锌钛基微纳米复合材料制备及其发光与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于半导体及其微纳米复合材料具有无毒、成本低和物理与化学性能独特的优点使其研究得到了广泛的关注。以微纳米ZnO、ZnS和TiO2为代表的半导体材料是最重要的多功能材料之一,它既具备纳米材料的特异性能,同时又具备半导体材料的特性。这些特性使得ZnO、ZnS和TiO2及其复合微纳米材料在光电子、化学和生物传感器、能量存储(例如太阳能电池、纳米发电机等)、分解有机污染物、废气净化和光催化制氢等众多领域均得到了很好的应用。综合以上研究,可知半导体微纳米材料的组成、结构、微观尺寸直接影响材料的性能。因此,有效地调控纳米材料的结构、形貌、微观尺寸等参数,使其具备特殊的物理和化学性能,探索材料的形貌、结构、微观尺寸与其性能的关系,提高材料的性能,开拓材料的应用领域等具有重要的意义。
     本文首先以ZnS作为研究对象,利用简单易控的水热合成法制备了杂化ZnS纳米棒及其复合纳米材料,并对其组成、结构、形貌、形成机理和发光性能等进行了一系列的分析表征。考察了离子掺杂后半导体表面或近表面光生载流子的捕获、转移、分离过程及其对发光性能的影响;其次利用直接沉淀法合成不同颗粒尺寸ZnO纳米粉体,通过对其在反应物浓度、体系pH值和光照强度等参数的考察进一步验证了材料的微观尺寸、反应物浓度、体系pH值和光照强度等参数直接影响其光催化活性。但是纳米粉体仍然存在有一定的缺陷,本文为了解决粉体光催化剂的回收及光利用率不高的问题,我们选取粉煤灰漂珠为载体,制备TiO2复合光催化剂,并通过半导体复合、多酸修饰手段再一次验证降低电子-空穴对的重新复合的几率,可以大大的提高半导体材料光催化的效率;同时考虑到光催化技术的实际,利用表面活性剂溶液场效应和超声场效应辅助耦合作用,延迟光生电子和空穴的复合时间及增加羟基自由基的效率,提高了漂浮型复合光催化剂的光催化性能。
     本论文的主要研究内容包括以下四个方面:
     (1)ZnS纳米复合材料的制备及其发光性能研究
     利用水热法制备过渡金属(Mn. Fe和Cu)掺杂硫化锌纳米棒,通过调节掺杂元素组分和比例调控ZnS:Mn2+、ZnS:Cu2+、ZnS:Fe2+、 ZnS:Mn2+Cu2+、ZnS:Mn2+Fe2+和ZnS:Mn2+Cu2+Fe2+纳米棒结构、形貌、和微观尺寸,并对其结构、形貌和发光性能进行了一系列表征;利用Stoeber法制备ZnS:TM2+(Mn、Fe和Cu)纳米棒/ZnO量子点/Si02三层核壳结构复合材料体系,通过调节ZnS纳米棒和ZnO量子点的比例研究壳层厚度对样品光学性能的影响;并研究微观结构、形貌和尺寸对半导体表面或近表面光生载流子的捕获、转移、分离过程及对其性能影响。
     (2)尺寸可控的ZnO纳米粒子制备及其光催化性能研究
     利用直接沉淀法制备了不同颗粒尺寸的ZnO纳米粉体。光催化实验结果显示,ZnO的光催化活性与其晶粒尺寸和结晶性能密切相关。煅烧温度为500℃时煅烧所得的ZnO纳米粒子平均粒径尺寸为20nm,对甲基橙染料具有较好的光催化活性;此外,我们还研究了ZnO光催化剂用量、染料初始浓度、光照距离(光照强度)及染料初始pH值等反应条件对光催化降解甲基橙反应速率常数的影响。研究结果表明,反应速率常数与催化剂的用量之间成正比关系k∝[ZnO]0.62;反应速率常数与染料初始浓度及光照距离成反比关系,其关系分别为k∝[C0]-1.18和k∝[D]-0.88;染料溶液初始pH值对光催化降解速率影响显著。
     (3)Ti02复合光催化剂的制备及光催化降解有机染料性能研究
     Ⅰ.采用溶胶-凝胶法制备出漂浮型Ti02/漂珠复合光催化剂,以磷钨酸为表面修饰剂对其进行表面改性,并以染料孔雀石绿废水为降解对象来研究多酸修饰Ti02复合光催化剂的催化活性及影响其催化活性的因素。结果表明,80min内对孔雀石绿的降解率达到90%;磷钨酸修饰复合光催化剂再生性良好。
     Ⅱ.利用溶胶-凝胶法将MoO3/TiO2薄层负载到粉煤灰漂珠上制备出漂浮型光催化剂,通过降解亚甲基蓝废水来考察复合光催化剂的光催化活性及影响其催化活性的因素。MoO3/TiO2/漂珠复合光催化剂在可见光条件下30min内对亚甲基蓝的降解率可达到90%,而且其降解率随Mo含量的提高而增强,当Mo含量为9wt%时,在可见光照射15min其降解率就可以达到95.6%。
     (4)场效应辅助TiO2复合光催化体系的设计及其应用研究
     Ⅰ.采用溶胶-凝胶法制备出能够漂浮于水表面的复合光催化剂TiO2/漂珠,自行设计构建超声协同光催化反应器,以亚甲基蓝废水为降解对象,研究超声场辅助下Ti02复合光催化剂的光催化降解亚甲基蓝的性能。结果表明,10min内亚甲基蓝的降解率比无超声场辅助下提高了38.51%。
     Ⅱ.采用溶胶-凝胶法合成铈离子掺杂的Ce3+-TiO2/漂珠漂浮型复合光催化剂,用阴离子表面活性剂十二烷基硫酸钠构建复合体系。以亚甲基蓝为降解对象,考察表面活性剂溶液场效应下,复合光催化体系的光催化降解活性,探讨表面活性剂存在下Ti02复合体系的光催化反应机理。在可见光照射下,经过240min光解作用,0.05gSDS和0.1gCe3+-TiO2/漂珠复合体系对亚甲基蓝染料溶液光催化降解率可达93.49%。
In resent years,the semiconductor and their composite structures have attracted much attention due to their advantages of non-toxic,low cost,unique physical and chemical properties. With the characteristics of both nano materials and semiconductor materials,this new type of semiconductor material has already been one of the most important multifunctional materials.Thanks to their superior characters,ZnO,ZnS, TiO2and their composite micro/nano materials can be well applied in many areas such as photoelectron,chemistry and biology sensors,energy storage (e.g. solar cells and nanogenerator),decomposition of organic pollutants,wastewater purification and hydrogen production by photo-catalysis. However,the properties of micro/nano materials are affected by the composition,structure,and microscopic size of the materials. Therefore,there is a great significance to study their properties including composition,structure,and microscopic size by adjusting the parameters, which could improve the properties of materials and develop their applications areas.
     In this article,ZnS nanorods were studied systematically. ZnS nanorods and their composite were synthesized by a simple hydrothermal method. The composition,structure,morphology,formation mechanism and optical properties were characterized. We have studied the effects of ion doping on capture,transfer and separation process of photon-generated carriers on (or near) the surface of semiconductor.
     ZnO nanoparticles with different sizes were synthesized by direct precipitation method.The concentration of the reactants,pH value of the system and illumination intensity have direct effect on their photo-catalytic activity.
     In order to resolve the problem of recycling of photocatalyst, TiO2composite photocatalyst was prepared using float bead fly ash as carriers.The efficiency of semiconductor photocatalysis can be enhanced by reducing recombination probability of electron hole pairs using the composition of semiconductors and polyacid-modified method. Recombination time of electron hole pairs can be reduced and efficiency of hydroxyl radical can be enhanced by auxiliary coupled effect of field effect and the ultrasonic field effect of the surfactant solution,and thus the photocatalytic property of floating type composite photocatalyst was further improved.
     The main research content and results of this paper include the following four aspects:(1)Synthesis and study on luminescence properties of ZnS nano-composites
     Transition metal (Mn,Fe,Cu) doped ZnS nanorods were prepared by hydrothermal method.The structure,morphology and microscopic size of the ZnS:Mn2+,ZnS:Cu2+,ZnS:Fe2+,ZnS:Mn2+Cu2+,ZnS:Mn2+Fe2+,ZnS: Mb2+Cu2+Fe2+nanorods were adjusted by adjusting the composition and proportion of the elements.The structure,morphology, Luminescent properties were characterized;three layers of core-shell structure composite system of ZnS:TM2+(Mn,Fe,Cu) nanorod/ZnO quantum dot/SiO2were prepared by Stoeber method,the effect of thickness of the shell on the optic properties of samples was studied by varying the ratio of nanorods and quantum dot.The effects of microstructure,micro morphology and micro size on the capture, transfer and separation process and properties of photon-generated carrier on or near the surface of semiconductor were studied.
     (2) Synthesis of Size-controlled ZnO nanoparticles and study on the photocatalytic performance
     ZnO nanoparticles with different sizes were prepared by direct precipitation method. Experimental results show that the photocatalytic performance of ZnO not only depends on its crystal size but also its crystallization property.The20nm ZnO nanopartides shows the best photocatalytic property when the calcination temperature was500℃.The effects of catalyst loading, initial dye concentration,the illuminating distance (the distance between the light and the solution surface) and dye initial pH on the rate constant were investigated by using the methyl orange as the model pollutant.The results show that the reaction rate constant is proportional to the scale of catalyst (koc[ZnO]0.62).The reaction rate constant is inversely proportional to the initial concentration and illumination distance of the dye,and their relation is koc[C0]-1.18and koc[D]-0.88, respectively.With the increase of pH,the rate of photocatalytic degradation will decrease.
     (3) The preparation and photocatalytic properties of TiO2composite photocatalyst
     I. Poly acid-modified TiO2composite photocatalyst (phosphor-tungstic acid/TiO2/floating bead) was prepared by sol-gel method using phosphotungstic acid as modifier.And the catalytic activity of the TiO2composite photocatalyst and influencing factors were studied. With phosphotungstic acid as modifier and malachite green dye as model wastewater, the catalytic activity of the TiO2composite photocatalyst and influencing factors were studied, and the degradation rate of malachite green reached90%within80minutes.
     Ⅱ. Floating type photocatalyst was prepared by loading MoO3/TiO2thin film on float bead fly ash using sol-gel method.The photocatalysis activity of composite photocatalyst was characterized by degrading methylene blue wastewater.The photocatalysis properties of semiconductor composite TiO2composite photocatalyst were also studied. The composite photocatalysts (MoO3/TiO2/floating bead) were under the visible light within30minutes, so that degradation rate of methylene blue reached90%, and its degradation rate increased with the increasing of Mo content. When the Mo content was9wt%, its degradation rate reached95.6%under visible light irradiation for15minutes.
     (4) Design and application research of field effect assisted TiO2composite photocatalysis system
     I.TiO2/floating bead photocatalyst,which can float on waste water,was prepared by sol-gel method.Ultrasonic assisted photocatalytic reactor was designed and fabricated by ourselves.Photocatalysis properties of ultrasonic field assisted TiO2composite photocatalyst were studied using methylene blue as model wastewater. The degradation rate of methylene blue within10minutes increased the38.51%more than that without ultrasound assisted conditions.
     II. Ce3+ion doped Ce3+-TiO2/floating bead floating type composite photocatalyst was synthesized by sol-gel method.The composite system was constructed by using sodium dodecyl sulfate as anionic surfactant. We discussed the activity of photocatalytic degradation of composite photocatalyst and photocatalytic reaction mechanism of composite TiO2composite system with surfactant using methylene blue as pollution of organic dye. Under the visible light irradiation for240minutes, the composite system of0.05g SDS and0.1g Ce3+-TiO2/floating bead made the photocatalytic degradation rate of methylene blue dye in solution reached93.49%.
引文
[1]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 Surfaces:Principles Mechanisms and Selected Results [J]. Chem.Rev.,1995,95(3):735-758.
    [2]Joo J, Kwon S G, Yu T, et al. Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E [J]. J. Phys. Chem. B.,2005,109(32):15297-15302.
    [3]Chae S Y, Park M K, Lee S K, et al. Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films [J]. Chem. Mater.,2003,15(17):3326-3331.
    [4]Bessekhouad Y, Robert D, Weber J V, et al. Effect of alkaline-doped TiO2 on photocatalytic efficiency [J]. J.Photoch. Photobio. A.,2004,167(1):49-57.
    [5]Rengaraj S, Li X Z. Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension[J].J. Mol. Catal. A-Chem.,2006,243(1):60-67.
    [6]Sonawane R S, Dongare M K. Sol-gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight [J]. J. Mol. Catal. A-Chem.,2006, 243(1):68-76.
    [7]Gratzel M. Dye-sensitized solar cells [J]. J. Photoch. Photobio. C.,2003,4(2): 145-153.
    [8]Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. J. Photoch. Photobio. A.,2004,164(1-3):3-14.
    [9]Gratzel M. Dye-sensitized solid-state heterojunction solar cells [J]. Mrs. Bull., 2005,30(1):23-27.
    [10]沈星灿,何锡文,梁宏.纳米粒子特性与生物分析[J].分析化学评述与进展,2003,31(7):880-885.
    [11]Halperin W P. Quantum size effects in metal particles[J].Rev.Mod. Phys.,1986,58(3):533-606.
    [12]Ball P, Garwin L. Science at the atomic scale[J]. Nature,1992,355(6363):761-766.
    [13]Brus L. Electronic wave functions in semiconductor clusters:experiment and theory[J].J.Phys. Chem.,1986,90(12):2555-2560.
    [14]Rossetti R, Nakahara S, Brus L E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution[J].J. Chem. Phys.,1983,79(2):1086-1088.
    [15]Geerligs L J, Averin D V, Mooij J E. Observation of macroscopic quantum tunneling through the Coulomb energy barrier[J]. Phys. Rev. Lett.,1990,65(24): 3037-3040.
    [16]Awschalom DD, McCord M A, Grinstein G. Observation of macroscopic spin phenomena in nanometer-scale magnets[J]. Phys. Rev. Lett.,1990,65(6):783-786.
    [17]Huang M H, S Mao, Feick H, et al. Room-Temperature Ultraviolet Nanowire Nanolasers[J].Science,2001,292(5523):1897-1899.
    [18]Tseng Y K, Huang C J, Cheng H M, et al. Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films [J]. Adv. Funct. Mater.,2003,13 (10):811-814
    [19]Fujita S, Kim S W, Ueda M, et al. Artificial control of ZnO nanostructures grown by metalorganic chemical vapor deposition[J]. J. Cryst. Growth,2004,272 (1-4): 138-142.
    [20]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J].Science, 2001,291(5510):1947-1950.
    [21]WU J J, Liu S C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition [J]. Adv, Mater.,2002,14(3):215-218.
    [22]Xu L, Su Y, Chen Y Q, et al. Synthesis and characterization of indium-doped ZnO nanowires with periodical single-twin structures [J]. J. Phys.Chem.B,2006,110 (13):6637-6642.
    [23]Ronning C, Gao P X, Ding Y, et al. Manganese-doped ZnO nanobelts for spintronics[J]. Appl. Phys. Lett.,2004,84 (5):783-785.
    [24]Huang M H., Wu Y Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport [J].Adv. Mater.,2001,13(2):113-116.
    [25]Park J, Kang E, Son S U, et al. Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self-Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction[J]. Adv. Mater.,2005,17 (4):429-434
    [26]Bessekhouad Y, Robert D,Weber J V. Synthesis of Photocatalytic TiO2 nanoparticles:Optimization of the Preparation conditions[J] Journal of Photo-chemistry and Photobiology A:Chemistry,2003,157:47-53.
    [27]Parra R, Goes M S, Castro M S,et al. Reaction pathway to the synthesis of anatase via the chemical modification of titanium isopropoxide with acetic acid[J].Chemistry of Materials,2008,20(1):143-150.
    [28]王琳,吴忆宁,汪炎.溶胶-凝胶法制备纳米二氧化钛及其性能研究[J].哈尔滨商业大学学报(自然科学版),22(3):76-79.
    [29]Gu H, Hu Y, You J, et al.Characterization of single-crystalline PbTiO3 nanowires growth via hydrothermal method[J]. J.Appl.Phys.,2007,1:19-24.
    [30]Li X X, Xiong Y J, Li Z Q, et al. Large-scale fabrication of TiO2 hierarchical hollow spheres [J]. Inorg Chem.,2006,45(9):3493-3495.
    [31]Yu J G, Yu X X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres [J]. Environ Sci Technol.,2008,42(13):4902-4907.
    [32]Sheldrick W S,Wachhold M. Solventothermal synthesis of solid-state chalcogenidometalates [J]. Angew Chem Int Ed Engl,1997,36(3):206-224.
    [33]Feng P, Bu X, Stucky G D. Hydrothermal syntheses and structural characterizations of cobalt phosphate based zeolite analogues [J]. Nature,1997,388: 735-741.
    [34]Jiang Y, Wu Y, Zhang S, et al. Acatalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature [J]. J Am Chem Soc.,2000, 112:12383-12384.
    [35]Wang C Y, Zhang W X, Qian Y T. Preparation of nanocrystalline [J]. Mater Sci Eng B,2002,94:170-175.
    [36]Gu Y L, Guo F, Qian Y T, et al. A solvothermal synthesis of ultra-fine iron phosphide [J]. Mater Res Bull,2002,37:1101-1105.
    [37]Xu D, Liu Z, Liang G, et al. Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol [J]. J Phys Chem B,2005, 109:14344-14349.
    [38]石西昌,王赛,秦毅红,等.纳米ZnO的制备[J].化工新型材料,2003,31(3):32-34
    [39]秦秀娟,邵光杰,李慧,等.高品质纳米氧化锌的制备及其表征[J].燕山大学学报,2002,26(2):236-238
    [40]Nieewarner-Pena S R, Freeman R G,Reiss B D, et al. Submicrometer metallic barcodes[J]. Science,2001,294(5540):137-141.
    [41]Linuner S J,Seraji S, Wu Y.et al. Template-based growth of various oxide naorods by sol-gel electrphoresis,Ayd.Funct.Maert[J].2002,12:59-64.
    [42]Linuner S J,Seraji S, Forbess M J.et al. Electrophoretic growth of lead zirconate titanate nanordos[J].Ady.Mater.2001,13,1269-1272.
    [43]Jie J,Wang G,Wnag Q,et al. Synthesis and characterization of aligned ZnO nanorods on porous aluminum oxide temliate[J]. J.Phys.Chem.B,2004,108,11976-11980.
    [44]]Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization[J].Nature,1999, 402(6760):393-395
    [45]]Xiong Y, Xie Y, Yang J, et al. In situ micelle-template-interface reaction route to CdS nanotubes and nanowires[J]. J.Mater.Chem.,2002,12:3712-3716
    [46]Li H D, Yu S F, Lau S P, et al. High-temperature lasing characteristics of ZnO epilayers [J]. Adv. Mater.,2006,18(6):771-774.
    [47]Yeh C Y, Lu Z W, Froyen S, et al. Zinc blende wurtzite polytypism in semiconductors [J]. Phys. Rev. B.,1992,46:10086-10097.
    [48]Tran T K, Park W, Tong W, et al. Photoluminescence properties of ZnS epilayers [J]. J. Appl. Phys.,1997,81(6):2803-2809.
    [49]Chen H, Shi D, Qi J, et al. The stability and electronic properties of wurtzite and zinc-blende ZnS nanowires [J]. Phys. Lett. A.,2009,373(3):371-375.
    [50]Karazhanov S Z, Ravindran P, Kjekshus A, et al. Electronic structure and optical properties of ZnX (X= O, S, Se, Te):a density functional study [J]. Phys. Rev. B., 2007,75(15):155104-15517.
    [51]Yeh C Y, Wei S H, Zunger A. Relationship between the band-gaps of the zinc blende and the wurtzite modifications of semiconductors [J]. Phys. Rev. B.,1994, 50(4):2715-2718.
    [52]Adachi S, editor. Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information [J]. Boston:Kluwer Academic Publisher., 1999.
    [53]Karazhanov S Z, Ravindran P, Grossner U, et al. Coulomb Correlation Effects in Zinc Monochalcogenides [J]. J. Appl Phys.,2006,100(4):043709-11.
    [54]Karazhanov S Z, Ravindran P, Grossner Kjekshus A, et al. Electronic structure and band parameters for ZnX (X= O, S, Se, Te) [J]. J. Cryst. Growth.,2006,287(1): 162-168.
    [55]Qadri S B, Skelton E F, Hsu D, et al. Size-induced transition-temperature reduction innanoparticles of ZnS [J]. Phys. Rev. B.,1999,60(13):9191-9193.
    [56]Akiyama T, Sano K, Nakamura K, et al. An empirical interatomic potential approach to structural stability of ZnS and ZnSe nanowires [J]. Jpn. J. Appl Phys., 2007,46(4):1783-1787.
    [57]Li J B, Wang L W. Band-structure-corrected local density approximation study of semiconductor quantum dots and wires [J]. Phys. Rev. B.,2005,72(12): 125325-125339.
    [58]Li L J, Zhao M W, Zhang X J, et al. Theoretical insight into faceted ZnS nanowires and nanotubes from interatomic potential and first-principles calculations [J]. J. Phys. Chem. C.,2008,112(10):3509-3514.
    [59]Zhang X J, Zhao M W, Yan S S, et al. First-principles study of ZnS nanostructures:nanotubes, nanowires and nanosheets [J]. Nanotechnology,2008, 19(30):305708-305712.
    [60]Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys.,2005,98(4):041301-041403.
    [61]Thompson T L, Yates J T. Surface science studies of the photoactivation of TiO2 new photochemical processes [J]. Chem. Rev.,2006,106:4428-4453.
    [62]Kato H, Kudo A. New tantalate photocatalysts for water decomposition into H2 and O2 [J]. J. Chem. Phys. Lett.,1998,295(5-6):487-492.
    [63]Kumar N D, Joshi M R, Friend C S, et al. Organic-inorganic heterojunction light emitting diodes based on poly(p-phenylenevinylene)/cadmium sulfide thin films [J]. Appl. Phys. Lett.,1997,71(10),1388-1390.
    [64]E.Sehreiber,H.J.Fitting.Ballistic electrons in GaAs and ZnS[J].Electron. Speetrosc. Relat. Phenom.,2003,131-132:87-98.
    [65]Zhang F J, Xu Z, Glv Y, et al. Influence of the electric characteristics of Ⅱ-Ⅵ semiconductor material on the electroluminescence of lanthanide complex [J]. Eur. Phys. J. B.,2006,52(2):245-248.
    [66]Yuan G D, Ye Z Z, Qian Q,et al. RETRACTED:P-type Zno thin films fabricated by Al-N co-doping method at different substrate temperature [J]. J.Cryst.Growth. 2005,273(3-4):45-457.
    [67]Lu H Y, Chu S Y,Chang C C. Synthesis and optical properties of well-aligned ZnS nanowires on Si substrate [J]. J. Cryst. Growth.,2005,280 (1-2):173-178.
    [68]Feng Q Z, Shen D Z, Zhang J Y, et al. Highly aligned ZnS nanorods grown by plasma-assisted metalorganic chemical vapor deposition [J]. J. Cryst. Growth.,2005, 285(4):561-565.
    [69]Zhao Q, Hou L, Huang R. Synthesis of ZnS nanorods by a surfactant-assisted soft chemistry methodlnorg [J]. Chem. Comm.,2003,6(7):971-973.
    [70]Qiao Z, Xie G, Tao J, et al. Coordination Polymer Route to Wurtzite ZnS and CdS Nanorods [J]. Solid State Chem.,2002,166 (1):49-52.
    [71]Lv R, Cao C, Zhu H. Synthesis and characterization of ZnS nanowires by AOT micelle-template inducing reaction [J]. Mater. Res. Bull.,2004,39(10):1517-1524.
    [72]Behboudnia M, Majlesara M H, Khanbabaee B. Preparation of ZnS nanorods by ultrasonic waves [J]. Mater. Sci. Eng. B.,2005,122(2):160-163.
    [73]Moon H, Nam C, Kim C, et al. Synthesis and photoluminescence of zinc sulfide nanowires by simple thermal chemical vapor deposition [J]. Mater. Res. Bull.,2006, 41(11),2013-2017.
    [74]Kim H, Sigmund W. Zinc sulfide nanocrystals on carbon nanotubes [J]. J. Cryst. Growth.,2003,255(1-2):114-118.
    [75]Yuan H J, Xie S S, Liu D F, et al. Formation of ZnS nanostructures by a simple way of thermal evaporation [J]. J. Cryst. Growth,2003,258(3-4):225-231.
    [76]Ozaki S, Tsuchiya T, Inokuchi Y, et al. Photoluminescence and photomodulated transmittance spectroscopy of ZnO nanowires [J]. Phys. status solidi (a).,2005, 202(7):1325-1335.
    [77]Lin M, Sudhiranjan T, Boothroyd C, et al. Influence of Au catalyst on the growth of ZnS nanowires. Chem Phys Lett.,2004,400(1-3):175-178.
    [78]Kwok W M, Djurisic A B, Leung Y H, et al. Study of excitonic emission in highly faceted ZnO rods. Chem. Phys.Lett.,2005,412(1-3):141-144.
    [79]Chen S J, Liu Y C, Shao C L, et al. Structural and Optical Properties of Uniform ZnO Nanosheets [J]. Adv. Mater.,2005,17(5):586-590.
    [80]Tong Y H, Liu Y C, Lu S X, et al. The Optical Properties of ZnO Nanoparticles Capped with Polyvinyl Butyral [J]. J. Sol-Gel. Sci. Techn.,2004,30 (3):157-161.
    [81]Zhang X H, Liu Y C, Wang X H, et al. Structural properties and photoluminescence of ZnO nanowalls prepared by two-step growth with oxygen-plasma-assisted molecular beam epitaxy [J]. J. Phys.:Condens Matter.,2005, 17(19):3035-3042.
    [82]Suh H W, Kim G Y, Jung Y S, et al. Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis [J]. J. Appl. Phys.,2005,97(4): 044305-044311.
    [83]Wang D D, Yang J H, Cao J, et al. Synthesis and photoluminescence of Eu-doped ZnO nanosheets [J]. Chem. Res. Chinese. U.,2011,27(2):174-176.
    [84]Takahei K, Taguchi A. Selective formation of an efficient Er-O luminescence center in GaAs by metalorganic chemical vapor deposition under an atmosphere containing oxygen [J]. J. Appl. Phys.,1993,74(3):1979-1983.
    [85]Favennec P N, Haridon H L, Salvi M, et al. Luminescence of erbium implanted invarious semiconductors:Ⅳ, Ⅲ-Ⅴ and Ⅱ-Ⅵ materials [J]. Electron. Lett.,1989, 25(11):718-719.
    [86]Bresler M S, Gusev O B, Kudoyarova V K, et al. Room-temperature photoluminescence of erbium-doped hydrogenated amorphous silicon [J]. Appl. Phys. Lett.,1995,67(24):3599-3602.
    [87]Fujii M, Yoshida M, Hayashi S, et al. Photoluminescence from SiO2 films containing Si nanocrystals and Er:Effects of nanocrystalline size on the photoluminescence efficiency of Er3+[J]. J. Appl. Phys.,1998,84(8):4525-4532.
    [88]Mais N, Reithmaier J P, Forchel A,et al. Er doped nanocrystalline ZnO planar waveguide structures for 1.55μm amplifier applications [J]. Appl. Phys. Lett.,1999, 75(14):2005-2007.
    [89]Wang D, Chen Q, Xing G Z, et al. Robust room-temperature ferromagnetism with giant anisotropy in Nd-doped ZnO nanowire arrays [J]. Nano. Lett.,2012,12(8): 3994-4000.
    [90]Liu S M, Liu F Q, Wang Z G, et al. Relaxation of carriers in terbium-doped ZnO nanoparticles [J]. Chem. Phys. Lett.,2001,343(5-6):489-492.
    [91]Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors [J]. Science,2000,287(5455):1019-1022.
    [92]Sato K, Yoshida H K. Electronic structure and ferromagnetism of transition metal impurity doped zinc oxide. Physica B:Condensed Matter.,2001,308-310: 904-907.
    [93]Cho Y M, Choo W K, Kim H, et al. Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Znl-x(Co0.5Fe0.5)xO thin films [J]. Appl. Phys. Lett.,2002,80(18):3358-3360.
    [94]Venkatesan M, Fitzgerald C B, Lunney J G, et al. Anisotropic Ferromagnetism in Substituted Zinc Oxide [J]. Phys. Rev. Lett.,2004,93(17):177206-177209.
    [95]Yang C H, Lee H J, Kim Y B, et al. Magnetoresistance in Fe and Cu co-doped ZnO thin films [J]. Physica B:Condensed Matter,2006,383(1):28-30.
    [96]Tiwari A, Snure M, Kumar D, et al. Ferromagnetism in Cu-doped ZnO films: Role of charge carriers [J]. Appl. Phys. Lett.,2008,92(6):062509-062511.
    [97]Chien C H, Chiou S H, Guo G Y, et al. Electronic structure and magnetic moments of 3d transition metal-doped ZnO [J]. J. Magn. Magn. Mater.,2004,282: 275-278.
    [98]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature,1972,238(5358):37-38.
    [99]Serpone N,Texier I,Emeline A V, et al. Post-Irradiation Effeet and Reduetive Deehlorination of Chlorophenols at Oxygen-Free TiO2/Wrater Interfaces in the Presenee of Prominent HolScavensers [J]. J. photochem. photobio. A-Chem.,2000, 136(3):145-152.
    [100]Amy D, Kamat P V. Semieonductor-Metal NanocomPosites Photoindued Fusion and Photoeatalysis of Gold-CaPPed TiO2 (TiO2Z/Gold) NanoPartieles [J]. J. Phys. Chem. B.,2001,105(5):960-966.
    [101]San N, Hatipoglu A,Kocturk G,et al. Photoeatalytic degradation of 4-nitrOPhenol in aqueous TiO2 suspensions:Theoretical Prediction of theiniermediates [J]. J. Photo. Photobio. A.,2002,146(3):189-197.
    [102]Kazuhiro Hirano,Eiji Suzuki,Akio Ishikawa,et al. Sensitization of TiO2 Partieles by dyes to aehieve H2 evolution by visibl elight [J]. J. Photoch. Photobio. A.,2000, 136(3):157-161.
    [103]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science.,1996,271(5251):933-940.
    [104]Jr M B, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science,1998,281(5385):2013-2019.
    [105]Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals [J]. Nature,2000,404(6773):59-61.
    [106]Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science,2002,298(5601):2176-2185.
    [107]Peng X G. An essay on synthetic chemistry of colloidal nanocrystals [J]. Nano Res.,2009,2(6):425-472.
    [108]Rossetti R, Hull R, Gibson J M, et al. Excited electronic states and optical spectra of ZnS and CdS crystallites in the 15 to 50 A size range:Evolution from molecular to bulk semiconducting properties [J]. J. Chem. Phys.,1985,82(1): 552-561.
    [109]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E= S, Se, Te)semiconductor nanocrystallites [J]. J. Am. Chem. Soc.,1993,115(19):8706-8715.
    [110]Jun Y W, Choi J S, Cheon J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes [J]. Angew. Chem. Int. Edit., 2006,45(21):3414-3439.
    [111]Jin J, Hyon Bin Na,Taekyung Yu, et al. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals [J]. J. Am. Chem. Soc.,2003,125 (36): 11100-11105.
    [112]Zhao Y W, Zhang Y, Zhu H, et al. Low-temperature synthesis of hexagonal (wurtzite) ZnS nanocrystals [J]. J. Am. Chem. Soc.,2004,126(22):6874-6879.
    [113]Li L S, Pradhan N, Wang Y J, et al. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors [J]. Nano Lett.,2004,4(11): 2261-2265.
    [114]Li Y C, Li X H, Ye C H, et al. Ligand-controlling synthesis and ordered assembly of ZnS nanorods and nanodots [J]. J. Phys. Chem. B.,2004,108(41): 16002-16013.
    [115]Li Y C, Ye M F, Yang C H, et al. Composition-and shape-controlled synthesis and optical properties of ZnxCdl-xS alloyed nanocrystal [J]. Adv. Funct. Mater., 2005,15(3):433-474.
    [116]Talapin D V, Rogach A L, Kornowski A, et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecy lamine-trioctylphosphine oxide-trioctylphospine mixture [J]. Nano Lett.,2001,1(4): 207-218.
    [117]Moore D, Wang Z L. Growth of anisotropic one-dimensional ZnS nanostructures [J]. J Mater Chem.,2006,16:3898-3905.
    [118]Wang Y W, Zhang L D, Liang C H, et al. Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires [J]. Chem. Phys. Lett.,2002,357(3-4):314-322.
    [119]Barrelet C J, Wu Y, Bell D C, et al. Synthesis of CdS and ZnS nanowires using single-source molecular precursors [J]. J Am Chem Soc.,2003,125(38): 11498-11506.
    [120]Law M, Goldberger J, Yang P D. Semiconductor nanowires and nanotubes [J]. Annu Rev Mater Res.,2004,34:83-122.
    [121]Jiang X C, Xie Y, Lu J, et al. Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by y-irradiation [J]. Chem Mater.,2001,13(4):1213-1218.
    [122]Kang T, Sung J, Shim W, et al. Synthesis and magnetic properties of single-crystalline Mn/Fe-doped and Co-doped ZnS nanowires and nanobelts [J]. J.Phys. Chem. C.,2009,113(14):5352-5359.
    [123]Fang X S, ZhaiT Y,Gautam U K.ZnS nanostructures:From synthesis to applications[J]. Progress in Materials Science.2011,56:175-287.
    [124]Goswami A, Goswami A P. Dielectric and optical properties of ZnS films [J]. Thin Solid Films,1973,16(2):175-185.
    [125]Nicolau Y F, Dupuy M, Brunei M. ZnS, CdS, and Zn1-xCdxS thin films deposited by the successive inoic layer adsorption and reaction process [J]. J. Electrochem. Soc.,1990,137(9):2915-2924.
    [126]Nicolau Y F, Menard J C. Solution growth of ZnS, CdS and Zm1-xCdxS thin films by the successive ionic-layer adsorption and reaction process, growth mechanism [J]. J Cryst Growth.,1988,92(1-2):128-142.
    [127]Valkonen M P, Kanniainen T, Lindroos S, et al. Growth of ZnS, CdS and multilayer ZnS/CdS thin films by SILAR technique [J]. Appl Surf Sci.,1997,115(4): 386-392.
    [128]Frigo D M, Khan OFZ, Brien PO. Growth of epitaxial and highly oriented thin films of cadmium and cadmium zinc sulfide by low-pressure metalorganic chemical vapour deposition using diethyldithiocarbamates[J]. J. Cryst. Growth,1989,96 (4): 989-992.
    [129]Yoshikawa A, Yamaga S, Tanaka K, et al. Growth of low-resistivity high-quality ZnSe, ZnS films by low-pressure metalorganic chemical vapor deposition [J]. J. Cryst Growth,1985,72(1-2):13-16.
    [130]McClean I P, Thomas C B. Photoluminescence study of MBE-growth films on ZnS [J]. Semicond Sci Technol.,1992,7(11):1394-1399.
    [131]Passler R, Griebl E, Riepl H, et al. Temperature dependence of exciton peak energies in ZnS, ZnSe, and ZnTe epitaxial films [J]. J Appl Phys.,1999,86(8): 4403-4411.
    [132]Eildrissi B, Addou M, Regragui M, et al. Structure, composition and optical properties of ZnS thin films prepared by spray pyrolysis [J]. Mater Chem Phys.,2001, 68(1-3):175-179.
    [133]Afifi H H, Mahmoud S A, Ashour A. Structural study of ZnS thin films prepared by spray pyrolysis [J]. Thin Solid Film,1995,263(2):248-251.
    [134]Dona J M, Herrero J. Process and film characterization of chemical-bath-deposited ZnS thin films [J]. J. Electrochem Soc.,1994,141(1):205-210.
    [135]Arenas O L, Nair M T S, Nair P K. Chemical bath deposition of ZnS thin films and modification by air annealing [J]. Semicond. Sci Technol.,1997,12:1323-1330.
    [136]Murali K R, Vasantha S, Rajamma K. Properties of pulse plated ZnS films [J]. Mater Lett.,2008,62(12-13):1823-1826.
    [137]Yano S, Schroeder R, Sakai H,et al. High-electric-field photocurrent in thin-film ZnS formed by pulsed-laser deposition [J]. Appl. Phys. Lett.,2003,82(13): 2026-2028.
    [138]Lindroos S, Kanniainen T, Leskela M. Growth of ZnS thin films by liquid-phase atomic layer epitaxy (LPALE) [J]. Appl. Surf. Sci.,1994,75(1-4):70-74.
    [139]Ihanus J, Ritala M, Leskela M, et al. AFM studies on ZnS thin films grown by atomic layer epitaxy [J]. Appl. Surf.Sci.,1997,120(1-2):43-50.
    [140]Shao L X, Chang K H, Wang H L. Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications [J]. Appl. Surf. Sci.,2003,212: 305-310.
    [141]Tang W, Cameron D C. Electroluminescent zinc sulphide devices produced by sol-gel processing [J]. Thin. Solid. Films.,1996,280(1-2):221-226.
    [142]Kovtyukhova N I, Buzaneva E V, Waraksa C C, et al. Surface sol-gel synthesis of ultrathin semiconductor films [J]. Chem Mater.,2000,12(2):383-389.
    [143]Lee E Y M, Tran N H, Russell J J, et al. Structure evolution in chemical vapor-deposited ZnS films [J]. J. Phys. Chem. B.,2003,107(22):5208-5211.
    [144]Cheon J W, Talaga D S, Zink J I. Photochemical deposition of ZnS from the gas phase and simultaneous luminescence detection of photofragments from a single-source precursor Zn(S2COCHMe2)2 [J]. J. Am. Chem. Soc.,1997,119(1): 163-168.
    [145]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science, 2001,291(5510):1947-1949.
    [146]Ng H T, Li J, Smith M K, et al. Growth of epitaxial nanowires at the junctions of nanowalls [J]. Science,2003,300(5623):1249.
    [147]Pan Z W, Dai S, Rouleau C M, et al. Germanium-catalyzed growth of zinc oxide nanowires:A semiconductor catalyst for nanowire synthesis [J]. Angew Chem., 2005,44(2):274-278.
    [148]Wang X D, Song J H, Wang Z L. Single-crystal nanocastles of Zno [J]. Chem. Phys. Lett.,2006,424 (1-3):86-90.
    [149 Gao P X, Ding Y, Mai W, et al. Conversion of Zinc oxide nanobelts into superlattice-structured nanohelices [J]. Science,2005,309(5741):1700-1704.
    [150]Qin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging [J]. Nature,2008,451(7227):809-813.
    [151]Wang H T, Kang B S, Ren F, et al. Hydrogen-selective sensing at room temperature with ZnO nanorods [J]. Appl. Phys. Lett.,2005,86(24):243503-243505.
    [152]Hughes W L, Wang Z L. Controlled synthesis and manipulation of ZnO nanorings and nanobows [J]. Appl. Phys. Lett.,2005,86(4):43106-43105.
    [153]Xu F, Dai M, Lu Y N,et al.Hierarchical ZnO Nanowire-Nanosheet Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells [J].J. Phys. Chem. C.,2010,114(6):2776-2782.
    [154]Phanikrishna S M V, Durgakumari V,Subrahmanyam M. Solar photocatalytic degra dation of isoproturon over TiO2/H-MOR composite systems [J]. J. Hazard. Mater.,2008,160(2-3):568-575.
    [155]Aliev A E, Shin H W. Nanostructured materials for electrochromic devices [J]. Solid. State. Ionics.,2002,154-155:425-431.
    [156]Bach U, Corr D, Lupo D, et al. Nanomaterials-Based Electrochromics for Paper-Quality Displays [J]. Adv Mater.,2002,14(11):845-847.
    [157]Lim S H, Luo J, Zhong Z, et al. Room-Temperature HydrogenUptake by TiO2 Nanotubes [J]. Inorg Chem.,2005,44(12):4124-4126.
    [158]Mor G K, Oomman K V, Craig A, et al. Fabrication of tapered, conical-shaped titania nanotubes [J]. J. Mater. Res.,18(11):2588-2593.
    [159]Khalil L B, Mourad W E, Rophael M W. Photocatalytic reduction of environmental pollutant Cr(VI) over some semicondutors under UV/visible light illumination [J]. Appl. Catal. B.,1998,17(3):267-273.
    [160]Yamshita H, Ichihashi Y, Harada M, et al. Photocatalytic degradation of 1-octanol on anchored titanium oxide and on TiO2 powder catalysts [J]. J. Catal.,1996, 158(1):97-101.
    [161]Jang J S, Kim H G, Borsep H,et al. Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO2 composite photocatalysts under visible light irradiation [J]. Int. J. Hydrogen Energy,2007, 32(18):4786-4791.
    [162]O'Regan B, Gratezel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Natrue,1991,353:737-740.
    [163]Adachi M, Mmrata Y, Okada I, et al. Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells [J]. J. Electrochem. I. Soc.,2003,150(8): G488-G493.
    [164]Rajeshwar K, Tacconi N R, Chenthamarakshan C R. Semiconductor-Based Composite Materials:Preparation, Properties and Performance [J]. Chem. Mater., 2001,13(9):2765-2782.
    [165]庸玉朝,胡春,王怡中.Ti02光催化反应机理及动力学研究进展[J].化学进展,2002,14(3):192-199
    [166]David F O. Photocatalytic purification and remediation of contaminated air and water [J]. C. R. Acad. Sci. Paris, Se'rie Ⅱc, Chimie/Chemistry,2000,3(6):405-411.
    [167]梁德荣.半导体光催化反应研究[J].科技情报开发与经济,2008,18(11):134-135.
    [168]Umar I G, Abdul H A. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide:A review of fundamentals, progress and problems [J]. J. Photochem. Photobiol. C,2008,9(1):1-12.
    [169]孙晓君,蔡伟民,井立强,等.二氧化钛半导体光催化技术研究进展[J].哈尔滨工业大学学报,2001,33(4):534-541.
    [170]P Salvador, Garcia Godlez M L. Catalytic Role of Lattice Defects In the Photoassisted Oxidation of Water at (001) n-TiO2 Rutile [J]. J. Phys. Chem.,1992, 96(25):10349-10353.
    [171]Nerlov J, Ge Q F, Moller P G, et al. Resonant photoemission from TiO2 (110) surfaces:implications on surface bonding and hybridization [J]. Surface Science, 1996,348(1-2):28-38.
    [172]Ohno T, Sarkawa K, Matsumura M. Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution [J]. J. Phy. Chem. B,2001,105(12):2417-2420.
    [173]Cao Y S, Chen J X, Hu A L, et al. Photocatalytic degradation of chlorfenapyr in aqueous suspension of TiO2 [J]. J. Mol. Catal.A.,2005,233(1-2):61-66.
    [174]Lee H S, Hur T, Kim S, et al. Effects of Ph and surface modification of TiO2 with SiOx on the photocatalytic degradation of a pyrimidine derivative [J]. Catal. Today,2003,84(3-4):173-180.
    [175]Lee W, Gao Y M, Dwight K, et al. Preparation and characterization of titanium(IV) oxide photocatalysts [J]. Mat. Res. Bull.,1992,27(6):685-692
    [176]Michalet X, Pinaud F F, Bentolila L A, et al. Quantum Dots for Live Cells, in Vivo Imaging and Diagnostics [J]. Science,2005,307(5709):538-544.
    [177]Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat. Biotechnol.,2004,22:969-976.
    [178]Yin M, Shen J, Pflugfelder G O, et al. A Fluorescent Core-Shell Dendritic Macromolecule Specifically Stains The Extracellular Matrix [J]. J. Am. Chem. Soc., 2008,130(25):7806-7807.
    [179]Dvir M R, Banghart B P, Timko, et al. Photo-Targeted Nanoparticles [J]. Nano Lett.,2010,10(1):250-254.
    [180]Sarikaya M, Tamerler C, Jen A K Y, et al. Molecular biomimetics: nanotechnology through biology [J]. Nat. Mater.,2003,2:577-585.
    [181]Chen Z G, Chen H L, Hu H, et al. Versatile Synthesis Strategy for Carboxylic Acid-functionalized Upconverting Nanophosphors as Biological Labels [J]. J. Am. Chem. Soc.,2008,130(10):3023-3029.
    [182]Sharma A, Qiang Y, Meyer D, et al. Biocompatible core-shell magnetic nanoparticles for cancer treatment [J]. J. Appl. Phys.,2008,103 (7):07A308-07A311.
    [183]Bruchez Jr M, Moronne M, Gin P, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels [J]. Science,1998,281(5385):2013-2016.
    [184]S. Shrestha,C. E Mills,J. Lewington, et al. Modified Rare Earth Semiconductor Oxide As a New Nucleotide Probe. J. Phys. Chem. B,2006,110(51):25633-25637.
    [185]Erogbogbo F, Yong K T, Roy I, et al. Biocompatible Luminescent Silicon Quantum Dots for Imaging of Cancer Cells [J]. ACS Nano.,2008,2(5):873-878.
    [186]Hou S, Yuen Y, Mao H, et al. Photoluminescence properties of the Eu3+-doped ZnS nanocrystals and the crystal-field analysis [J]. J. Phys. D:Appl. Phys.,2009, 42(21):215105-215109.
    [187]Zalewska M, Kuklinski B, Grzanka E. Tb3+ ions in presence of ZnS:Mn2+ nanocrystals immobilized on silica:Energy transfer ZnS→Tb3+ and coordination state of Mn2+ ions [J]. J. Lumin.,2009,129(3):246-250.
    [188]Herng T S, Lau S P, Yu S F, et al. Ferromagnetic Cu doped ZnO as an electron injector in heterojunction light emitting diodes [J]. J. Appl. Phys.,2008,104(10): 103104-103109.
    [189]Song Y, Cao X, Guo Y, et al. Fabrication of Mesoporous CdTe/ZnO@SiO2 Core/Shell Nanostructures with Tunable Dual Emission and Ultrasensitive Fluorescence Response to Metal Ions [J]. Chem. Mater.,2009,21(1):68-77.
    [190]Sun J, Zhuang J, Guan S, Yang W. Synthesis of robust water-soluble ZnS:Mn/SiO2 core/shell nanoparticles [J]. J. Nanopart. Res.,2008,10(4):653-658.
    [191]Sharm P K, Dutta R K, Kumar M, et al. Luminescence studies and formation mechanism of symmetrically dispersed ZnO quantum dots embedded in SiO2 matrix [J]. J. Lumin.,2009,129(6):605-610.
    [192]Fu A, Gu W, Boussert B. Semiconductor Quantum Rods as Single Molecule Fluorescent Biological Labels [J]. Nano Lett.,2007,7(1):179-182.
    [193]Biswas S, Kar S, Chaudhuri S. Optical and Magnetic Properties of Manganese-Incorporated Zinc Sulfide Nanorods Synthesized by a Solvothermal Process [J]. J. Phys. Chem. B,2005,109(37):17526-17530.
    [194]Mandal S K, Mandal A R, Das S. Strong excitonic confinement effect in ZnS and ZnS:Mn nanorods embedded in polycarbonate membrane pores [J]. J. Appl. Phys., 2007,101(11):14315-14321.
    [195]Ge J, Wang J, Zhang H,et al. Halide-Transport Chemical Vapor Deposition of Luminescent ZnS:Mn2+ One-Dimensional Nanostructures [J]. Adv. Funct. Mater., 2005,15(2):303-308.
    [196]Zhuo R F, Feng H T, Yan D, et al. Rapid growth and photoluminescence properties of doped ZnS one-dimensional nanostructures [J]. J. Cryst. Growth,2008, 310(13):3240-3246.
    [197]Kang T, Sung J, Shim W, et al. Synthesis and Magnetic Properties of Single-Crystalline Mn/Fe-Doped and Co-doped ZnS Nanowires and Nanobelts [J]. J. Phy. Chem. C.,2009,113(14):5352-5357.
    [198]Goudarzi A, Aval G M, Park S S, et al. Low-Temperature Growth of Nanocrystalline Mn-Doped ZnS Thin Films Prepared by Chemical Bath Deposition and Optical Properties [J]. Chem Mater.,2009,21(12):2375-2385.
    [199]Becker W G, Bard A J. J Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions [J]. J. Phy. Chem.,1983,87(24): 4888-4893.
    [200]Wageh S,Zhao S L, Xu X R, et al. Growth and optical properties of colloidal ZnS nanoparticles [J]. J. Cry. Growth,2003,255(3-4):332-337.
    [201]Li Z, Liu B, Li X, et al. Synthesis of ZnS nanocrystals with controllable structure and morphology and their photoluminescence property [J]. Nanotechnology, 2007,18(25):255602-255607.
    [202]Yao W, Yu S, Pan L, et al. Flexible Wurtzite-Type ZnS Nanobelts with Quantum-Size Effects:a Diethylenetriamine-Assisted Solvothermal Approach [J]. Small.,2005,1(3):320-325.
    [203]Bhargava R N, Gallagher D. Optical properties of manganese-doped nanocrystals of ZnS [J]. Phys. Rev. Lett.,1994,72(3):416-419.
    [204]Sapra S, Prakash A, Ghangrekar A, et al. Emission Properties of Manganese-Doped ZnS Nanocrystals [J]. J. Phy. Chem. B,2005,109 (5):1663-1668.
    [205]Sooklal K, Cullum B S, Angel S M, et al. Photophysical Properties of ZnS Nanoclusters with Spatially Localized Mn2+[J]. J. Phy. Chem.,1996,100(11): 4551-4555.
    [206]Geng B Y, Zhang L D, Wang G Z, et al. Synthesis and photoluminescence properties of ZnMnS nanobelts [J]. Appl. Phy. Lett.,2004,84(12):2157-2160.
    [207]Peng W Q, Qu S C,Cong J W, et al. Optical and magnetic properties of ZnS nanoparticles doped with Mn2+[J]. J. Cry. Growth,2005,282(1-2):179-185.
    [208]Mecabih S, Benguerine K, Benosman N, et al. Generalized gradient calculations of magneto-electronic properties for diluted magnetic semiconductors ZnMnS and ZnMnSe [J]. J. Physica B:Condensed Matter,2008,403(19-20):3452-3458.
    [209]Kar S, Santra S, Heinrich H. Fabrication of High Aspect Ratio Core-Shell CdS-Mn/ZnS Nanowires by a Two Step Solvothermal Process [J]. J. Phys. Chem. C, 2008,112(11):4036-4041.
    [210]Ong H C, Chang R P H. Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry [J]. Appl. Phys. Lett.,2001,79(22): 3612-3615.
    [211]Sambasivam S, Reddy B K, Divya A,et al. Optical and ESR studies on Fe doped ZnS nanocrystals. Phys [J]. Lett A,2009,373(16):1465-1468.
    [212]Limaye M V, Singh S B, Raja D, et al. Room temperature ferromagnetism in undoped and Fe doped ZnO nanorods:Microwave-assisted synthesis [J]. J. Solid State Chem.,2011,184(2):391-400.
    [213]Limaye M V, Gokhale S, Acharya S A, et al. Template-free ZnS nanorod synthesis by microwave irradiation [J]. Nano.,2008,19(41):415602-415604.
    [214]Pradhan N, Efrima S. Supercrystals of Uniform Nanorods and Nanowires, and the Nanorod-to-Nanowire Oriented Transition [J]. J. Phys. Chem. B,2004,108(32): 11964-11970.
    [215]Datta A, Panda S K, Chaudhuri S. Phase transformation and optical properties of Cu-doped ZnS nanorods [J]. J. Solid State Chem.,2008,181(9):2332-2337.
    [216]Peng W Q, Cong G W, Qu S C, et al. Synthesis and photoluminescence of ZnS: Cu nanoparticles [J]. Opt. Mater.,2006,29(2-3):313-317.
    [217]Song H, Leem Y, Kim B, et al. Synthesis and fluorescence properties of pure and metal-doped spherical ZnS particles from EDTA-metal complexes [J]. J. Phys. Chem. Solids.,2008,69(1):153-160.
    [218]Daniel Santos A A, Marcelo A. Study of the magnetic and structural properties of Mn-, Fe-, and Co-doped ZnO powder [J]. Phys Rev B.,2012,407(16):3229-3232.
    [219]Dai Q, Duty C E, Hu M Z. Semiconductor-Nanocrystals-Based White Light-Emitting Diodes [J]. Small.,2010,6(15):1577-1588.
    [220]Wei M, Yang J, Yan Y, et al. The investigation of the maximum doping concentration of iron in zinc sulfide nanowires, and its optical and ferromagnetic properties [J].Superlattice Microst.,2013,54:181-187.
    [221]Cui Y, Wei Q, Park H, et al. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species [J]. Science,2001,293(5523): 1289-1292.
    [222]Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing [J]. Nature Materials,2005,4:435-446.
    [223]Joseph W. Biomolecule-Functionalized Nanowires:From Nanosensors to Nano carriers [J]. Chem. Phys. Chem.,2009,10(11):1748-1755.
    [224]Rajabi H R, Shamsipur M, Khosravi A A, et al. Selective spectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe [J]. Spectrochim Acta A.,2013,107:256-262.
    [225]Zhang J, Campbell R E, Ting A Y, et al. Creating new fluorescent probes for cell biology [J]. Nat. Rev. Mol. Cell. Biol.,2002,3(12):906-918.
    [226]Franzen H F, Umana M X, McCreary J R, et al. XPS spectra of some transition metal and alkaline earth monochalcogenides [J]. J. Solid State Chem.,1976,18(4): 363-368.
    [227]Perry D L, Taylor J A. X-ray photoelectron and Auger spectroscopic studies of Cu2S and CuS [J]. J. Mater. Sci. Lett.,1986,5(4):384-386.
    [228]Siriwardene R V, Cook J M. Interactions of SO2 with sodium deposited on silica [J]. J. Colloid Interface Sci.,1985,108(2):414-422.
    [229]Langer D W, Vesely C J. Electronic Core Levels of Zinc Chalcogenides [J]. Phys. Rev. B,1970,2(12):4885-4892.
    [230]Nefedov V I. A comparison of results of an ESCA study of nonconducting solids using spectrometers of different constructions [J]. J Electron Spectrosc. Relat. Phenom.,1982,25(1):29-47.
    [231]Yu X R, Liu F, Wang Z Y, et al. Auger parameters for sulfur-containing compounds using a mixed aluminum-silver excitation source [J]. J. Electron Spectrosc. Relat. Phemon.,1990,50(2):159-166.
    [232]Brion D. Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l'air et dans l'eau [J]. Appl. Surf. Sci., 1980,5(2):133-152.
    [233]Angelakis A N, Marekos M H F, Bontoux L, et al. The status of wastewater reuse practice in the mediterrean basin-need for guidelines [J]. Water Research, 1999,33(10):2201-2217.
    [234]Galindo C, Jacques P, Kalt A. Photooxidation of the phenylazonaphthol AO20 on TiO2:kinetic and mechanistic investigations [J]. Chemosphere,2001,45 (6-7): 997-1005.
    [235]Tian G H, Fu H G, Jing L Q, et al. Synthesis and photocatalytic activity of nanocrystalline TiO2 with high crystallinity and large surface aera [J]. J. Hazardous Mater.,2009,161(2-3):1122-1130.
    [236]Brijesh P, Jonnalagadda S B, Tomar H, et al. ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation [J]. Desalination,2008,232(1-3):80-90.
    [237]Wang K H, Hsieh Y H, Chou M Y, et al. Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution [J]. Appl. Catal.B,1999,21(3):1-8.
    [238]Konstantinou I K, Albanis T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations [J]. Appl. Catal. B,2004,49(1):1-14.
    [239]Aaron D, Allan M, Takuya T, et al. Mechanochemical synthesis of nano-particulate ZnO-ZnWO4 powders and their photocatalytic activity [J]. J. European Ceramic Soc.,2009,29(1):139-144.
    [240]Xu J, Chang Y G, Zhang Y Y, et al. Effect of silver ions on the structure of ZnO and photocatalytic performance of Ag/ZnO composites [J]. Appl. Sur. Sci.,2008, 255(5):1996-1999.
    [241]Pirkanniemi K, Sillanpaa M. Heterogeneous water phase catalysis as an en-vironmental application:a review [J]. Chemosphere,2002,48(10):1047-1060.
    [242]Behnajady M A, Modirshahla N, Hamzavi R. Kinetic study on photocatalytic degradation of CI. Acid Yellow 23 by ZnO photocatalyst [J]. J. Hazard. Mater., 2006,133(1-3):226-232.
    [243]Yeber M C, Rodriguez J, Freer J, et al. Advanced oxidation of a pulp mill bleaching wastewater [J]. Chemosphere,1999,39(10):1679-1688.
    [211]Khodja A A, Sehili T, Pitichowshi J F, et al. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions [J]. J. Photochem. Photobiol. A:Chem.,2001,141(2-3):231-239.
    [244]Serpone N, Maruthamuthu P, Pichat P, et al. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol,2-chlorophenol and pentachlorophenol:chemical evidence for electron and hole transfer between coupled semiconductors [J]. J. Photochem. Photobiol.A:Chem.,1995,85(3):247-255.
    [245]Klug H P., Alexander L E. X-ray Diffration Procedures:For Polyercrystalline and Amorphous materials[J].Anal. Chim. Acta,1974,77(2):349.
    [246]Zhou G, Deng J C. Preparation and photocatalytic performance of Ag/ZnO nano-composites [J]. Mater. Sci. Semicond. Process,2007,10(2-3):90-96.
    [247]Leite E R, Nobre M A L, Lingo E, et al. Microstructural development of ZnO varistor during reactive liquid phase sintering [J]. J. Mater. Sci.,1996,31(20):5391-5398.
    [248]Andreozzi R, Caprio V, Insola A, et al. Advanced oxidation processes (AOP) for water purification and recovery [J]. Catal. Today,1999,53(15):51-59.
    [249]Munoz I, Rieradevall J, Torrades F, et al. Environmental assesment of different advanced oxidation processes applied to a bleaching Kraft mill effluent [J]. Chemosphere,2006,62(1):9-16.
    [250]Kusvuran E, Gulnaz O, Irmak S, et al. Comparison of several advanced oxidation processes for the decolorization of Reactive Red 120 azo dye in aqueous solution [J]. J. Hazard. Mater.,2004,109(1-3):85-93.
    [251]Munoz I, Rieradevall J, Torrades F, etal. Environmental assessment of different solar driven advanced oxidation processes [J]. Sol. Energy Mater. Sol. Cells,2005, 79(4):369-375.
    [252]Jiang Y, Zhang P, Liu Z W, et al. The preparation of porous nano-TiO2 with high activity and the discussion of the cooperation photocatalysis mechanism [J]. Mater. Chem. Phys.,2006,99(2-3):498-504.
    [253]Liao D L, Liao B Q. Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants [J]. J. Photochem. Photobiol.,A:Chem,2007,187(2-3): 363-369.
    [254]Lin H, Huang C P, Li W, et al. Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol [J]. Appl. Catal., B:Environ,2006,68(1-2):1-11.
    [255]Dhanalakshmi K B, Anandan S, Madhavan J, et al. Photocatalytic degradation of phenol over TiO2 powder:The influence of peroxomonosulphate and peroxodisulphate on the reaction rate [J]. Sol. Energy Mater. Sol. Cells,2008,92(4): 457-463.
    [256]Zeng H B, Liu P S, Cai W P, et al. Controllable Pt/ZnO porous nanocages with improved photocatalytic activity [J]. J. Phys. Chem. C,2008,112:19620-19624.
    [257]Nageswara R A, Sivasankar B, Sadasivam V. Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst [J]. J.Hazard. Mater., 2009,166(2-3):1357-1361.
    [258]全北平,徐宏,顾宏陈,等.粉煤灰空心微珠的研究与应用进展[J].化工矿物与加工,2003,11:31-33.
    [259]Toshinori T, Takehiro K, Tomohisa Y, et al. A photocatalytic membrane reactor for VOC decomposition using Pt-modified titanium oxide porous membranes [J]. J. Memb. Sci.,2006,280(1-2):156-162.
    [260]Aguado J, Grieken R V, Lopez-Munoz M J,et al. A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts [J]. Appl. Cata., A:General,2006,312:202-212.
    [261]Matsumoto T, Iyi N, Kaneko Y, et al. High visible-light photocatalytic activity of nitrogen-doped titania prepared from layered titania/isostearate nanocomposite [J]. Catal. Today,2007,120:226-232.
    [262]Rauf M A, Bukallah S B, Hamadi A, et al. The effect of operational parameters on the photoinduced decoloration of dyes using a hybrid catalyst V2O5/TiO2 [J]. Chem. Eng. J,2007,129(1-3):167-172.
    [263]Zhao W K, Tan Y S, Fang Y L, et al. Photocatalytic decomposition of crude oil on water [J]. Chin. J. Catal.,1999,20(5):368-372.
    [264]YANG Y, CHEN A P, GU H C, et al. Photocatalytic Degradation of Oil Film Floating on Waterby TiO2 Immobilized on Expanded Perlite [J]. Chin. J. Catal.,2001, 22(2):177-180.
    [265]廖玉超,蔡铁军.杂多酸化合物光催化剂研究新进展[J].湘潭师范学院学报(自然科学版),2006,28(2):73-77.
    [266]孙亚萍,赵靓,赵景联,等.二氧化钛固载杂多酸催化剂的制备及其光催化性能研究[J].高校化学工程学报,2006,20(4):554-558.
    [267]Alnuaimi M M, Rauf M A, Ashraf S S. A comparative study of Neutral Red decoloration by photo-Fenton and photocatalytic processes [J]. Dye Pigments,2008, 76:332-337.
    [268]El-Sheekh M M, Gharieb M M, Abou-El-Souod G W. Biodegradation of dyes by some green algae and cyanobacteria [J]. Int. Biodeterior. Biodegrad.,2009,63: 699-704.
    [269]Forgacs E, Cserhati T, Oros G. Removal of synthetic dyes from wastewaters:a review [J]. Environ. Int.,2004,30:953-971.
    [270]Turhan K, Turgut Z. Decolorization of direct dye in textile wastewater by ozonization in a semi-batch bubble column reactor [J]. Desalination,2009,242: 256-263.
    [271]Yu Z H, Wen X H. Screening and identification of yeasts for decolorizing synthetic dyes in industrial wastewater [J]. Int. Biodeterior. Biodegrad.,2005,56: 109-114.
    [272]Silveira E, Marques P P, Silva S S, et al. Selection of Pseudomonas for industrial textile dyes decolourization [J]. Int. Biodeterior. Biodegrad.,2009,63: 230-235.
    [273]Benitez F J, Acero J L, Leal A I. Treatment of wastewaters from the cork process industry by using ultrafiltration membranes [J]. Desalination,2008,229: 156-169.
    [274]Akpan U G, Hameed B H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts:A review [J]. J. Hazard. Mater.,2009,170: 520-529.
    [275]Li T H, Gao S Y, Li F, et al. Photocatalytic property of a keggin-type polyoxometalates-containing bilayer system for degradation organic dye model [J]. J. Colloid Interface Sci.,2009,338:500-505.
    [276]Malato S, Fernandez-Ibanez P, Maldonado M I, et al. Decontamination and disinfection of water by solar photocatalysis:Recent overview and trends [J]. Catal. Today,2009,147:1-59.
    [277]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis [J]. J. Photochem. Photobiol. C-Photo,2000,1:1-21.
    [278]Li C X, Huo P W, Yan Y S, et al. Preparation of TiO2/Fly-ash cenospheres photocatalyst and its application of methylene blue degradation combing with the ultrasonic treatment [J]. Int. J. Mater. Struct. Integrity,2008,2:375-382.
    [279]Wang J Y, Liu Z H, CAI R X. A New Role for Fe3+in TiO2 Hydrosol: Accelerated Photodegradation of Dyes under Visible Light [J]. Environ. Sci. Technol., 2008,42:5759-5764.
    [280]Wang Z Y, Mao W P, Chen H F, et al. Copper (II) phthalocyanine tetrasulfonate sensitized nanocrystalline titania photocatalyst:Synthesis in situ and photocatalysis under visible light [J]. Catal. Commun.,2006,7:518-522.
    [281]Matsunaga T, Yamaoka H, Ohtani S, et al. High photocatalytic activity of palladium-deposited mesoporous TiO2/SiO2 fibers [J]. Appl. Catal. A-Gen.,2008,351: 231-238.
    [282]Wang C Y, Shang H M, Tao Y, et al. Properties and morphology of CdS compounded TiO2 visible-light photocatalytic nanofilms coated on glass surface [J]. Sep. Purif. Technol.,2003,32:357-362.
    [283]Tatsuma T, Saitoh S, Ngaotrakanwiwat P, et al. Energy Storage of TiO2/WO3 Photocatalysis Systems in the Gas Phase [J]. Langmuir,2002,18:7777-7779.
    [284]Jiang Y H, Sun Y M, Liu H, et al. Solar photocatalytic decolorization of C.I. Basic Blue 41 in an aqueous suspension of TiO2-ZnO [J]. Dye Pigments,2008,78: 77-83.
    [285]Hou L R, Yuan C Z, Peng Y. Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites [J]. J. Hazard. Mater. B.,2007,139:310-315.
    [286]Huang M L, Xu C F, Wu Z B, et al. Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite[J]. Dye Pigments,2008, 77:327-334.
    [287]Shukla S, Seal S, Rahaman Z, et al. Electroless copper coating of cenospheres using silver nitrate activator[J]. Mater. Lett.,2002,57:151-156.
    [288]Zeng A.X, Xiong W H, Xu J. Electroless Ni-P coating of cenospheres using silver nitrate activator[J]. Surf. Coat. Technol.,2005,197:142-147.
    [289]Shukla S, Seal S, Akesson J, et al. Study of mechanism of electroless copper coating of fly-ash cenosphere particles[J]. Appl. Surf. Sci.,2001,181:35-50.
    [290]Huo P W, Yan Y S, Li S T, et al. Preparation and characterization of Cobalt Sulfophthalocyanine/TiO2/fly-ash cenospheres photocatalyst and study on degradation activity under visible light[J]. Appl. Surf. Sci.,2009,255:6914-6917.
    [291]Yamashita H, Ichihashi Y, Zhang S G, et al. Photocatalytic decomposition of NO at 275 K on titanium oxide catalysts anchored within zeolite cavities and framework[J]. Appl. Surf. Sci.,1997,121/122:305-309.
    [292]Li X Z, Li F B. Study of Au/Au3+-Ti02 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment[J]. Environ. Sci. Technol.,2001, 35:2381-2387.
    [293]Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation [J]. J. Photochem. Photobiol. A-Chem.,2001,141:209-217.
    [294]Yu J G, Yu H G, Cheng B, et al. The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition[J]. J. Phys. Chem. B,2003,107:13871-13879.
    [295]Li F B, Li X Z. The enhancement of photodegradation efficiency using Pt-TiO2 catalyst[J]. Chemosphere,2002,48:1103-1111.
    [296]Xie J M, Lv X M, Chen M, et al. The synthesis, characterization and photocatalytic activity of V(V), Pb(Ⅱ), Ag(Ⅰ) and Co(Ⅱ)-doped Bi2O3[J]. Dye Pigments,2008,77:43-47.
    [297]Li F B, Li X Z. Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment[J]. Appl. Catal. A-Gen.,2002,228:15-27.
    [298]Guo W, Lin Z, Wang X, et al. Sonochemical synthesis of nanocrystalline TiO2 by hydrolysis of titanium alkoxides[J]. Microelectron. Eng.,2003,66 (1-4):95-101.
    [299]Ringo C W L, Michael K H L, Dennis Y C L, et al. Visible-light-assisted photocatalytic degradation of gaseous formaldehyde by parallel-plate reactor coated with Cr ion-implanted TiO2 thin film[J]. So. Energy Mater. Sol. Cells,2007,91(1): 54-61.
    [300]Macedo L C, Zaia D A M, Moore G J, et al. Degradation of leather dye on TiO2: A study of applied experimental parameters on photoelectrocatalysis[J]. J. Photochem. Photobiol. A:Chem.,2007,185(1):86-93.
    [301]Zhou L,Wang W Z,Zhang L S. Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M=W, Mo) photocatalysts. J. Photochem. Photobiol. A: Chem.,2007,268(1-2):195-200.
    [302]Wang J,Guo B D, Zhang X D, et al. Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase[J]. Ultrason. Sonochem.,2005,12(5):331-337.
    [303]Findik S, Giindiz G, Gundiiz E G. Direct sonication of acetic acid in aqueous solutions[J]. Ultrason. Sonochem.,2006,13(3):203-207.
    [304]Sasikala R, Jayakumar O D, Kulshreshtha S K. Enhanced hydrogen generation by particles during sonochemical decomposition of water[J]. Ultrason. Sonochem., 2007,14(2):153-156.
    [305]Javier N, Pe'rez B, Herrera M F S. Sonophotocatal-ytic degradation of congo red and methyl orange in the presence of TiO2 as a catalyst[J]. Ultrason. Sonochem., 2007,14(5):589-595.
    [306]Maezawa A, Nakadoi H, Suzuki K, et al. Treatment of dye wastewater by using photo-catalytic oxidation with sonication[J].Ultrason. Sonochem.,2007, 14(5):615-620.
    [307]Panizza M, Barbucci A, Ricotti R, et al. Electrochemical degradation of methylene blue[J]. Sep. Purif. Technol.,2007,54(3):382-387.
    [308]El-Sharkawy E A, Soliman A Y, Al-Amer K M.Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation[J]. J. Colloid Interface Scie.,2007,310(2):498-508.
    [309]Fuji Shim A, Rao T N, Tryk D A. Titanium dioxide photocatalysis [J]. J. Photochem. Photobio. C,2000,1(1):1-21.
    [310]Kikuchi Y, Sunada K, Iyoda T, et al. Photocatalytic bactericidal effect of TiO2 thin films:dynamic view of the active oxygen specie sresponsible for the effect [J]. Photochem. Photobiol. A:Chem,1997,106:51-56.
    [311]Yoshimura M,SuchCnek W L,Byrappa K. Soft Solution Processing:A Strategy for One-Step Processing of Advanced Inorganic Materials [J]. Mater. Res. Bull.,2000, 25(9):17-25.
    [312]Kang Y S, Myun K P,Young T K, et al. Preparation of Transparent Particulate MoO3/TiO2 and WO3/TiO2 Films and Their Photocatalytic Properties [J].Chem. Mater, 2001,13(7):2349-2355.
    [313]Alvaro M,Carbonell E, Espa M, et al. Iron phthalocyanine supported on silica or encapsulated inside zeolite Y as solid photocatalysts for the degradation of phenols and sulfur heterocycles [J]. Appl. Catal. B:Environ.,2005,57:37-42.
    [314]Yuan Z H, Zhang L D. Synthesis, characterization and photocatalyticactivity of ZnFe2O4/TiO2 nanocomposite [J]. J. Mater. Chem.,2001,11:1265-1268.
    [315]张天永,扈娟,柴义,等.非离子表面活性剂存在下光催化降解有机颜料[J].分子催化,2007,21(2):149-154.
    [316]玄立春,刘佳,辛柏福.阳离子表面活性剂(CTAB)修饰Ti02的光催化性能研究[J].黑龙江大学自然科学学报,2007,24(3):368-371.
    [317]井立强,薛连鹏,王百齐,等.表面修饰DBS基团对Ti02气相光催化性能的影响[J].高等学校化学学报,2006,27(10):1918-1922.
    [318]吕晓萌,谢吉民,林家敏.Co11W12/SiO2的制备及其光催化降解橙黄(Ⅱ)[J].江苏大学学报(自然科学版),2007,28(1):56-59.
    [319]郑铭,甘欣欣,徐进,等.Ti02悬浆体系光催化降解苯酚的研究[J].江苏大学学报(自然科学版),2005,26(1):80-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700