidative of formaldehyde with hydrogen peroxide electrogenerated on the modified graphite [J]. J. Appl. Electrochen., 1994, 24(9):936-942.
    [66] Do J.S. And Chen C.P..Kinetics of situ degradation of formaldehyde with electrogenerated hydrogen peroxide [J]. Industrial and Engineering Chemistry Reserrch. 1994. 33(2):387-394.
    [67] Do J.S. And Yeh W. C.. In situ paired electro-oxidative degradation of formaldehyde with electrogenerated hydrogen peroxide and hypochlorite ion [J]. J. Appl. Electrochem., 1998, 28(7):703-710.
    [68] Brillas E., Bastide R. M. And Llosa E.. Electrochemical destruction of aniline and 4-Cholroaniline for wastewater treatment using a carbon-PTFE O2-fed cathode [J]. J. Electrochem. Soc ., 1995, 142(6):1733-1741.
    [69] Szpykowicz L., Juzzolino C., Kaul S. N., er al.. Electrochemical oxidation of dyeing baths bearing disperse dyes [J]. Ind. Eng, Chem. Res., 2000, 39:3241-3248.
    [70] Akolekar.Deepak B;Bhargava.Suresh k;Catalytic wet oxidation:An environmental solution for organic pollutant removal from paper and pulp industrial waste liquor.Applied Catalysis[J].2002 :236(1-2).
    [71] Aguilar.Croswel;Garcia.Rafael;Catalytic wet air oxidation of aqueous-ammonia with activated carbon.Applied Catalysis B:Environmental[J].2003,46(2).
    [72]杨润昌,周书天等.高浓度难降解有机废水低压湿式催化氧化处理.环境科学[J].1997,18(5).
    [73]林佩斌.湿式催化氧化技术在工业废水处理中的运用.有色冶金设计与研究[J].2002,23(4).
    [74]关自斌.湿式催化氧化法处理高浓度有机废水技术的研究与应用.铀矿冶[J].2004,23(2).
    [75]钟理.张浩等.催化氧化法降解废水过程.现代化工[J].1999,19(5).
    [76]张铭等.含酚工业废水的处理研究[J].环境保护科学[J].1999,25(2):6-7.
    [77]韦朝海,孙寿家等.活性炭处理含氰废水机理研究──吸附和催化氧化机理.华南理工大学学报(自然科学版)[J].1994,5.
    [78] Quintanilla.A;Casas.J.A.;Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst.Applied Catalysis B: Environmental[J].2006,67(3-4).
    [79]王桂香,董国君等.负载型Pd催化剂.化学工程师[J].2001,6.
    [80] Comninellis C, Pulgarin C. Anodic oxidation of phenol for wastewater treatment[J]. Applied Electrochemistry, 1991, 21(8): 703—705
    [81]卞华松.水溶液中有机污染物的声化学降解及其强化途径研究.上海华东理工大学:2001年.
    [82] SchererM M, Johnson K M, Westall J C, et al. Mass transport effects on the kinetics of nitrobenzene reduction by iron metal[J].Environ Sci Technol, 2001, 35: 2804—2811.
    [83] Xu W Y, Gao T Y, Fan J H. Reduction of nitrobenzene by the catalyzed Fe-Cu process[J]. J Hazard Materi, 2005, B123: 232—241.
    [84]钟理,废水处理新技术,非均相催化氧化过程[J]广东化工,1999,(5),13-15.
    [85]赵雷,常见有机物对催化臭氧化降解水中硝基苯的影响[J]环境科学2008(5)
    [86]樊金红,催化还原法处理硝基苯废水的技术经济分析[J]同济大学学报2008(7)
    [87]贾宝军,电化学多相催化处理硝基苯废水[J]水处理技术2008(3)
    [88]徐向舟,低温水中硝基苯沉降分布的试验研究[J]水资源保护2009(1)
    [89]李亚峰,三维电极法处理硝基苯废水[J]沈阳建筑大学学报2009(1)
    [90]于治淼,水中气泡脉冲放电处理硝基苯废水的实验研究[J]高电压技术2009(1)
    [91]刘志生,碳化稻壳吸附水中硝基苯的试验[J]环境化学2008(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700