非胎生红树植物的繁殖体发育过程及其潮间带分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胎生与红树植物有着非常密切的关系,一般认为胎生是红树植物对潮间带盐生环境的适应。但是,非胎生红树植物的广泛存在,使这个观点颇受争议。本工作研究了5种典型的非胎生海桑属红树植物的繁殖体发育过程,比较了非胎生与胎生红树植物繁殖体发育过程的区别。同时,探讨了繁殖体发育特征与海桑属红树植物在潮间带滩涂分布格局的关系。结果表明:
     1.非胎生海桑属红树植物与胎生红树植物在繁殖体发育过程方面表现出一些共性。
     (1)在繁殖体发育的整个过程,含水量都保持较高的水平。
     (2)与胎生红树及大部分红树植物一样,海桑属红树植物的成熟果实的密度接近或小于海水,适于漂浮传播。
     (3)随着果实的逐渐发育成熟,果实中五种矿质元素(Cl、Na、K、Ca、Mg)的干重含量逐步降低,表现出低盐化的过程。而且,果实Cl、Na、Ca和Mg等元素的含量远低于成熟叶片和花萼。组织液的元素浓度也呈现出下降的趋势。繁殖体发育过程是一个积累盐分的过程,单个果实各元素以及五种元素的总量均表现为上升的趋势。
     (4)虽然海桑属红树植物成熟果实中的无机渗透调节物质的总贡献率小于显胎生红树植物,但是杯萼海桑和卵叶海桑的成熟果实中无机渗透调节物质的总贡献率却大于隐胎生红树植物。
     结论:
     从以上几个方面,可以看出,非胎生与胎生红树植物之间并不存在显著差异,研究结果不支持胎生是红树植物对高盐生境的适应这种观点,关于胎生的意义,需要进一步考量。
     2.大量的因素影响了红树植物的分布格局。繁殖体发育特征与海桑属红树植物的分布有着密切联系。
     (1)五种海桑属红树植物成熟果的密度大小顺序为:杯萼海桑>海桑、拟海桑>海南海桑>卵叶海桑,杯萼海桑成熟果的密度最高,而卵叶海桑最低。
     (2)比较了这五个种的成熟果实的Na/K比率,其大小关系为:杯萼海桑>拟海桑、海南海桑>卵叶海桑>海桑。同时,比较了成熟叶片的Na/K比率,
     它们的大小关系为:杯萼海桑>海南海桑、卵叶海桑>拟海桑、海桑。
     结论:
     海桑属红树植物在潮间带的分布与它们的成熟果的密度有关系。密度大的,分布在低潮带;密度小的,分布在高潮带。而在有淡水注入的河口地形中,红树植物沿河的分布与红树植物的耐盐能力有关。红树植物的扩散包括了繁殖体传播阶段和定植生长阶段,我们提出一个假说:在繁殖体传播阶段,密度是影响红树植物分布的关键因素;而在定植生长阶段,红树植物的耐盐能力是决定其是否成活的重要因素之一,最终在一定程度上影响了红树植物的分布格局。
Vivipary is so strongly associated with mangroves that it is suggested to have adaptive significance in the intertidal saline environment.But the existence of nonviviparous mangroves makes it suspicious.Developmental process of propagules of five species from nonviviparous mangroves Sonneratia was studied,which was compared with viviparous mangroves as well.At the same time,the relation between propagule traits and distribution of Sonneratia in intertidal zone was discussed.The results indicated:
     1.There was commonness in propagules development between Sonneratia and viviparous mangroves.
     (1) High water content was both maintained throughout development in viviparous mangroves and Sonneratia.
     (2) Density of mature fruits was close to or lower than seawater,thus the propagules can float.
     (3) The dynamics of the elements on a dry weight basis in the fruits indicated a desalinating process.Moreover,the content of C1,Na,Ca or Mg was lower in fruits than those in the mature leaves and calyx.Elements concentrations also show the trend of decreasing.
     (4) The contribution of inorganic osmotica in mature propagules was less than true vivipary,but was more than cryptovivipary.
     Conclusion:
     Comparing these results with others' research about viviparous mangroves, distinct differences were not found.The hypothesis that vivipary among mangroves is an adaptation to salinity was not well supported.The value of vivipary should be reconsidered.
     2.Numerous factors influence distribution pattern of mangroves.There was close connection between propagule traits and distribution of Sonneratia.
     (1) The rank order of density of mature fruits was:S.alba>S.caseolaris,S.× gulngai>S.×hainanensis>S.ovata.
     (2) The rank order of Na/K ratio of mature fruits was:S.alba>S.×gulngai,S.×hainanensis>S.ovata>S.caseolaris.The rank order of Na/K ratio of mature leaves was:S.alba>S.xhainanensis,S.ovata>S.×gulngai,S. caseolaris.
     Conclusion:
     Mangrove distribution in intertidal zone may be related to density of propagules.Species whose adults are found on the landward edge of the intertidal zone,have propagules of small density;species whose adults are found on the seaward edge of the swamp,have propagules of large density.In the estuary which is affected by fresh water,distribution of mangrove species along estuaries has been shown to be related to salinity tolerance.Proliferate of mangrvoes includes stage of propagules dispersal and colonization.A hypothesis is proposed that density is key factor which impacts the distribution of mangroves in the stage of propagules dispersal.In the stage of colonization,the ability of salt tolerance of mangroves is one of important factors which decide whether propagules survive or not and eventually affect the distribution of mangrvoes to some extent.
引文
Allen JA, Krauss KW, Hauff RD. Factors limiting the intertidal distribution of the mangrove species Xylocarpus granatum. Oecologia, 2003, 135: 110-121.
    Alvi KA, Crwes P, Aalbersberg B, Prasad R. Limonoids from the Fijian medicinal plant dabi (xylocarpus). Tetmhedron, 1991,47: 8943-8948.
    Ball MC. Patterns of secondary succession in a mangrove forest in south Florida. Oecologia, 1980,44: 126-235.
    
    Ball MC. Ecophysiology of mangroves. Trees, 1988,2:129-142.
    Ball MC, Pidsley SM. Growth responses to salinity in relation to distribution of two mangrove species, Sonneratia alba and S. lanceolata in northern Australia. Functional Ecology, 1995,9(1):77-85.
    Ball MC. Comparative ecophysiology of mangrove forest and tropical lowland moist rainforest. Tropical forest plant ecophysiology (ed. by SS Mulkey, RL Chazdon and AP Smith), pp. 461 - 496. Chapman and Hall, New York, 1996.
    Ball MC. Mangrove species richness in relation to salinity and waterlogging: a case study along the Adelaide river floodplain, northern Australia. Global Ecology and Biogeography Letters, Vol. 7, No. 1, Biodiversity and Function of Mangrove Ecosystems, 1998, pp: 73-82.
    Ball MC. Interactive effects of salinity and irradiance on growth: implications for mangrove forest structure along salinity gradients. Trees, 2002,16: 126-139.
    Bunt JS, Williams WT. Vegetational relationships in the mangroves of tropical Australia. Marine Ecology Progress Series, 1981,4:349-359.
    Bunt JS, Williams WT, Clay HJ. River water salinity and the distribution of mangrove species along several rivers in North Queensland. Australian Journal of Botany, 1982, 30:401-412.
    Bunt JS, Williams WT, Duke NC. Mangrove distributions in north-east Australia. Journal of Biogeography, 1982,9(2): 111-120.
    Bunt JS, Williams WT, Bunt ED. Mangrove species distribution in relation to tide at the seafront and up rivers. Australian Journal of Marine and Freshwater Research, 1985, 36(4): 481-492.
    Bunt JS. Mangrove zonation: an examination of data from seventeen riverine estuaries in tropical Australia. Annals of Botany, 1996, 78: 333-341.
    Clarke PJ, Kerrigan RA, Westphal CJ. Dispersal potential and early growth in 14 tropical mangroves: do early life history traits correlate with patterns of adult distribution? Journal of Ecology, 2001, 89: 648-659.
    Clarke PJ, Kerrigan RA. The effects of seed predators on the recruitment of mangroves. Journal of Ecology, 2002,90: 728-736.
    Cota-SaNchez JH, Reyes-Olivas A, SaNchez-Soto B. Vivipary in coastal cacti: a potential reproductive strategy in halophytic environments. American Journal of Botany, 2007, 94(9): 1577-1581.
    
    Dawes C J. Marine botany (2~(nd) edition). New York: John Wiley & Sons, Inc, 1998.
    De Lange WP, De Lange PJ. An appraisal of factors controlling the latitudinal distribution of mangrove (Avicennia marina var. resinifera) in New Zealand. Journal of Coastal Research, 1994,10: 539-548.
    Din N, Priso RJ, Kenne M, Ngollo D, Blasco F. Early stages and natural regeneration of Avicennia germionans (L.) Stearn in the Wourei estuarine mangroves (Doualae Cameroon). Wetlands, Ecology and Management, 2002,10:461-472.
    Drexler J. Maximum longevities of Rhizophora apiculata and R. mucronata propagules. Pacific Science, 2001,55: 17-22.
    Duck NC, Jackes BR. A systematic revision of the mangrove genus Sonneratia (Sonneratiaceae) in Australasia. Blumea, 1987, 32: 277-302.
    Duke NC. Mangrove floristics and biogeography. Tropical Mangrove Ecosystems (eds A.I. Robertson & D.M. Alongi), pp. 63-100. American Geophysical Union, Washington, DC, 1992.
    Duke NC, Ball MC, Ellison JC. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters, 7(1), Biodiversity and Function of Mangrove Ecosystems, 1998, pp: 27-47. Ellison AM, Farnsworth E. Simulated sea level change alters anatomy, physiology, growth and reproduction of red mangroves. Oecologia, 1997,112:435-446.
    Ellison AM, Mukherjee BB, Karim A. Testing patterns of zonation in mangroves: scale dependence and environmental correlates in the Sundarbans of Bangladesh. Journal of Ecology, 2000, 88: 813-824.
    
    Elmqvist T, Cox PA. The evolution of vivipary in flowering plants. Oikos, 1996,77: 3-9.
    Elster C, Perdomo L, Schnetter ML. Impact of ecological factors on the regeneration of mangroves in the Cie'naga Grande de Santa Marta, Colombia. Hydrobiologia, 1999, 413: 35-46.
    Farnsworth EJ. Global patterns of pre-dispersal propagule predation in mangrove forests. Biotropica, 1997, 29(3): 318-330.
    Farnsworth EJ, Farrant JM. Reductions in abscisic acid are linked with viviparous reproduction in mangroves. American Journal of Botany, 1998, 85(6): 760-769.
    Farnsworth EJ. The ecology and physiology of viviparous and recalcitrant seeds. Annual Review of Ecology and Systematics, 2000,31: 107-138.
    Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology, 1980, 31:149-190.
    Ha HT, Duarte CM, Tri NH, Terrados J, Borum J. Growth and population dynamics during early stages of themangrove Kandelia candel in Halong Bay, North Viet Nam. Estuarine, Coastal and Shelf Science, 2003,58:435-444.
    Harper JL. Population biology of plants. Academic Press, London, 1977.
    Harvey DMR, Hall JL, Flowers TJ, Kent B. Quantiative ion localization within Suaeda maritime leaf mesophyll cells. Planta, 1981,151: 555-560.
    Henkel PA. The concept of vivipary in the plant world (in Russian). Zhurnal Obshchei Biologii, 1979,40:60-66.
    Higgins SI, Nathan R, Cain ML. Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology, 2003, 84: 1945-1956.
    Hogarth PT. The Biology of Mangroves. Oxford University Press, New York, 1999.
    Hogg RW, Gillan FT. Fatty acids, sterols and hydrocarbons in the leaves from eleven species of mangrove. Phytochemistry, 1984,23:93-97.
    Hsueh ML, Lee HH. Diversity and distribution of the mangrove forests in Taiwan. Wetlands Ecology and Management, 1999,8:233-242.
    Huber SC. Role of potassium in photosynthesis and respiration. In: Munson RD (ed.), Potassium in Agriculture. American Society of Agronomy Madison, Wisconsin, 1985.
    Hutchings P, Saenger P. Ecology of Mangroves. University of Queensland Press, St Lucia, 1987.
    Jimenez J A, Sauter K. Structure and dynamics of mangrove forests along a flooding gradient. Estuaries, 1991,14:49-56.
    Jones J, Dale PER, Chandica AL, Breitfuss MJ. Changes in the distribution of the grey mangrove Avicennia marina (Forsk.) using large scale aerial color infrared photographs: are the chang related to habitat modification for mosquito cont. Estuarine, Coastal and Shelf Science, 2004,61:45-54.
    Joshi AC. A suggested explanation of the prevalence of vivipary on the sea-shore. The Journal of Ecology, 1933,21(1): 209-212.
    Joshi GV, Pimplaskar M, Bhosale LJ. Physiological studies in germination of mangroves. Botanica Marina, 1972,45: 91-95.
    Joshi GV, Jamale BB, Bhosale L. Ion regulation in mangroves. In: Walsh G et al. eds. Proceedings of International Symposium on Biology and Management of Mangroves. University of Florida Press, 1975, pp: 595-607.
    Juncosa AM. Developmental morphology of the embryo and seedling of Rhizophora mangle L. (Rhizophoraceae). American Journal of Botany, 1982,69(10): 1599-1611
    Juncosa AM, Tomlinson PB. A historical and taxonomic synopsis of Rhizophoraceae and Anisophyllaceae. Annals of the Missouri botanical garden, 1988, 75: 1278-1295.
    Kaiser WH, Weber H, Sauer M. Photosynthetic capacity, osmotic response, and solute content of leaves and chloroplasts from Spinacia oleracea under salt stress. Zeitschrift fur Pflanzenphysiologie, 1983,113:15-27.
    Kathiresan K, Bingham BL. Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, 2001,40: 81-251.
    Keith K, Kraml M, Dengler NG, McCourt P. Fusca. A hetetachmnic mutation affecting late embryo development in Arabidopsis. The Plant Cell, 1994,6: 589-600.
    King MW, Roberts EH. The storage of recalcitrant seeds—achievements and possible approaches. IBPGR Secretariat, Rome, 1979.
    Ko W. Notes on the genus Sonneratia (Sonneratiaceae) in Southeast Asia. Acta Phytotaxonomica Sinica, 1985,23: 311-314.
    Ko W. Notes on some Sonneratia (Sonneratiaceae) of China. Journal of Tropical and Subtropical Botany, 1993, 1: 11-13.
    Kokpol U, Chavasiri W, Tip - pyang S, Veerachato G; Zhao F; Simpson J; Weavers RT. A limonoid from Xylocarpus granatum. Phytochem, 1996,41: 903-905.
    Krauss KW, Allen JA. Influences of salinity and shade on seedling photosynthesis and growth of two mangrove species, Rhizophora mangle and Bruguiera sexangula, introduced to Hawaii. Aquatic Botany, 2003,77: 311-324.
    Lotschert W, Liemann F. Die salzspeicherung im Keimling von Rhizophora mangle L. wahrend der Entwicklung auf der Mutterpflanze. Planta, 1967, 77: 142-156.
    Lugo AE, Snedaker SC. The ecology of mangroves. Annual Review of Ecology and Systematics, 1974,5: 39-64.
    Maathuis FJM, Amtmann A. K~+ nutrition and Na~+ toxicity: the basis of cellular K~+/Na~+ ratios. Annals of Botany, 1999, 84: 123-133.
    Macnae W. A general account of the fauna and flora of mangrove swamps and forests in the Indo-West-Pacific Region. Advances in Marine Biology, 1968, 6: 73-270.
    McGuinness KA. Dispersal, establishment and survival of Ceriops tagal propagules in a north Australian mangrove forest. Oecologia, 1996, 109: 80-87.
    McGuinness KA. Seed predation in a tropical mangrove forest: a test of the dominance-predation model in northern Australia. Journal of Tropical Ecology, 1997, 13:293-302 .
    McKee KL. Interspecific variation in growth, biomass partitioning, and defensive characteristics of neotropical mangrove seedlings: response to light and nutrient availability. American Journal of Botany, 1995a, 82, 299-307.
    McKee KL. Mangrove Species Distribution and Propagule Predation in Belize: An Exception to the Dominance-Predation Hypothesis. Biotropica, 1995b, 27(3): 334-345.
    McKee KL. Seedling recruitment patterns in a Belizean mangrove forest: effects of establishment ability and physico-chemical factors. Oecologia, 1995c, 101:448-460.
    McKee KL. Soil physiochemical patterns and mangrove species distribution: reciprocal effects? Journal of Ecology, 1993, 81:477-487.
    Medina E, Lugo AE, Novelo A. Contenido mineral del tejido foliar de especies de manglar de la laguna de Sontecomapan (veracruz, mexico) y su relacion con la salinidad. Biotropica, 1995, 27(3): 317-323.
    Nandy P, Das S, Ghose M, Spooner-Hart R. Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetlands Ecology and Management, 2007,15: 347-357.
    Niu X, Bressan TA, Hasegawa PA. Ion homeostasis in NaCl stress environment. Plant physiology, 1995,109: 735-742.
    Osborne K, Smith TJ. Differential predation on mangrove diaspores in open and closed canopy forest habitats. Vegetatio, 1990, 89:1-6.
    Popp M, Larher F, Weigel P. Osmotic adaption in Australian mangroves. Vegetation, 1985, 61:247-253.
    
    Rabinowitz D. Dispersal properties of mangrove propagules. Biotropica, 1978a, 10:47-57.
    Rabinowitz D. Early growth of mangrove seedlings in panama, and a hypothesis concering the relationship of dispersal and zonation. Journal of Biogeography, 1978b, 5(2): 113-133.
    Raju AJS, Jonathan KH, Lakshmi AV. Pollination biology of Ceriops decandra (Griff.) Ding Hou (Rhizophoraceae), an important true viviparous mangrove tree species. Current Science, 2006,91(9): 1235-1238.
    Rand TA. Seed dispersal, habitat suitability and the distribution of halophytes across a salt marsh tidal gradient. Journal of Ecology, 2000, 88: 608-621.
    Ricklefs RE, Latham RE. Global patterns of diversity in mangrove floras. Species diversity in ecological conlnllrnities (ed, by R.E. Ricklefs and D. Schulter), pp. 215-229. University of Chicago Press, Chicago, 1993.
    Robinson SP, Downton WJS, Millhouse JA. Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. Plant Physiology, 1983,72: 238-243.
    Robinson SP, Downton WJS. Potassium, sodium and chloride content of isolated intact chloroplasts in relation to ionic compartmentation in leaves. Arch Biochem Biophys, 1984,228: 197-206.
    Robinson SP, Downton WJS. Potassium, sodium and chloride concentrations in leaves and isolated chloroplasts of the halophyte Suaeda australis R BR. Australian Journal of Plant Physiology, 1985, 12:471-479.
    Saenger P. Morphological, anatomical and reproductive adaptations of Australian mangroves. Clough B F. Mangrove Ecosystems in Australia: Structure, Function and Management. Canberra: Australian National University Press, 1982, 153-191.
    Schwarzbach AE, Ricklefs RE. Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. American Journal of Botany, 2000, 87: 547-564.
    Sengupta R, Middleton B, Yan C, Zuro M, Hartman H. Landscape characteristics of Rhizophora mangle forests and propagule deposition in coastal environments of Florida (USA). Landscape Ecology, 2005, 20:63-72.
    Sherrod CL, Hockaday DL, McMillan C. Survival of red mangrove, Rhizophora mangle, on the Gulf of Mexico coast of Texas. Contributions in Marine Science, 1986, 29: 27-36.
    Shi SH, Huang YL, Zeng K, Tan FX, He HH, Huang JZ, Fu YX. Molecular phylogenetic analysis of mangroves: independent evolutionary origins of vivipary and salt secretion. Molecular Phylogenetics and Evolution, 2005,34(1): 159-166.
    Smith SM, Snedaker SC. Salinity response in two population of viviparous Rhizophora mangle L. seedlings. Biotropica, 1995, 27(4): 435-440.
    Smith SM. Hypocotyl function in seedling development of the red mangrove, Rhizophora mangle L. Biotropica, 2000,32: 677-685.
    Smith TJ III. Seed predation in relation to tree dominance and distribution in mangrove forests. Ecology, 1987,68:266-273.
    Smith TJ III. Differential distribution between sub-species of the mangrove Ceriops tagal: competitive interactions along a salinity gradient. Aquatic Botany, 1988,32: 79-89.
    Smith TJ III, Chan HT, McIvor CC, Robblee MB. Comparisons of seed predation in tropical, tidal forests from three continents. Ecology, 1989, 70(1): 146-151.
    Smith TJ III. Forest structure. Tropical Mangrove Ecosystems (eds AI Robertson & DM Alongi). Washington: American Geo-physical Union, 1992, pp: 101-136.
    Sousa WP, Mitchell BJ. The effect of seed predators on plant distributions: is there a general pattern in mangroves? Oikos, 1999,86: 55-66.
    Sousa WP, Kennedy GK, Mitchell BJ, Ordonez BM. Supply-side ecology in mangroves: do propagule dispersal and seedling establishment explain forest structure? Ecological Monographs, 2007, 77(1): 53-76.
    Stearns SC, Schmid-Hempel P. Evolutionary insights should not be wasted. Oikos, 1987,49: 118-125.
    Suarez N, Medina E. Salinity effect on plant growth and leaf demography of the mangrove, Avicennia germinans L. Trees, 2005, 19: 721-727.
    Sussex I. Growth and metabolism of the embryo and attached seedling of the viviparous Mangrove, Rhizophora mangle. American Journal of Botany, 1975, 62(9): 948-953.
    Tan H, Rao AN. Vivipary in Ophiorrhiza tomentosa Jack (Rubiaceae). Biotropica, 1981, 13(3): 232-233
    
    Tomlinson PB. The Botany of Mangroves. New York: Cambridge University Press, 1986.
    Tomlinson PB, Cox PA. Systematic and functional anatomy of seedlings in mangrove Rhizophoraceae: vivipary explained? Botanical Journal of the Linnean Society, 2000, 134(1-2): 215-231.
    Ukpong IE. Soil - vegetation interrelationships of mangrove swamps as revealed by multivariate analyses. Geoderma, 1994, 64(1 - 2): 167-181.
    Ungar IA. Ecophysiology of vascular halophytes. CRC Press, Boca Raton, Fla, 1991.
    Vogelien DL, Hickok LG, Warne TR. Differential effects of Na+, Mg~(2+), K~+, Ca~(2+) and osmotic stresson the wild type and the Na tolerant mutant st11 and st12 of Ceratopteris richardii. Plant Cell and Environment, 1996, 19: 17-23.
    Wang R, Chen Z. Systematics and biogeography study on the family Sonneratiaceae. Guihaia, 2002, 22: 214-219.
    Wang WQ, Ke L, Tarn NEY, Wong YS. Changes in the main osmotica during the development of Kandelia candel hypocotyls and after mature hypocotyls were transplanted in solutions with different salinities. Marine Biology, 2002, 141: 1029-1034.
    Watson JG. Mangrove forests of the Malay Peninsula. Malayan Forest Records, 1928, 6: 1-240.
    Wells AG. Mangrove vegetation of northern Australia. Clough B F. Mangrove Ecosystems in Australia: Structure, Function and Management. Canberra: Australian National University Press, 1982: 57-78.
    Wu J, Zhang S, Xiao Q, Li Q, Huang J, Long L, Huang L. Xyloccensin L, a novel limonoid from Xylocarpus granatum. Tetmhedron Letters, 2004, 45: 591—593.
    Wyn Jones RG, Brady CJ, Speirs J. Ionic and osmotic regulation in plant cells. In: Laidman, D.L., Wyn Jones, R.G. (Eds.), Recent Advances in the Biochemistry of Cereals. Academic Press, New York, 1979:63-103.
    Yamashiro M. Ecological study on Kandelia Candel (L.) Druce, with special reference to the structure and falling of the seedling. Hikobia, 1961, 2(3): 209-214.
    Ye Y, Lu CY, Wang YS, TAM NFY, Diaspore traits and inter-tidal zonation of non-viviparous mangrove species. Acta Botanica Sinica, 2004, 46(8): 896-906.
    Yoshifumi K, Hamako S. Stimulation effects of salts on growth in suspension culture of a mangrove plant, Sonneratia alba, compared with another mangrove, Bruguiera sexangula and non-mangrove tobacco BY-2 cells. Plant Biotechnology, 2008, 25: 151-155.
    Zaridah MZ, Idid SZ, Omar AW, Khorirah S. In vitro antifilarial effects of three plant species against adult worms of subperiodic Brugia malayi.Ethnopharmacol,2001,78(1):79-84.
    Zheng WJ,Wang WQ,Lin P.Dynamics of element contents during the development of hypocotyls and leaves of certain mangrove species.Journal of Experimental Marine Biology and Ecology,1999,233:247-257.
    戴好富,梅文莉,曾艳波,洪葵,庄令.红树林植物木果楝细胞毒活性和化学成分研究。天然产物研究与开发,2007,19:74-76.
    邓传远,郭素枝,林鹏.海桑属(Sonneratia)植物的木材结构及其系统演化意义.热带亚热带植物学报,2004,12(3):213-220.
    侯宽昭,何椿年.中国的红树林生物学通讯,1953,10:365-369.
    金杰里,方亦雄.红树植物胎生的生理意义.植物学报,1958,7:51-58.
    李博.生态学.北京:高等教育出版社,2000.
    李海生,陈桂珠.中国特有植物海南海桑的生物学特性及其保护.广东教育学院学报,2003,23(2):48-51.
    林鹏,吴世军,林益明.红树植物繁殖体发育过程的能量变化.海洋科学,2000,24(9):46-50.
    梅文莉,曾艳波,丁中涛,戴好富.红树植物卤蕨化学成分的分离与鉴定,中国药物化学杂志,2006,16(1):46-48.
    石莉.中国红树林的分布状况、生长环境及其环境适应性.海洋环境保护,2002,4:14-18.
    王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学通报,1997,14(增刊):25-30.
    王瑞江,陈忠毅,陈二英,郑馨仁.国产海桑属植物的两个杂交种.广西植物,1999,19(3):199-204.
    王文卿,王瑁.中国红树林,北京:科学出版社,2007.
    杨述武.普通物理实验(一)力学及热学部分.北京:高等教育出版社,2000.
    叶勇,曹长青.潮间带红树林分带的影响因素.生态学杂志,2008,27(4):615-618.
    曾聪,范航清.红树植物银叶树果实和种子的形态结构研究.广西科学,2006,13(2):147-150.
    张宜辉,王文卿,池敏杰,林鹏.显胎生红树植物木榄(Bruguiera gymnorrhiza)胎生胚轴发育.海洋学报,2006,28(2):121-127.
    张宜辉.几种红树植物繁殖体发育和幼苗成长过程的生理生态学研究.厦门大学博士论文,2003.
    赵可夫,李法曾.中国的盐生植物.北京:科学出版社,1999.
    赵可夫,李军.盐浓度对3种单子叶盐生植物渗透调节剂及其在渗透调节中贡献的影响.植物学报,1999,41(12):1287-1292.
    赵险飞,周晓阳.盐胁迫和干旱胁迫条件下细胞内Ca~(2+)水平的变化.河北林果研究,2005,20(3):228-233.
    郑文教,林鹏.广西红海榄红树群落的氯钠动态.植物学报,1992,34(5):378-385.
    钟才荣.杯萼海桑的育苗技术.福建林业科技,2004,31(3):116-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700