植被修复对湘潭锰矿矿区废弃地土壤环境效应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要探讨湘潭锰矿废弃地不同植被修复方式对土壤环境的改良作用,可为湘潭锰矿矿区废弃地的修复乃至湖南省、全国类似退化生态系统的植被修复和植被对土壤环境质量影响的评价提供依据。主要研究结果如下:
     不同修复样地之间土壤平均含水量高低排序为:对照地>人工修复地>自然修复地;(0-20cm)土层的土壤容重(g/cm3)为:自然修复地(1.65)>对照地(1.49)>人工修复地(1.40);土壤质地为:人工修复地主要为砂粉土,少数为细砂土;自然修复地主要是粗砂土也有细砂土,而对照地则为粉壤土。人工修复地土壤(0-60cm)的pH平均值为7.59,呈中性,自然修复地为4.91,土壤呈酸性,略高于对照地(4.49)。土壤养分(全N、全P、有机质、全K、全Mg和全Ca)含量在不同修复样地之间变化规律大致表现为:人工植被修复地>自然修复地>对照地。
     不同修复方式下土壤微生物总数量、细菌和真菌数量分布均表现为:人工修复地>对照地>自然修复地;而放线菌数量为:对照地>人工修复地>自然修复地。细菌、放线菌数量在不同修复样地之间的差异达到显著水平(p<0.05),而真菌差异不显著(p>0.05)。3种不同修复地土壤微生物总量中均以细菌数量最多,真菌数量最少,放线菌居中。不同修复地土壤中微生物数量的垂直分布变化趋势表现为随土层加深而减少。土壤微生物数量在不同月份间变化差异较大。细菌、真菌数量变化趋势为:9月份>7月份>5月份>11月份,而放线菌数量月份间的变化趋势在不同修复地之间规律性不明显。土壤微生物数量与土壤有机质、全N、全P含量存在显著的相关性(p<0.05)。土壤微生物总量、细菌和真菌与Fe含量呈极显著负相关(p<0.01);放线菌数量与重金属元素含量之间相关性不显著(p>0.05)。细菌与Ni、Zn、Pb、Cd5中重金属元素均呈现出极显著正相关(p<0.01)。真菌与Zn、Pb和Cd元素之间存在显著正相关(p<0.05)。
     不同修复地土壤酶活性的垂直分布大致表现为随土壤深度增加而降低规律。人工修复地和自然修复地土壤脲酶活性的月份变化趋势表现为:7月份>5月份>11月份>9月份,而对照地脲酶活性春季最高,9月份达到最低;土壤脲酶活性同一样地不同月份间比较,对照地在11月和5月份最高,而人工修复地在7月和9月份最高。不同样地土壤蔗糖酶活性月份间变化趋势不同,人工修复地表现为:7月份>5份>11月份>9月份;自然修复地为:9月份最高,11月份最低;对照地为:5月份>11月份>9月份>7月份。土壤蔗糖酶活性同一时间不同样地间比较,人工修复地在11月、7月和9月份均为最高,对照地5月份最高。不同样地土壤过氧化氢酶活性月份间变化趋势也有一定的差异,人工修复地表现为:5月份>7月份>11月份>9月份,自然修复地为:5月份>7月份>9月份>11月份,对照地为:5月份>9月份>7月份>11月份。土壤过氧化氢酶活性同一时间不同样地间比较,人工修复地在11月、5月和9月份均为最高,对照地5月份最高。
     土壤脲酶、过氧化氢酶和蔗糖酶活性与土壤全K含量呈极显著的负相关(p<0.001),与土壤中全Mg、有机质含量呈极显著正相关(p<0.001);土壤过氧化氢酶、蔗糖酶活性与重金属含量不表现出显著相关性(p>0.05),而土壤脲酶活性与土壤Ni、Zn、Mn、Pb、Cd重金属含量存在显著相关性(p<0.05),表明土壤脲酶活性对重金属复合污染较为敏感。土壤蔗糖酶、过氧化氢酶活性与三大类微生物的数量均呈现出显著正相关(p<0.05),而土壤脲酶活性与土壤微生物的数量相关性不明显。
     3种不同样地在不同土壤层间,土壤肥力综合指标评价值高低排列均表现为:表层>亚表层>深层;同一层次不同样地间也均表现为:人工修复地>自然修复地>对照地。表明通过采用石灰、尾矿泥、城市垃圾等对矿渣废弃地表土进行覆盖处理的矿渣废弃地,土壤肥力有明显的改善,人工植被修复也使得土壤肥力明显地高于自然修复地。
This dissertation studyed on the soil environment in the Xiangtan manganese mine wasteland improvement by different vegetation restoration ways. It could supply reference for restoration of the Xiangtan manganese mine wasteland and degeneration ecosystem of Hunan province or all over the country. The main results of the research are as follows:
     The soil average water content in different restoration plots were ranked as follows:The comparison plot> the artificial restoration plot>the naturally restoration plot; in surface layer soil (0-20cm), the soil bulk density (g/cm3) were:restore naturally plot (1.65)> The comparison plot (1.49)> the artificial restoration plot (1.40); The soil particle composition in the artificial restoration plot mainly was sandy silt, and few of fine sand; in the naturally restoration plot was coarse sand, and in the comparison plot was silt loam. The mean value pH in the artificial restoration plot is 7.59; in the natural restoration plot is 4.91, which is slightly is higher than the comparison place 4.49. The soil nutrient content in different plots ranked in:the artificial restoration plot> the naturally restoration plot> the comparison plot.
     The variety rule of Soil microbe quantity in different plots was as follows:The bacterium quantity in three main microorganisms of soil was the most, In different plots, the bacterium and the fungi quantity ranked in such rule:the artificial restoration plot> the comparison plot> the naturally restoration plot, which existed significant difference (p<0.05); but the actinomycetes quantity ranked in the naturally restoration plot> the artificial restoration plot> the comparison plot, which existed no significant difference (p>0.05). The microorganism quantity of soil in different plots decreased gradually with depth deeper. The change tendency of Soil microbe quantity existed significant difference (p<0.01) during the different months. The bacterium and the fungus quantity changed in such tendency:September> July> May> November But the actinomycetes quantity change tendency is not similarly obvious in different plots.
     The vertical distribution rule of soil enzyme activeness decreased with the depth of soil. The urease activeness of the artificial restoration plot and the naturally restoration plot seasonally changed in such rule:July> May> November> September. But the urease activeness in May of the comparison plot is the highest, in September is the least. During the different month the change tendency is:The man-power restores on the forest land July> May> November> September; the nature restores ground, then displays for May> in September> in July> in November; But compares on the forest land, then displays May> November> September> July. During different month change tendency:The man-power restores in the forest land:May> July> November> September.
     There is obvious correlation among soil microbe quantity and organic matter, N and P (p<0.05). But the correlation changes with the microbe breed In soil in microorganism quantity and soil organic matter, entire N and entire P content existence remarkable relevance (p<0.05); The Fe element content assumes the remarkable inverse correlation with the soil in (p<0.05), but other Ni, Zn, Mn, Pb, Cd six kind of elements in certain extent soil microorganism quantity performance for relevance.
     In the soil in the urease, the catalase and the sucrase and the soil the entire K content assumes the extremely remarkable inverse correlation (p<0.001); With the soil in entire Mg, the organic content assumes is extremely remarkable is being related (p<0.001); Between the catalase and the sucrase and the heavy metal have not displayed the remarkable correlationa dependence (p>0.05), but in the soil in the urease and the soil Ni, Zn, Mn, Pb, between the Cd heavy metal element displays the remarkable correlational dependence (p<0.05), explained that in the soil the urease is more sensitive to the heavy metal compound pollution.In soil besides urease activeness and soil bacteria, fungus, ray fungi quantity correlational dependence not big, in the soil catalase activeness and the bacterium, the fungus, ray fungi quantity become obviously extremely related (p<0.001); The sucrase and the bacterium, the fungus, ray fungi quantity assume obviously related (p<0.05).
     According to the soil fertility synthetic evaluation analysis to three type plots, the soil fertility synthetic evaluation index in various layers in different plots ranked in: the surface layer> the subsurface layer> deep layer and existed significant difference (p<0.01); in different plots but the same layer, the index of soil fertility synthetic evaluation ranked in:The comparison plot> the artificial restoration plot>the naturally restoration plot. It shows that the soil fertility in Xiangtan manganese mine wasteland, which has been filled with city garbage, calcareous and gangue slob, has been improved; what's more, the soil fertility in the artificial restoration plot id higher than that in the naturally restoration plot. Thus it also shows that the soil ecological environment benefit, which had been destroyed, in Xiangtan manganese mine wasteland, has been amended by the artificial vegetable restoration. It also can explain vegetable restoration the mining wasteland is feasible.
引文
[1]彭少麟.退化生态系统修复与修复生态学[J].中国基础科学,2001,3(3):20-26.
    [2]任海,彭少麟,陆宏芳.退化生态系统修复与修复生态学[J].生态学报,2004,8(24):1760-1768.
    [3]孙权,何振立,纪立东.侵蚀退化生态系统修复的土壤质量指标[J].宁夏农学院学报,2004.25(2):15-20.
    [4]任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001,20-36.
    [5]陈灵芝,陈伟烈.中国退化生态系统研究[M].北京:中国科技出版社,1995,7-11.
    [6]Daily GC. Restoring value to the worlds degraded lands[J]. Science,1995,269:350-354.
    [7]刘国华,傅伯杰,陈利顶,等.中国生态退化的主要类型、特征及分布[J].生态学报,2000,20(1):13-19.
    [8]UNEP. World Atlas of Desertification[M]. London:Arnold,1992.
    [9]UNEP. GEO Past, Present and Future Perspectives[M]. United Nations Environment Programme, London:Earthscan Publications Ltd, VA,2002.
    [10]Oldeman LR, Hakkeling RTA, Sombroek WG. World map of the status of human-induced soil degradation[M]. Wageningen:International Soil Reference and Information Centre,1990.
    [11]何兴东,丛培芳,董治宝,等.20世纪末30a里全球生态退化状况[J].中国沙漠,2007,27(2):283-288.
    [12]Sala OE, Chapin IIIFS, ArmestoJJ, et al. Global biodiversity scenarios for the year 2100[J]. Science,2000,287:1770-1774.
    [13]WCD, Dams and Development:A New Framework for Decision Making[EB/OL]. The Report of the World Commission on Dams. London:Earthscan2000. http://www.damsreport.org/wcd_overview.htm [Geo-2-122].
    [14]胡明忠,汤杰,王小雨.矿山生态修复与重建存在的问题及对策[J].中国环境管理,2003,22(3):7-9.
    [15]刘海龙.采矿废弃地的生态修复与可持续景观设计[J].生态学报,2004,24(2):323-328.
    [16]吴欢,周兴.矿山废弃地生态修复研究[J].广西师范学院学报,2003,20,sup:32-42.
    [17]张东为,崔建国.金属矿山尾矿废弃地植物修复措施探讨[J].中国水土保持,2006,3:40-41.
    [18]宋书巧,周永章.矿业废弃地及其生态修复与重建[J].矿业保护与利用,2001,10(5):43-44.
    [19]Young K. Destruction of ecological habitats by mining activities [J]. Agricultural Ecology, 1988,16:37-40.
    [20]束文圣,张志权,蓝崇任.中国矿业废弃地的复垦对策研究[J].生态科学,2000,19(2):24-29.
    [21]刘国华,舒洪.矿区废弃地生态修复研究进展[J].江西林业科学.2003,2:21-25.
    [22]李树志,周锦华,张怀新.矿区生态破坏防治技术[M].北京:煤炭工业出版社,1998.
    [23]Guan W B, Xie C H, Ma K M, etal. A vital method for constructing regional ecological security pattern:Landscape ecological restoration and rehabilitation[J]. Acts Ecological Sinica, 2003,23(1):47-51.
    [24]魏勃,刘康怀,覃羽雯,等.矿区重金属污染土壤的植物修复[J].鄢丹内蒙古环境保护,2006,18(2):21-24.
    [25]GUO HUANCHENG, WU DENGRU and ZHU HONGXING. Land Restoration in China[J]. Journal of Ecology,1989,26:787-792.
    [26]Bradshaw, A.(程志勤译).西欧废弃地的管理和修复[J].生态学报,1990,10(1):24-26.
    [27]刘建伟.我国矿山环境现状及对策建议[EB/OL].http://www.chinamining.com.cn/report/default.asp,2004-9-13.
    [28]姜洋,宫冰,王奇.鞍钢矿区生态修复与可持续发展[J].水土保持研究,2006,13(4):190-196.
    [29]杨修,高林.德兴铜矿矿山废弃地植被修复与重建研究[J].生态学报,2001,21(11):1932-1940.
    [30]李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100.
    [31]牛一乐,刘云国,路培.中国矿山生态破坏现状及治理技术研究进展[J].环境科学与管理,2005,30(5):59-66.
    [32]Jiang G M, Putwain P D, Bradshaw A D. Response of Agrostis stoloniferia to limestone and nutritional factors in the reclamation of colliery spoils[J]. Chinese Journal of Botany,1994, 6(2):155-162.
    [33]Costigan P A, Bradshaw A D, GemmellR. The reclamation of acidic colliery spoil waste Ⅰ. Acid production potential[J]. Journal of Applied Ecology,1981,18:865-878.
    [34]M.A. PALMER, E.S. BERNHARDT, J. D. ALLAN, P.S. LAKE, G. ALEXANDER, FORUM Standards for ecologically successful river restoration [J]. Journal of Applied Ecology,2005, 42 (2):208-217.
    [35]舒俭民,王家骥,刘小春.矿区废弃地的生态修复[J].中国人口资源与环境,1998,8(3):72-75.
    [36]Fu B, Gulinck H, Masum M Z. Loess erosion in relation to land-use changes in the Ganspoel Catchment, Central Belgium[J]. Land Degradation and Development,1994,5(4):261-270.
    [37]王志宏,李爱国.矿山废弃地生态修复基质改良研究[J].中国矿业,2005,14(3):22-25.
    [38]闫文德,向建林,田大伦.湖南湘潭矿业废弃地土壤特性研究[J].林业科学,2006,42(4):12-18.
    [39]JEG GOOD, TG WILLIAMS, D. MOSS. Suryial and Growth of Selected Clones of Birch and Willow on Restored Opencast Coal Sites[J]. Journal of Applied Ecology,1985,22:995-1008.
    [40]Mc Nearny, Knight mine reclamation. A study of revegetation difficulties in a semiarid environment[J]. IJSM, R&E,1995, (9):113-119.
    [41]Jiang G M. Theory and practice in revegetation of mining wasteland. In:The researches on degraded ecosystem in China[M]. Beijing:Chinese Science & Technology Press,1996, 193-204.
    [42]田大伦,康文星.生长在矿区废弃地的栾树混交幼林生物量研究[J].中南林学院学报,2006,26(5):1-4.
    [43]刘秀梅,聂俊华,王庆仁.植物修复重金属污染土壤的研究进展[J].2001,36(1):8-13.
    [44]Cunningham SD, Berti WR, Huang JW. Bioremediation of norganic. Columbus-Richland: Batelle Press,1995,33.
    [45]客绍英.植物修复金属污染土壤的行为及应用前景[J].生物学教学,2001,4(26):2-3.
    [46]王英辉,祁士华,陈学军,等.金属矿山废弃地重金属污染的植物修复治理技术[J].中国矿业,2006,15(10):67-71.
    [47]Wang J H, Ma M. Biological mechanisms of phytoremediafion[J]. Chinese Bulletin of Botany, 2000,17(6):504-510.
    [48]Marrs R H, Bradshaw A D. Nitrogen accumulation, cycling and the reclamation of China clay wastes[J]. Journal of Environmental Management,1982,15:139-157.
    [49]Salt D. E, Blaylock M, Kumar P B A N, et al. Phytorenediation:A novel strategy for the removal of toxics metals from the environment using Plants [J]. Bio/Technology,1995, 13:468-474.
    [50]陈怀慢.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996:48-60.
    [51]Edwards C A, Bohlen P J. Biology and Ecology of Earthworm. London:Chapman Hall,1996.
    [52]Butt K R, Redericdson J F, Morris R M. An earthworm cultivation and soil inoculation technique for land restoration[J]. Ecological Engineering,1993,4:1-9.
    [53]Edwards C A, Abe T, Striganova B R. Structure and Function of Soil Community[M]. Kyoto: Kyoto University Press,1995.
    [54]戈峰,刘向辉,潘卫东,等.蚯蚓在德兴铜矿废弃地生态修复中的作用[J].生态学报,2001,11(21):1790-1795.
    [55]Virendra S. Utilization of medicinal plants for wasteland[J]. Journal of Economic and Taxonomic. Botany,2000,24(1):99-103.
    [56]李德生,张萍,张水龙,等.黄前库区森林地表径流水移动规律的研究[J].水土保持学报,2004,18(1):78-81.
    [57]张桃林,潘剑君,赵其国.土壤质量研究进展与方向[J].土壤,1999(1):1-7.
    [58]李生宝,王占军,王月玲,等.宁南山区不同生态修复措施对土壤环境效应影响的研究[J].水土保持学报,2006,20(4):19-22.
    [59]陈奇伯,陈宝昆,董映成,等.水土流失区小流域生态修复的理论与实践[J].水土保持研究,2004,11(1):168-170.
    [60]彭文英,张科利,杨勤科.黄土坡面土壤性质随退耕时间的动态变化研究[J].干旱区资源与环境,2006,20(5):153-157.
    [61]赫晓慧,常庆瑞,李锐,等.陕北农牧交错带不同人工植被下的土壤质量研究[J].水土保持研究,2005,12(1):10-12.
    [62]胡斌,段昌群,王震洪,等.植被修复措施对退化生态系统土壤酶活性及肥力的影响[J].土壤学报,2002,39(4):604-608.
    [63]王葆芳,贾宝全,杨晓晖.干旱区土地利用方式对沙漠化土地修复能力的评价[J].生态学报,2002,22(12):2030-2035.
    [64]黄春长.环境变迁[M].北京:科学出版社,1998,121-156.
    [65]许光辉,李振高.微生物生态学[M].南京:东南大学出版社,1991:175-182.
    [66]龙健,黄昌勇等.我国南方红壤矿山复垦土壤的微生物特征研究[J].水土保持学报.2002,16(2):127-132.
    [67]Chander K, Brookes P C. Microbial biomass dynamics during the decomposition of glucose and maize in metal-contaminated and non-contaminated soils[J]. Soil Biol. Biochem,1991, 23:917-925.
    [68]Bardget R D, Saggar S. Effects of heavy metal contamination on the short term decomposition of labeled 14C glucose in a pasture soil[J]. Soil Biol. Biochem,1994,26:727-733.
    [69]龙健,黄昌勇,等.矿区废弃地土壤微生物及其生化活性[J].生态学报,2003,23(3):496-503.
    [70]腾应,黄昌勇,等.铅锌银尾矿污染区土壤酶活性研究[J].中国环境科学.2002,Z2(6):551-555.
    [71]杨玉盛,何宗明,邱仁辉.严重退化生态系统不同修复和重建措施的植物多样性与地力差异研究[J].生态学报,1999,19(4):490-494.
    [72]龙健,李娟,江新荣,等.喀斯特石漠化地区不同修复和重建措施对土壤质量的影响[J].应用生态学报,2006,4(17):615-619.
    [73]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [74]何跃军,钟章成,刘济明.石灰岩退化生态系统不同修复阶段土壤酶活性研究[J].应用生态学报,2005,16(6):1077-1080.
    [75]Doran JW. Ed Methods for Assessing Soil Quality[C]. New York:Soil Science of America Publication,1996,61-82.
    [76]Garrison S, Angela Z. The assessment of soil quality[J]. Geoderma,2003,14:143-144.
    [77]刘晓冰,邢宝山.土壤质量及其评价指标[J].农业系统科学与综合研究,2002,18(12):109-112.
    [78]Compbell CA, McConkey BG, Biederbeck VO, et al.1998. Longterm effects of tillage and fallow-frequency on soil quality attributes in a clay soil in semiarid southwestern Saskatchewan[J]. Soil Tillage, Res,46(3-4):135-144.
    [79]Gewin VL, Kennedy AC, Veseth R, et al.1999. Soil quality changes in eastern Washington with conservation reserve program (CRP) take-out[J]. Soil Water Conser,54(1):432-438.
    [80]Subbian P, Lal R, Subramanian KS.2000. Cropping systems effects on soil quality in semiarid tropics[J]. Sustain Agric,16(3):7-38.
    [81]George Z, Stamatis S, Vasilios T. mIpacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment ethodology[J]. Agriculture, Ecosystems and Environment,2002,88:137-146.
    [82]Karlen D L, Mausbach M J, Doran J W. Soil quality:a concept, definition, and framework for evaluation[J]. Soil Science Society of America,1997,61:4-10.
    [83]Stephen N. Standardization of soil quality attributes[J]. Agriculture, Ecosystems and Environment,2002,88:161-168.
    [84]Arshad M A, Martin S. Identifying critical limits for soil quality indicators in Agro-ecosystems [J]. Agriculture, Ecosystems and Environment,2002,88:153-160.
    [85]万存绪,张效勇.模糊数学在土壤质量评价中的应用[J].应用科学学报,1991,9(6)359-365.
    [86]赵其国,孙波,张桃林.土壤质量与持续环境,土壤质量的定义及评价方法[J].土壤,1997,3:113-120.
    [87]陈龙乾,邓喀中,徐黎华,等.矿区复垦土壤质量评价方法[J].中国矿业大学学报,1999,28(5):449-452.
    [88]刘世梁,傅伯杰,吕一河,等.坡面土地利用方式与景观位置对土壤质量的影响[J].生态学报,2003,23(3):414-420.
    [89]王效举,龚子同.红壤丘陵小区域不同利用方式下土壤变化的评价和预测[J].土壤学报,1998,35(1):135-139.
    [90]陈松林.福州海岛耕作土壤质量的定量评价[J].福建师范大报,1996,12(3):84-88.
    [91]武伟,唐明华,刘洪斌.土壤养分的模糊综合评价[J].两南农业大学学报,2000,22(3):270-272.
    [92]胡月明,吴谷丰,江华,等.基于GIS与灰关联综合评价模型的土壤质量评价[J].西北农林科技大学学报(自然科学版),29(4):39-42.
    [93]潘峰,梁川,付强.基于层次分析法的物元模型在土壤质量评价中的应用[J].农业现代化研究,2002,23(2):93-97.
    [94]李月芬,汤洁,林年丰,等.灰色关联度法在草原土壤质量评价中的应用[J].吉林农业大学学报,2003,25(5):551-556.
    [95]楼文高.基于人工神经网络的三江平原土壤质量综合评价与预测模型[J].中国管理科学,2002,10(I):79-83.
    [96]胡月明,洪富,吴志峰,等.基于GIS的土壤质量模糊变权评价[J].土壤学报,2001,38(3):266-274.
    [97]张庆利,潘贤章,王洪杰,等.中等尺度上土壤肥力质量的空间分布研究及定量评价[J].土壤通报,2003,34(6):493-497.
    [98]巩杰,陈利顶,傅伯杰.黄土丘陵区小流域土地利用和植被修复对土壤质量的影响[J].应用生态学报,2004,15(12):2292-2296.
    [99]Wezel A,Rajot J L, Herbrig C. Influence of shrubs on soil characteristics and their function in Sahelian agro-ecosystems in semi-arid Niger[J]. Journal of Arid Environments,2000, 44(4):383-398.
    [100]Craig A D, Arlene J T. Soil Quality Field Tools:Experiences of USDA-NRCS Soil Quality Institute[J]. American Society of Agronomy,2002,94:33-38.
    [101]王友保,刘登义,张莉,等.铜官山铜尾矿库植被及土壤酶活性研究[J].应用生态学报,2003,14(5):757-760.
    [102]王庆仁,崔岩山,董艺婷.植物修复-重金属污染土壤整治的有效途径[J].生态学报,2001,21(2):327-330.
    [103]王友保,张丽琴,刘登义,等.铜尾矿区土壤与凤丹植株重金属富集研究[J].应用生态学报,2004,15(2):2351-2354.
    [104]骆永明.金属污染土壤的植被修复[J].土壤,1999,5:261-265.
    [105]龙健,黄昌勇,腾应,等.矿区重金属污染对土壤环境质量微生物学指标的影响[J].农业环境科学学报,2003,22(1):60-63.
    [106]刘世梁,傅伯杰,刘国华,等.我国土壤质量及其评价研究的进展[J].土壤通报,2006,37(1):137-142.
    [107]胡海波,康立新,梁珍海,等.泥质海岸防护林土壤酶活性特征研究[J].土壤学报,1998,35(1):112-118.
    [108]姚胜蕊,束怀瑞.有机物料对苹果根际营养元素动态及土壤酶活性的影响[J].土壤学报,1999,36(3):428-432.
    [109]於忠祥,汪维云,沙宗珩.合肥郊区菜园土土壤酶活性研究[J].土壤通报,1996,27(4):179-181.
    [110]靳素英,崔明学,蔺继尚.天津东郊盐碱土微生物分布及土壤酶活性[J].应用生态学报,1996,7(增刊):139-141.
    [111]陈光升,钟章成,齐代华.缙云山常绿阔叶林土壤酶活性与土壤肥力的关系[J].四川师范学院学报(自然科学版),2002,23(1):19-23.
    [112]史长青.重金属污染对水稻土酶活性的影响[J].土壤通报,1995,26(1):34-35.
    [113]和文祥,陈会明,冯贵颖,等.汞铬砷元素污染土壤的酶监测研究[J].环境科学学报,2000,20(3):338-343.
    [114]李博文,杨志新,谢建治,等.土壤酶活性评价镉锌铅复合污染的可行性研究[J].中国生态农业学报,2006,14(3):132-134.
    [115]刘登义,沈章军,严密,等.铜陵铜矿区凤丹根际和非根际土壤酶活性[J].应用生态学报,2006,17(7):1315-1320.
    [116]滕应,黄昌勇,龙健,等.铅锌银尾矿污染区土壤酶活性研究[J].中国环境科学,2002,22(6):551-555.
    [117]姜必亮,蓝崇钰,王伯荪.垃圾填埋场渗滤液灌溉后重金属的生态效应[J].中国环境科学,2001,21(1):18-23.
    [118]张文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状[J].土壤与环境,2000,9(2):139-142.
    [119]张庆费.宋永昌.由文辉.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报,1999,19(2):174-178.
    [120]田大伦,康文星.生长在矿区废弃地的栾树混交幼林生物量研究[J].中南林学院学报,2006,26(5):1-4.
    [121]中国环境监测总站主编.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    [122]方晰,田大伦,谢荣秀.湘潭锰矿矿渣废弃地植被修复前的土壤诊断[J].生态学报,2006,26(5):1493-1501.
    [123]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [124]Xiaofu Wu, Ivar Aasen, Selmer Olsen A R. A study of extraction methods for assessing soil zinc availability:I. Soil zinc extractability and soil zinc buffering capacity in relation to soil properties [J]. Norwegian J.Agric. Sci.,1991,5:89-107.
    [125]中国科学院土壤研究所微生物室.土壤微生物研究方法[M].北京:科学出版社,1985,40-59.
    [126]周礼恺.土壤酶学[M].北京:科学出版社,1987:106-221.
    [127]李阜棣.当代土壤微生物学的活跃研究领域[J].土壤学报,1993,30(3):229-236.
    [128]臣芳清,卢斌,王祥荣.樟村坪磷矿废弃地植物群落的形成与演替[J].生态学报,2001,21(8):1347-1353.
    [129]束文圣,蓝崇钰,张志权.凡口铅锌尾矿影响植物定居的主要因素分析[J].应用生态学报,1997,8(3):314-318.
    [130]夏汉平,束文圣.香根草和百喜草对铅锌尾矿重金属的抗性与吸收差异研究[J].生态学报,2001,21(7):1121-1129.
    [131]戴惠新,张宗华,王春秀.铜尾矿综合利用研究[J].有色金属,2001,(1):38-40.
    [132]杨玉盛,俞新妥,邱仁辉.栽杉留阔模式生产力和土壤肥力的研究[J].林业科学,1999,35(4):9-13
    [133]Zheng Y S, Ding Y X. Effect of mixed forests of Chinese-fir and Tsoong'tree on soil properties [J]. Pedosphere,1998,8 (2):161-168.
    [134]高雪松,邓良基,张世熔.不同利用方式与坡位土壤物理性质及养分特征分析[J].水土保持学报,2005,19(2):53-60,79.
    [135]毕银丽,王百群,等.’黄土丘陵区坝地系统土壤养分特征及其与侵蚀环境的关系[J].水土保持学报,1997,(4):37-43.
    [136]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [137]陈是赫,刘敬娟.辽宁铁岭农田耕层土壤养分状况及其变化[J].土壤通报,2003,34(1):77-78.
    [138]洪渝,方晰,田大伦.湘中丘陵区不同土地利用方式土壤碳氮含量的特征[J].中南林学 院学报,2006,26(6):9-15.
    [139]贾晓红,李新荣,李元寿.干旱沙区植被修复中土壤碳氮变化规律[J].植物生态学报,2007,31(1):66-74.
    [140]史作民,刘世荣,程瑞梅.内蒙古鄂尔多斯地区四个植物群落类型的土壤碳氮特征[J].林业科学,2004,40(2):21-27.
    [141]黄昌勇.土壤学[M].北京:中国农业出版社,2001,199-202.
    [142]张猛,张健,徐雄,等.土壤管理方式对果-草人工生态系统土壤性质的影响[J].林业科学,2006,42(8):44-49.
    [143]杨涛,徐慧,方德华,等.樟子松林下土壤养分、微生物及酶活性的研究[J].土壤通报,2006,37(2):253-257.
    [144]夏北成,Zhoujizhong, James.M. Tiedje.植被对土壤微生物群落结构的影响[J].应用生态学报,1998,9(3):296-300.
    [145]张社奇,王国栋.黄土高原人工油松林地土壤微生物的分布特征[J].激光生物学报,2005,14(5):353-358.
    [146]戴伟,白红英.土壤过氧化氢酶活性及其动力学特征与土壤性质的关系[J].北京林业大学学报,1998,17(1):37-40.
    [147]许景伟,王卫东,李成.不同类型黑松混交林土壤微生物、酶及其其与土壤养分关系的研究[J].北京林业大学学报,2000,22(1):51-55.
    [148]张彦,张惠文,苏振成,等.污水灌溉对土壤重金属含量、酶活性和微生物类群分布的影响[J].安全与环境学报,2006,6(6):45-50.
    [149]胡海波,康立新,梁珍海,等.泥质海岸防护林土壤酶活性特征研究[J].土壤学报,1998,35(1):112-118.
    [150]张猛,张健.林地土壤微生物、酶活性研究进展[J].四川农业大学学报,2003,21(4):347-351.
    [151]TAYLOR J P, WILSON B, MILLS M S, et al. Comparison of numbers and enzymatic activities in surface soils and subsoil using various techniques[J]. Soil Bioche M,2002,34: 387-401.
    [152]董军,栾天罡,蓝崇钰,等.铅锌矿冶区土壤酶活性特征研究生态环境[J].2005,14(5):668-671.
    [153]胡延杰,翟明普,武觐文,等.杨树刺槐混交林及纯林土壤酶活性的季节动态研究[J].北京林业大学学报,2001,23(5):23-26.
    [154]刘建新.不同农田土壤酶活性与土壤养分相关关系研究[J].土壤通报,2004, 35(4):523-525.
    [155]杨志新,刘树庆.重金属Cd、Zn、Pb复合污染对土壤酶活性的影响[J].环境科学学报,2001,21(1):60-63.
    [156]骆伯胜,钟继洪,陈俊坚.土壤肥力数值化综合评价研究[J].土壤,2004,36(1):104-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700