新型Ni催化剂上的乙二醇液相重整制氢反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙二醇液相重整反应(Aqueous Phase Reforming,APR)是一条极具发展潜力的制取H_2和低碳烷烃等替代能源的新路线。Ni催化剂不但价格低廉,而且具有较强的C-C键断裂能力和较高的水煤气变换反应活性,所以Ni催化剂在APR反应中的应用受到了催化工作者的广泛关注。本文系统研究了一种新的催化剂制备方法对Ni催化剂催化性能的影响。
     采用制备传统Raney Ni催化剂用量的1/10的碱抽提Raney Ni-Al合金,得到了一种新型的不易着火的NP Ni催化剂(Non-pyrophoric Ni)。表征结果显示,NP Ni催化剂主要由金属态的Ni以及水铝矿和三羟铝石等Al(OH)_3物相组成,该催化剂可以看成是Ni-Al(OH)_3复合催化剂。在乙二醇液相重整反应100h后,催化剂中的水铝矿和三羟铝石转变成片状的薄水铝石,同时Ni晶粒增大并且金属态的Ni部分发生氧化生成Ni(OH)_2。在相同的反应条件下,由于水合氧化铝对Ni晶粒的稳定作用,在NP Ni催化剂上乙二醇转变成气体产物的转化率比之Raney Ni催化剂高40-52%。在NP Ni催化剂上具有较高的H_2选择性,并且气体产物中的CO浓度较低,是因为水合氧化铝的存在有利于水的活化解离从而促进了水煤气变换反应。
     采用与NP Ni催化剂相同的制备方法抽提急冷Ni-Al合金,得到了NPRQ Ni(Non-pyrophoric Rapidly Quenched Ni)催化剂。在乙二醇液相重整反应中,由于NPRQ Ni催化剂具有较高的活性比表面,在NPRQ Ni催化剂上的催化活性比之RQNi催化剂提高了一倍;由于水合氧化铝对NPNi催化剂的稳定作用等抑制了Ni催化剂的氧化和流失,使得NP Ni催化剂在反应100h后仍能保持82%的初活性。
     采用浸渍法对NP Ni催化剂进行修饰,得到了NP NiSn催化剂。Sn修饰有利于H_2的生成,在NP Ni_7Sn催化剂上,当乙二醇液相重整反应达到稳态时,H_2选择性可达85%,比之Raney Ni催化剂上升了80%左右。H_2-TPD表征结果表明,添加Sn修饰后,NP NiSn催化剂中出现了新的活性位,而这些活性位可能是导致H_2选择性上升的主要原因。
     在乙二醇液相重整反应中,以KOH作为CO_2的吸收剂,采用一步法制取得到不含CO和CO_2的高纯H_2。在乙二醇水溶液中添加KOH可以明显提高H_2的TOF值而降低烷烃的TOF值。当KOH的浓度为2 mol L~(-1)时,H_2的得率上升至151%,接近理论得率(167%),气体产物中H_2的含量可达到98%以上,其余气体为甲烷。这是因为K元素的存在有利于水煤气变换反应以及KOH吸收了CO_2,从而促进了水煤气变换反应。KOH的添加还可以明显提高NP Ni催化剂的稳定性,在反应36h后,乙二醇的转化率仍为100%,比之反应刚开始时的转化率几乎没有变化;乙二醇转变成气体产物的转化率为90%,比之反应刚开始时只降低了5%。催化剂稳定性的提高可归因于K元素对Ni催化剂的稳定作用抑制了Ni晶粒的长大。
Aqueous phase reforming(APR) of ethylene glycol is a promising new route for the catalytic production of high-purity hydrogen for fuel cells and light alkanes.Since Ni shows high activities for C-C bond scission and methanation,moderate WGS activity,and is much less expensive than the noble Pt,Ni-based catalysts have been extensively studied in APR of ethylene glycol.In the present work,Ni catalysts prepared from a new method for the aqueous phase reforming of ethylene glycol were investigated.
     A non-pyrophoric Ni catalyst(NP Ni) was prepared by alkali leaching of a Ni_(50)Al_(50) alloy using only~1/10 of the amount of NaOH required for the preparation of the conventional Raney Ni catalyst.Characterizations reveal that the as-prepared NP Ni catalyst can be looked as a Ni-Al(OH)_3 composite catalyst with Ni in the metallic state and Al(OH)_3 in forms of gibbsite and bayerite.After 100 h on stream in APR of ethylene glycol,phase transformation of gibbsite and bayerite to flake-like boehmite occurred,along with the growth of Ni crystallites and partial oxidation of metallic Ni to Ni(OH)_2.Under identical reaction conditions for APR of ethylene glycol,the NP Ni catalyst is about 40-52%more active than Raney Ni in terms of the conversion of ethylene glycol to gas products,which is attributed to the stabilizing effect of hydrated alumina on Ni crystallites.The higher selectivity toward H2 and the lower concentration of CO in the product gas on the NP Ni catalyst are attributed to the activation of water by hydrated alumina which is beneficial to the WGS reaction.
     The non-pyrophoric rapidly quenched Ni catalyst(NPRQ Ni) was prepared by alkali leaching of a rapidly quenched Ni_(50)Al_(50)(RQ Ni_(50)Al_(50)) alloy using the same method as the preparation of the NP Ni catalyst.In APR of ethylene glycol,the NPRQ Ni catalyst exhibited an catalytic activity doubled that of the RQ Ni catalyst due to its larger active surface area,and maintained~82%of its initial activity even after 100 h on stream due to its tolerance to oxidation and metal leaching.
     Sn-modified NP Ni catalysts(NP NiSn) were obtained by impregnating of NP Ni catalyst with SnCl_4.In APR of ethylene glycol,the addition of Sn facilitated the H_2 production.On the NP Ni_7Sn catalyst,H_2 selectivity of 85%was achieved at the steady state,which is about 80%higher than that on Raney Ni catalyst. Characterization by H_2-TPD has shown that new active sites were formed on the NP NiSn catalysts,and the increased H_2 selectivity may be ascribed to such active sites.
     H_2 without CO and CO_2 was produced through one-pot H_2 production from APR of ethylene glycol with KOH as the CO_2 absorbent.The formation of H_2 was enhanced by the addition of KOH to the ethylene glycol solution.Gas product composed of 98 mol%of H_2 and 2 mol%of methane obtained at high conversion of ethylene glycol when the concentration of KOH was up to 2 mol L~(-1),and the H_2 yield was dramatically improved to 151%,which is closed to the theoretical yield(167%). The WGS reaction was promoted by potassium and the absorption of CO_2 with KOH, which leads to the higher H_2 selectivity.The presence of KOH also enhanced the stability of NP Ni catalyst.The conversion of ethylene glycol and the conversion of ethylene glycol to gas products on NP Ni catalyst were about 100%and 90%, respectively,even after 36 h on stream due to the suppressing of Ni sintering by potassium.
引文
[1]Key world energy statistics 2007[EB].:International Energy Agency,2008:
    [2]BP Statistical Review of World Energy[EB].:British Petroleum,2008-6:
    [3]Official Energy Statistics from the U.S.Government[EB].:Energy Information Administration,2008:
    [4]陈丹之.氢能[M].西安:西安交通大学出版社,1990:3.
    [5]毛宗强.氢能—21世纪的绿色能源[M].北京:化学工业出版社,2005:17.
    [6]王毅波.21世纪理想的能源—氢能[J].能源研究与信息,2003,19(2):63-69.
    [7]M.G.Schultz,T.Diehl,G.P.Brasseur,Werner Zittel.Air pollution and climate-forcing impacts of a global hydrogen economy[J].Science,2003,302:624-627.
    [8]M.Z.Jacobson,W.G Colella,D.M.Golden.Cleaning the air and improving health with hydrogen fuel-cell vehicles[J].Science,2005,308:1901-1905.
    [9]银建中,王伟彬,张传杰,宋吉彬.超临界水处理生物质制氢技术[J].生物技术,2007,17(3):92-95.
    [10]袁振宏,吴创之,马隆龙.生物质能利用原理与技术[M].北京:化学工业出版社,2005:1.
    [11]朱清时,阎立峰,郭庆祥.生物质洁净能源[M].北京:化学工业出版社,2002:3.6.
    [12]闵恩泽,吴巍.可再生生物质资源[J].化工进展,2002,21(5):357-3591.
    [13]王革华.我国生物质能利用技术展望[J].农业工程学报,1999,15(4):19-22.
    [14]Reed,B.Thomas.Biomass energy refineries for production of fuel and fertilizer [J].Proc.Cellul.Conf.,1975,1:1-9.
    [15]D.Tilman,J.Hill,C.Lehman.Carbon-negative biofuels from low-input high-diversity grassland biornass[J].Science,2006,314:1598-1600.
    [16]J.R.Rostrup-Nielsen.Making fuels from biomass[J].Science,2005,308:1421-1422.
    [17]G.W.Huber,J.N.Chheda,C.J.Barrett,J.A.Dumesic.Production of liquid alkanes by aqueous-phase processing of biomass-derived carbonhydrates[J].Snience,2005,308:1446-1450.
    [18]A.J.Ragauskas,C.K.Williams,B.H.Davison,G.Britovsek,J.Cairney,C.A.Eckert,W.J.Frederick Jr.,J.P.Hallett,D.J.Leak,C.L.Liotta,J.R.Mielenz,R.Murphy,Ri.Templer,T.Tschaplinski.The path forward for biofuels and biomaterials[J].Science,2006,311:484-489.
    [19]K.S.Tyson,J.Bozell,R.Wallace,E.Petersen,L.Moens.Biomass oil analysis:research needs and recommendations[EB].:U.S.Department of Energy,2004:1.
    [20]E.Kintisch,J.Mervis.A budget with big winners and losers[J].Science,2006,311:762-764.
    [21]孙立,许敏,孙荣峰.生物质二次裂解生产富氢气体[A].第四届全国氢能学术会议论文集[C].
    [22]P.McKendry.Energy production from biomass(part 2):conversion technologies [J].Bioresource Technology,2002,83:47-54.
    [23]C.E.G.Padro,F.Lau.Advances in hydrogen energy[M].New York:Kluwer Academic Publishers,2002:
    [24]阎桂焕,孙立,许敏,孙荣峰.几种生物质制氢方法的探讨[J].能源工程,2004(5):38-41.
    [25]J.Gil,J.Corella,M.P.Aznar,M.A.Caballero.Biomass gasification in atmospheric and bubbling fluidized bed:Effect of the type of gasifying agent on the product distribution[J].Biomass and Bioenergy 1999,17:389-403.
    [26]吴创之,阴秀丽,刘平,罗曾凡,陈勇.生物质焦油裂解的技术关键[J].新能源,1998,20(7):1-5,9.
    [27]吴创之,徐冰嬿,罗曾凡,周希光.固体生物质气化动力学试验研究[J].太阳能学报,1991(02):121-129.
    [28]C.M.Kinoshita,Y.Wang,J.Zhou.Tar formation under different biomass gasification conditions[J].Journal of Analytical and Applied Pyrolysis,1994,29:168-181.
    [29]G Grassi,G.(3osse,G.D.Stantos,editors.Biomass for energy and industry[G].London:Elsevier Applied Science,1990:489-97.
    [30]A.V.Bridgwater,G.Grassi,editors.Biomass pyrolysis liquids,upgrading and utilization[G].London:Elsevier Applied Science,1991:11-92.
    [31]S.Turn,C.Kinoshita,Z.Zhang,D.Ishimura and J.Zhou.An experimental investigation of hydrogen production from biomass gasification[J].International Journal of Hydrogen Energy,1998,23(8):641-648.
    [32]Madhukar R.Mahishia,D.Y.Goswami.An experimental study of hydrogen production by gasification of biomass in the presence of a CO_2 sorbent[J].International Journal of Hydrogen Energy,2007,32:2803-2808.
    [33] M. Modell, R.C. Reid, S. I. Amin. Gasification process [P]. US Patent: 4113446,1978:
    [34] M. Modell. Processing methods for the oxidation of organics in supercritical Water [P]. US Patent: 4338199,1982:
    [35] M. Modell. Gasification and liquefaction of forest products in supercritical Water [C]. Fundam. Thermochem. Biomass Convers, Elsevier Applied Science Publisher, London, 1985 : 95 -119.
    [36] L. J. Sealock, D. C. Elliott, E. G. Baker, R. S. Butner. Chemical processing in high-pressure aqueous environments. 1. Historical perspective and continuing developments [J]. Industrial Engineering Chemistry Research, 1993, 32(8) : 1535-1541.
    [37] D. C. Elliott, L. J. Sealock, E. G. Baker. Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification [J]. Industrial Engineering Chemistry Research, 1993, 32 (8): 1542-1548.
    [38] D. C. Elliott, L. J. Sealock, E. G. Baker. Chemical processing in high-pressure aqueous environments. 3. Batch reactor process development experiments for organics destruction [J]. Industrial Engineering Chemistry Research, 1994, 33 (3): 558-565.
    [39] D. C. Elliott, M. R. Phelps, L. J. Sealock, E. G. Baker. Chemical processing in high-pressure aqueous environments. 4. Continuous-flow reactor process development experiments for organics destruction [J]. Industrial Engineering Chemistry Research, 1994, 33 (3): 566-574.
    [40] L. J. Sealock, D. C. Elliott, E. G. Baker, Alexander G. Fassbender and Laura J. Silva. Chemical processing in high-pressure aqueous environments. 5. New processing concepts [J]. Industrial Engineering Chemistry Research, 1996, 36 (11): 4111-4118.
    [41] D. C. Elliott, G. G. Neuenschwander, M. R. Phelps, T. R. Hart, A. H. Zacher, L. J. Silva. Chemical processing in high-pressure aqueous environments. 6.Demonstration of catalytic gasification for chemical manufacturing wastewater cleanup in industrial plants [J]. Industrial Engineering Chemistry Research, 1999, 38 (3): 879-883.
    [42] D. C. Elliott, G. G. Neuenschwander, T. R. Hart, R. S. Butner, A. H. Zacher, M. H. Engelhard, J. S. Young, D. E. McCready. Chemical processing in high-pressure aqueous environments. 7. Process development for catalytic gasification of wet biomass feedstocks[J].Industrial Engineering Chemistry Research,2004,43(9):1999-2004.
    [43]D.C.Elliott,T.R.Hart,G.G.Neuenschwander.Chemical processing in high-pressure aqueous environments.8.Improved catalysts for hydrothermal gasification[J].Industrial Engineering Chemistry Research,2006,45(11):3776-3781.
    [44]D.Yu,M.Aihara,M.J.Antal.Hydrogen production by steam reforming glucose in supercritical water[J].Energy & Fuels 1993,7(5):574-577.
    [45]闫秋会,郭烈锦,张西民,吕友军,梁兴.超临界水中葡萄糖气化制氢的热力学分析[J].化工学报,2004,55(11):1916-1920.
    [46]曲先锋,彭辉,毕继诚.生物质在超临界水中热解行为的初步研究[J].燃料化学学报,2003,31(3):230-233.
    [47]郝小红,郭烈锦.超临界水中湿生物质催化气化制氢研究评述[J].化工学报,2002,53(3):221-228.
    [48]X.Xu,Y.Matsumura,J.Stenberg,M.J.Antal.Carbon-catalyzed gasification of organic feedstocks in supercritical water[J].Industrial Engineering Chemistry Research,1996,35(8):2522-2530.
    [49]T.Minowa,Y.Ogi.Hydrogen production from cellulose using a reduced nickel catalyst[J].Catalysis Today,1998,45:411-416.
    [50]T.Minowa,F.Zhen,T.Ogi.Cellulose decomposition in hot-compressed water with alkali or nickel catalyst[J].Journal of Supercritical Fluids,1998,13:253-259.
    [51]M.Watanabe,H.Inomata,K.Arai.Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water[J].Biomass and Bioenergy,2002,22:405-410.
    [52]H.Schmieder,J.Abeln,N.Boukis,E.Dinjus,A.Kruse,M.Kluth,G.Petrich,E.Sadri,M.Schacht.Hydrothermal gasification of biomass and organic wastes[J].Journal of Supercritical Fluids,2000,17:145-153.
    [53]P.T.Williams and J.Onwudili.Subcritical and supercritical water gasification of cellulose,starch,glucose,and biomass waste[J].Energy & Fuels,2006,20:1259-1265.
    [54]P.D.Vaidya,A.E.Rodrigues.Insight into steam reforming of ethanol to produce hydrogen for fuel cells[J].Chemical Engineering Journal,2006,117:39-49.
    [55]G.Maggio,S.Freni,S.Cavallaro.Light alcohols/methane fuelled molten carbonate fuel cells:a comparative study[J].Journal of Power Sources,1998,74(1):17-23.
    [56]S.Freni.Rh based catalysts for indirect internal reforming ethanol applications in molten carbonate fuel cells[J].Journal of Power Sources,2001,94(1):14-19.
    [57]E.Y.Garcia,M.A.Laborde.Hydrogen production by the steam reforming of ethanol:Thermodynamic analysis[J].International Journal of Hydrogen Energy,1991,16(5):307-312.
    [58]S.Freni,G.Maggio,S.Cavallaro.Ethanol steam reforming in a molten carbonate fuel cell:a thermodynamic approach[J].Journal of Power Sources,1996,62(1):67-73.
    [59]K.Vasudeva,N.Mitra,P.Umasankar,S.C.Dhingra.Steam reforming of ethanol for hydrogen production:Thermodynamic analysis[J].International Journal of Hydrogen Energy,1996,21(1):13-18.
    [60]N.J.Su,Z.C.Dong,X.Z.Deng,Y.Wang,Y.Q.Min,X.P.Qiu.Renewable energy from nature—hydrogen production from bio-ethanol steam reforming[J].中山大学学报(自然科学版)增刊,2007,46:37-38,43.
    [61]孙杰,吴锋,邱新平,王国庆,朱文涛,陈实,陈立泉.燃料电池的氢源技术—乙醇重整制氢研究进展[J].电源技术,2004,28(7):452-457.
    [62]王倩,徐新,郭芳林,周林碧.乙醇重整制氢催化剂的国内研究进展[J].中外能源,2008,13(2):23-29.
    [63]D.K.Liguras,D.I.Kondarides,X.E.Verykios.Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts.[J].Applied Catalysis B,2003,43(4):345-354.
    [64]F.Aupretre,C.Descorme,D.Duprez,D.Casanave,D.Uzio.Ethanol steam reforming over MgxNi1-xAl2O3 spinel oxide-supported Rh catalysts[J].Journal of Catalysis,2005,233(2):464-477.
    [65]J.Kugai,V.Subramani,C.Song,M.H.Engelhard,Ya-Huei Chin.Effects of nanocrystalline CeO_2 supports on the properties and performance of Ni-Rh bimetallic catalyst for oxidative steam reforming of ethanol[J].Journal of Catalysis,2006,238(2):430-440.
    [66]A.Yee,S.J.Morrison and H.Idriss.A study of ethanol reactions over Pt/CeO_2by temperature-programmed desorption and in Situ FT-IR spectroscopy:Evidence of benzene formation[J].Journal of Catalysis,2000,191(1):30-45.
    [67]S.Duan,S.Senkan.Catalytic conversion of ethanol to hydrogen using Combinatorial methods [J]. Industrial and Engineering Chemistry Research, 2005, 44(16): 6381-6386.
    
    [68] J. P. Breen, R. Burch, H. M. Coleman. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Applied Catalysis B : Environmental, 2002, 39 (1): 65-74.
    [69] A. Casanovas, J. Llorca, N. Horns, J. L. G. Fierro and P.R. de la Piscina. Ethanol reforming processes over ZnO-supported palladium catalysts: Effect of alloy formation [J]. Journal of Molecular Catalysis A, 2006, 250 (1-2): 44-49.
    [70] A. N. Fatsikostas, D. I. Kondarides and X. E. Verykios. Production of hydrogen for fuel cells by reformation of biomass-derived ethanol [J]. Catalysis Today, 2002,75:145-155.
    [71] F. Haga, T. Nakajima, H. Miya and S. Mishima. Catalytic properties of supported cobalt catalysts for steam reforming of ethanol [J]. Catalysis Letters, 1997, 48 : 223-227.
    [72] S. Cavallaro and S. Freni. Ethanol steam reforming in a molten carbonate fuel cell. A preliminary kinetic investigation [J]. International Journal of Hydrogen Energy, 1996,21 (6): 465-469.
    [73] F. J. Marino, E. G. Cerrella, S. Duhalde, M. Jobbagy and M. A. Laborde. Hydrogen from steam reforming of ethanol. Characterization and performance of copper-nickel supported catalysts [J]. International Journal of Hydrogen Energy, 1998, 23 (12): 1095-1101.
    [74] S. Cavallaroa, N. Mondellob and S. Freni. Hydrogen produced from ethanol for internal reforming molten carbonate fuel cell [J]. Journal of Power Sources, 2001, 102: 198-204.
    [75] J. W. C. Liberatori, R. U. Ribeiro, D. Zanchet, F. B. Noronha, J. M. C. Bueno. Steam reforming of ethanol on supported nickel catalysts [J]. Applied Catalysis A: General, 2007, 327 : 197-204.
    [76] F. Marino, M. Boveri, G. Baronetti, M. Laborde. Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ-Al_2O_3 catalysts. Effect of Ni [J]. International Journal of Hydrogen Energy, 2001, 26 : 665-668.
    [77] A.J. Vizcaino, A. Carrero, J. A. Calles. Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts [J]. International Journal of Hydrogen Energy, 2007, 32:1450-1461.
    [78] F. Haga, T. Nakajima, K. Yamashita, S. Mishima. Effect of crystallite size on the catalysis of alumina-supported cobalt catalyst for steam reforming of ethanol[J].Reaction Kinetics and Catalysis Letters,1998,63:253-259.
    [79]S.Freni,S.Cavallaro,N.Mondello,L.Spadaro,F.Frusteri.Steam reforming of ethanol on Ni/MgO catalysts:H_2 production for MCFC[J].Journal of Power Sources,2002,108(1-2):53-57.
    [80]F.Frusteri,S.Freni,V.Chiodo,L.Spadaro,O.D.Blasi,G.Bonura,S.Cavallaro.Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts:hydrogen production for MCFC fuel cell[J].Applied Catalysis A:General,2004,270:1-7.
    [81]杨宇,吴绯,马建新.载体对镍催化剂催化乙醇水蒸气重整制氢的反应性能的影响[J].催化学报,2005,26(2):131-137.
    [82]2007 U.S.biodiesel production capacity[EB].:National Biodiesel Borad,2007-4:
    [83]S.Adhikari,S.D.Fernando,S.D.Filip To,R.M.Bricka,P.H.Steele,|A.Haryanto.Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts[J].Energy & Fuels,2008,22:1220-1226.
    [84]S.Adhikari,S.Fernando,A.Haryanto.A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glycerin[J].Energy & Fuels,2007,21:2306-2310.
    [85]T.Hirai,N.Ikenaga,T.Miyake,T.Suzuki.Production of hydrogen by steam reforming of glycerin on ruthenium catalyst[J].Energy & Fuels,2005,19:1761-1762.
    [86]B.Zhang,X.Tang,Y.Li,Y.Xu,W.Shen.Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts[J].International Journal of Hydrogen Energy,2007,32:2367-2373.
    [87]J.R.Salge,G.A.Deluga,L.D.Schmidt.Catalytic partial oxidation of ethanol over noble metal catalysts[J].Journal of Catalysis,2005,235:69-78.
    [88]G.A.Deluga,J.R.Salge,L.D.Schmidt,X.E.Verykios.Renewable hydrogen from ethanol by autothermal reforming[J].Science,2004,303:993-997.
    [89]V.Fierro,O.Akdim,H.Provendier,C.Mirodatos.Ethanol oxidative steam reforming over Ni-based catalysts[J].Journal of Power Sources,2005,145:659-666.
    [90]S.Velu,N.Satoh,C.S.Gopinath,K.Suauki.Oxidative reforming of bio-ethanol over CuNiZnAl mixed oxide catalysts for hydrogen production[J].Catalysis Letters, 2002, 82: 145-152.
    [91] D. K. Liguras, K. Goundani, X. E. Verykios. Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ni catalysts [J]. Journal of Power Sources, 2004,130 : 30-37.
    [92] F. Frusteri, S. Freni, V. Chiodo, S. Donato, G. Bonura, S. Cavallaro. Steam and auto-thermal reforming of bio-ethanol over MgO and CeO_2 Ni supported catalysts [J]. International Journal of Hydrogen Energy, 2006, 31 : 2193-2199.
    [93] M. H. Youn, J. G. Seo, P. Kimb, J. J. Kima, H. Lee, I. K. Songa. Hydrogen production by auto-thermal reforming of ethanol over Ni/γ-Al_2O_3 catalysts: Effect of second metal addition [J]. Journal of Power Sources, 2006, 162 : 1270-1274.
    [94] P.J. Dauenhauer, J.R. Salge, L.D. Schmidt. Renewable hydrogen by autothermal steam reforming of volatile carbohydrates [J]. Journal of Catalysis, 2006, 244 : 238-247.
    [95] R. D. Cortright, R. R. Davda, J. A. Dumesic, Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water [J]. Nature, 2002, 418 (6901) : 964-966.
    [96] R.R. Davda, J.W. Shabaker, G.W. Huber, R.D. Cortrightl, J.A. Dumesic. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts [J]. Applied Catalysis B: Environmental, 2005, 56 : 171-186.
    [97] D. C. Grenoble, M. M. Estadt, D. F. Ollis. The chemistry and catalysis of the water gas shift reaction 1. The kinetics over supported metal catalysts [J]. Journal of Ctalysis, 1981,67:90-102.
    [98] J. W. Shabaker, J. A. Dumesic. Kinetics of aqueous-phase reforming of oxygenated hydrocarbons: Pt/Al_2O_3 and Sn-modified Ni catalysts [J]. Industrial and Engineering Chemistry Research, 2004,43 : 3105-3112.
    [99] J.W. Shabaker, R.R. Davda, G.W. Huber, R.D. Cortright, J.A. Dumesic. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts [J]. Journal of Ctalysis, 2003, 215 : 344-352.
    [100] J. W. Shabaker, G. W. Huber, R. R. Davda, R. D. Cortright, and J. A. Dumesic. Aqueous-phase reforming of ethylene glycol over supported platinum catalysts [J]. Catalysis Letters, 2003, 88 : 1-8.
    [101]R.R.Davda,J.A.Dumesic.Catalytic reforming of oxygenated hydrocarbons for hydrogen with low levels of carbon monoxide[J].Angewandte Chemie International Edition,2003,42:4068-4071.
    [102]R.R.Davda,J.W.Shabaker,G.W.Huber,R.D.Cortright,J.A.Dumesic.Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts [J].Applied Catalysis B:Environmental,2003,43:13-26.
    [103]J.H.Sinfelt.Specificity in catalytic hydrogenolysis by metals.[J].Advances in Catalysis,1973,23:91-119.
    [104]M.A.Vannice.The catalytic synthesis of hydrocarbons from H_2/CO mixtures over the Group Ⅷ metals:Ⅴ.The catalytic behavior of silica-supported metals [J].Journal of Ctalysis,1977,50:228-236.
    [105]J.W.Shabaker,G.W.Huber,J.A.Dumesic.Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts[J].Journal of Ctalysis,2004,222:180-191.
    [106]J.W.Shabaker,D.A.Simonetti,R.D.Cortright,J.A.Dumesic.Sn-modified Ni catalysts for aqueous-phase reforming:Characterization and deactivation studies[J].Journal of Ctalysis,2005,231:67-76.
    [107]R.J.Covort,H.Adkins.Nickel by the Raney process as a catalyst of hydrogenation[J].Journal of American Chemistry Society,1932,54:4116-4117.
    [108]H.Adkins,A.A.Pavlic.Hydrogenation of Esters to alcohols over Raney nickel [J].Journal of the American Chemical Society,1947,69:3039-3041.
    [109]A.A.Pavlic,H.Adkins.Preparation of a Raney nickel catalyst[J].Journal of the American Chemical Society,1946,68:1471.
    [110]H.Adkins,H.R.Billica.The preparation of Raney nickel catalysts and their use under conditions comparable with those for platinum and palladium catalysts [J].Journal of the American Chemical Society,1948,70:695-698.
    [111]J.Petró,A.Bóta,K.László,H.Beyer,E.Kálmán,I.Dódony.A new alumina-supported,not pyrophoric Raney-type Ni-catalyst[J].Applied Catalysis A:General,2000,190:73-86.
    [112]J.Petró,L.Hegedüs,I.E.Sajó.A new,aluminium oxy-hydrate supported NiAl skeleton catalyst[J].Applied Catalysis A:General,2006,308:50-55.
    [113]G.W.Huber,J.W.Shabaker,J.A.Dumesic.Raney Ni-Sn Catalyst for H2Production from Biomass-Derived Hydrocarbons[J].Science,2003,300: 2075 -2077.
    [114]C.X.Qi,J.C.Amphlett,B.A.Peppley.K(Na)-promoted Ni,Al layered double hydroxide catalysts for the steam reforming of methanol[J].Journal of Power Sources,2007,171:842-849.
    [115]S.Brunauer,P.H.Emmett,E.Teller.Adsorption of gases in multimolecular layers[J].Journal of the American Chemical Society,1938,60:309-319.
    [116]S.D.Robertson,R.B.Anderson.Structure of Raney nickel.Ⅳ.X-ray diffraction studies[J].Joumal of Catalysis,1971,23(2):286-294.
    [117]C.H.Bartholomew,R.B.Pannell.The stoichiometry of hydrogen and carbon monoxide chemisorption on alumina- and silica-supported nickel[J].Journal of Catalysis,1980,65(2),390-401.
    [118]A.Bóta,G.Goerigk,T.Drucker,H.G.Haubold,J.Petró.Anomalous small-angle X-ray scattering on a new,nonpyrophoric Raney-type Ni catalyst [J].Journal of Catalysis,2002,205,354-357.
    [119]B.W.Hoffer,E.Crezee,F.Devred,P.R.M.Mooijman,W.G.Sloof,P.J.Kooyman,A.D.van Langeveld,F.Kapteijn,J.A.Moulijn.The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of d-glucose to d-sorbitol[J].Applied Catalysis A:General,2003,253:437-452.
    [120]IUPAC Recommendations[J].Pure Applied Chemistry,1985,57:603.
    [121]F.Rouquerol,J.Rouquerol,K.Sing.Adsorption by powders & porous solids,Academic Press:San Diego,1999:
    [122]C.Sweegers,H.C.de Coninck,H.Meekes,W.J.P.van Enckevort,I.D.K.Hiralal,A.Rijkeboer.Morphology,evolution and other characteristics of gibbsite crystals grown from pure and impure aqueous sodium aluminate solutions[J].Journal of Crystal Growth,2001,233:567-582.
    [123]G.Lefèvre,M.Fédoroff.Synthesis of bayerite(β-Al(OH)_3) microrods by neutralization of aluminate ions at constant pH[J].Materials Letters,2002,56:978-983.
    [124]R.A.Lemons.Fuel cells for transportation[J].Journal of Power Sources,1990,29:251-264.
    [125]F.Z.Xie,X.W.Chu,H.R.Hu,M.H.Qiao,S.R.Yah,Y.L.Zhu,H.Y.He,K.N.Fan,H.X.Li,B.N.Zong,X.X.Zhang.Characterization and catalytic properties of Sn-modified rapidly quenched skeletal Ni catalysts in aqueous-phase reforming of ethylene glycol[J].Journal of Catalysis,2006,241: 211-220.
    [126]S.Music,D.Dragcevic and S.Popovic.Hydrothermal crystallization of boehmite from freshly precipitated aluminium hydroxide[J].Materials Letters,1999,40:269-274.
    [127]K.M.S.Khalil.Synthesis of short fibrous boehmite suitable for thermally stabilized transition aluminas formation[J].Journal of Catalysis,1998,178:198-206.
    [128]T.Tsuchida.Hydrothermal synthesis of submicrometer crystals of boehmite[J].Journal of European Ceramic Society,2000,20:1759-1764.
    [129]P.Gao,Y.Xie,Y.Chen,L.Ye,Q.X.Guo.Large-area synthesis of single-crystal boehmite nanobelts with high luminescent properties[J].Journal of Crystal Growth,2005,285:555-560.
    [130]J.F.Moulder,W.F.Stickle,P.E.Sobol,K.D.Bomben.Handbook of X-ray Photoelectron Spectroscopy,J.Chastain(Ed.),Perkin-Elmer,Eden Prairie,MN,1992.
    [131]P.A.Thiel,T.E.Madey.The interaction of water with solid surface:Fundamental aspects[J].Surfacer Science Reports,1987,7:211-385.
    [132]T.Yuzawa,T.Higashi,J.Kubota,J.N.Kondo,K.Domen,C.Hirose.CO coadsorption-induced recombination of surface hydroxyls to water on Ni(110)surface by IRAS and TPD[J].Surface Science,1995,325:223-229.
    [133]G.C.Wang,L.Jiang,Z.S.Cai,Y.M.Pan,X.Z.Zhao,W.Huang,K.C.Xie,Y.W.Li,Y.H.Sun,B.Zhong.Surface structure sensitivity of the Water-Gas Shift reaction on Cu(hkl) surfaces:A theoretical study[J].the Journal of Physical Chemistry B,2003,107:557-562.
    [134]胡华荣.猝冷骨架Ni样品的制备、表征、催化及吸附脱硫性质研究[D].上海:复旦大学,2005:
    [135]H.R.Hu,M.H.Qiao,S.Wang,K.N.Fan,H.X.Li,B.N.Zong,X.X.Zhang.Structural and catalytic properties of skeletal Ni catalyst prepared from the rapidly quenched Ni_(50)Al_(50) alloy[J].Journal of Catalysis,2004,221:612-618.
    [136]P.Nash.Phase Diagram of Binary Nickel Alloys,American Society for Metals,Materials Park,OH,1991,p.5.
    [137]PDFMaint Version 3.0,Powder Diffraction Database,Bruker Analytical X-Ray Systems GmbH:1997.
    [138]H.Lei,Z.Song,D.L.Tan,X.H.Bao,X.H.Mu,B.N.Zong,E.Z.Min. Preparation of novel Raney-Ni catalysts and characterization by XRD,SEM and XPS[J].Applied Catalysis A:General,2001,214:69-76.
    [139]T.Yoshino,T.Abe,S.Abe,I.Nakabayashi.Surface characterizations and activities of plate-type Raney nickel catalyst[J].Journal of Catalysis,1989,18:436-442.
    [140]J.Freel,W.J.M.Pieters,R.B.Anderson.The structure of Raney nickel:1.Pore structure[J].Journal of Catalysis,1969,14:247-256.
    [141]D.A.Morgenstern,J.P.Fornango.Low-temperature reforming of ethanol over copper-plated Raney nickel:A new route to sustainable hydrogen for transportation[J].Energy & Fuels,2005,19(4):1708-1716.
    [142]C.Padeste,D.L.Trimm.Characterization of Sn doped Ni/Al_2O_3 steam reforming catalysts by XPS[J].Catalysis Letter,1993,17(3-4):333-339.
    [143]M.Arai,K.Suzuki,Y.Nishiyama.Characterization of silica-supported nickel catalysts by the Temperature-Programed Desorption of hydrogen adsorbed at various temperatures[J].the Bulletin Chemical Society of Japan,1993,66:40-45.
    [144]J.Estellé,J.Ruz,Y.Cesteros,R.Fernández,P.Salagre,F.Medina,J.E.Sueiras.Surface structure of bulk nickel catalysts,active in the gas-phase hydrodechlorination reaction of aromatics[J].Journal of the Chemical Society,Faraday Transactions,1996,92(15):2811-2816.
    [145]R.Kramer,M.Andre.Adsorption of atomic hydrogen on alumina by hydrogen spillover[J].Journal of Catalysis,1979,58:287-295.
    [146]Y.Cesteros,P.Salagre,F.Medina,J.E.Sueiras.Synthesis and characterization of several Ni/NiAl204 catalysts active for the 1,2,4-trichlorobenzene hydrodechlorination[J].Applied Catalysis B:Environmental,2000,25:213-227.
    [147]Y.Cesteros,P.Salagre,F.Medina,J.E.Sueiras.Effect of the alumina phase and its modification on Ni/Al203 catalysts for the hydrodechlorination of 1,2,4-trichlorobenzene[J].Applied Catalysis B:Environmental,1999,22:135-147.
    [148]S.K.Saxena.Hydrogen production by chemically reacting species[J].International Journal of Hydrogen Energy,2003,28:49-53.
    [149]T.Kamo,K.Takaoka,J.Otomo,H.Takahashi.Effect of steam and sodium hydroxide for the production of hydrogen on gasification of dehydrochlorinated poly(vinyl chloride)[J].Fuel,2006,85:1052-1059.
    [150]M.Ishida,K.Otsuka,S.Takenaka,I.Yamanaka.One-step production of CO-and CO_2-free hydrogen from biomass[J].Journal of Chemical Technology and Biotechnology,2005,80:281-284.
    [151]M.Ishida,S.Takenaka,I.Yamanaka,K.Otsuka.Production of COx-free hydrogen from biomass and NaOH mixture:effect of catalysts[J].Energy &Fuels,2006,20:748-753.
    [152]T.T.Nguyen,Z.N.M.Hassan,H.Alamdari,S.Kaliaguine.Effect of alkali additives over nanocrystalline Co-Cu-based perovskites as catalysts for higher-alcohol synthesis[J].Journal of Catalysis,2007,245:348-357.
    [153]J.A.迪安.兰氏化学手册[M].北京:科学出版社,1991:
    [154]F.Frusteri,S.Freni,V.Chiodo,L.Spadaro,O.Di Blasi,G.Bonura,S.Cavallaro.Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts:hydrogen production for MC fuel cell[J].Applied Catalysis A:General,2004,270:1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700