锰矿区废弃地重金属污染土壤下栾树和杜英的光合生理响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用木本植物进行生态恢复与重建是以丘陵山地为主的南方重金属矿区废弃地生态治理的一种重要方法。研究在重金属胁迫条件下一些树种的光合特性,并揭示其适应机制,对于正确选择矿区废弃地生态修复的树种,治理土壤重金属污染和进行生态恢复具有十分重要的意义。本研究采用五种方案进行盆栽试验(对照CK:100%自然土;W1:25%矿区废弃地土壤+75%自然土;W2:50%矿区废弃地土壤+50%自然土;W3:75%矿区废弃地土壤+25%自然土;W4:100%矿区废弃地土壤),对比研究锰矿区重金属污染土壤下有广阔利用前景的乡土树种-栾树(Koelreuteria paniculata Laxm)和杜英(Elaeocarpus decipens)光合生理生态的响应、两树种净光合速率与各因子相关性及重金属胁迫对植物生长的影响进行研究,以揭示栾树、杜英地上部分的生理生态响应对策。结果表明:
     1.7月份日变化进程中,4种不同处理(W1、W2、W3、W4)下,栾树的W1、W2和W4的净光合速率日变化呈双峰曲线,CK和W3则呈单峰曲线;杜英(除W4)净光合速率日变化均呈双峰曲线,杜英的净光合速率日均值高于栾树。对栾树来说,4种不同处理(W1、W2、W3、W4),随着重金属土壤浓度的增加,各处理净光合速率日均值分别是对照的66%、87%、106%、117%。对杜英来说,4种不同处理的净光合速率日均值均低于对照,分别是对照的73%、83%、72.7%、57%。重金属处理降低了两树种的气孔导度和蒸腾速率日变化幅度。栾树W1和W4处理加大了胞间C02浓度日变化幅度,而W2、W3处理减少了其日变化幅度;杜英而言,W1、W2、W4处理加大了胞间CO2浓度日变化幅度,W3减少了其日变化幅度。
     2.对两树种夏秋两季的净光合速率进行了研究,结果表明:两树种的夏季净光合速率平均值高于秋季,秋季各处理间净光合速率平均值的大小关系发生了变化。夏季,栾树W3净光合速率平均值最大,为4.7μmol·m-2·s-1,且只有W3的平均值高于对照的4.1μmol·m-2·s-1,W1最小,为2.36μmol·m-2·s-1;秋季,W2平均值最大,为2.56μmol·m-2·s-1,W3最小,为2.12μmol·m-2·s-1,均高于对照的1.72μmol·m-2·s-1。夏季,杜英W2处理净光合速率平均值最大,为4.52μmol·m-2·s-1,W4最小,为3.59μmol·m-2·s-1,各处理平均值均低于对照的6.04μmol·m-2·s-1;秋季,W1净光合速率平均值最大,为2.36μmol·m-2·s-1,W4最小,为1.73μmol·m-2·s-1,且各处理平均值均低于对照的3.05μmol·m-2·s-1。
     3.栾树净光合速率与土壤各重金属元素(Mn、Cu、Zn、Pb、Ni、Co、Cd)含量的相关性都不显著,杜英净光合速率与土壤Pb、Cd、Cu含量呈显著负相关。影响两树种净光合速率的环境因子不同。栾树净光合速率与叶片全N及叶绿素含量呈显著负相关,与叶片Mn、Zn元素含量呈显著正相关;杜英净光合速率与叶片N、P、K、Mg、Ca、Fe、Mn、Zn含量及叶绿素含量的相关关系均未达到显著水平。
     4.栾树的株高增长率均低于杜英。夏季栾树(除W3)各处理的株高增长率都高于秋季;各处理平均地径增长量大小顺序W3>W4>CK>W2>W1,说明低浓度下对地径增长有抑制作用,而高浓度下反而促进地径的增长。
     杜英生长快,且长势良好,夏季株高增长率均远高于秋季;各处理的平均地径增长量大小顺序是CK>W2>W1>W3>W4,均低于对照,不同重金属土壤掺和浓度下对地径增长有一定的抑制作用,且随着浓度的增加抑制作用越明显。
     5.各重金属元素中锰元素的损失量最大,各处理与其试验初相比,两树种均是W2损失得最大,W1损失最小。试验末期栾树各处理土壤锰含量按顺序分别为试验初的62.9%、21.34%、50.33%、43.38%;杜英各处理土壤锰含量按顺序分别为试验初的63.45%、21.1%、41.2%、41.66%。造成锰元素损失的主要原因是降水和浇灌及植物的吸收。杜英对Mn、Pb元素的吸收富集能力高于栾树,而栾树对Cu、Zn元素的吸收富集能力高于杜英。
Using woody plants for ecological restoration and reconstruction for southern heavy metal slag wasteland which are mainly hills and mountains is an important method. Studying on heavy metal stress on the photosynthetic characteristics of some species, and revealing their adaptive mechanisms, it is of great significance to choosing the correct species for restoration of the slag wasteland、controlling heavy metal pollution of the soil and ecological restoration. By using the slag wasteland soil in Xiangtan Manganese Mine, five different mixed soil treatments by which potted plant tests are conducted, five treatments are as follows:(CK:100% untreated soil; Wl:25% slag wasteland soil+75% untreated soil; W2:50% slag wasteland soil+50% untreated soil; W3:75% slag wasteland soil+25% untreated soil; W4:100% slag wasteland soil). This paper focuses on the impacts of heavy metal polluted soil in slag wastelands of manganese mine on photosynthetic physiological reactions、relevances among Pn and all factors、and inhibits on the growth by comparative study of Koelreuteria paniculata Laxm and Elaeocarpus decipens which have many promising uses so as to reveal physiological and ecological responses of the overground part of the two species. The results showed that:
     1. The diural net photosynthetic rate of W1、W2 and W4 treatments of Koelreuteria paniculata Laxm in July varies with double peak curves, while the diural net photosynthetic rate of the contrast(CK) and W3 varies with single peak curve. The diural net photosynthetic rate of Elaeocarpus decipens (except W4 treatment) varies with double peak curves. The daily average net photosynthetic rate (Pn) of Elaeocarpus decipens is higher than that of Koelreuteria paniculata Laxm in July. For Koelreuteria paniculata Laxm, the daily average net photosynthetic rate (Pn) of each treatment (W1、W2、W3、W4) is 66%,87%,106%,117% compared to the contrast and increases with the concentration of heavy metals in the soil. While for Elaeocarpus decipens, the daily average rates of (Pn) are 73%,83%,72.7%,57% compared to the contrast and raises when the soil heavy metal concentration increases, and then decreases. Impacts of soil heavy metal concentrations on Koelreuteria paniculata Laxm are relatively smaller than that of Elaeocarpus decipens. Heavy metal treatments make the range of diural variation of (Gs) and (Tr) decrease of both two species. For Koelreuteria paniculata Laxm, Wl and W4 treatments make the range of diural variation of (Ci) increase, while W2 and W3 treatments make it decrease. For Elaeocarpus decipens, W1、W2 and W4 treatments make the range of diural variation of (Ci) increase, while W3 make it decrease.
     2. Focused on net photosynthetic rate (Pn) of the two species in Summer and Autumn, the results showed that the average net photosynthetic rate (Pn) of both two species in Summer are higher than in Fall, and the relationship among all treatments (W1、W2、W3、W4) of the average net photosynthetic rate (Pn) has changed in Autumn. For Koelreuteria paniculata Laxm in Summer, the average value of Pn of W3 is the largest, that is 4.74μmol·m-2·s-1, only the value of Pn of W3 is bigger than the contrast, W1 is the minimum, that is 2.36μmol·m-2·s-1, While in Autumn, the average value of Pn of W2 is the largest which is 2.56μmol·m-2·s-1, W3 is the minimum which is 2.12μmol·m-2·s-1, the value of Pn of all treatments are higher than the contrast which is1.72μmol·m-2·s-1. For Elaeocarpus decipens in Summer, the average value of Pn of W2 is the maximum, that is 4.52μmol·m-2·s-1, while W4 is the minimum, that is 3.59μmol·m-2·s-1, the value of Pn of all treatments are lower than the contrast which is 6.04μmol·m-2·s-1; In Autumn, the average value of Pn of W1 is the largest which is 2.36μmol·m-2·s-1, while W4 is the minimum which is 1.73μmol·m-2·s-1, the value of Pn of all treatments are lower than the contrast which is3.05μmol·m-2·s-1.
     3. For Koelreuteria paniculata Laxm relevances among Pn and heavy metals Mn、Cu、Zn、Pb、Ni、Co、Cd contents in soil all fail to meet the significant level; while relevances among Pn and Pb、Cd and Cu contents in soil reach negative significant level of Elaeocarpus decipens. Relevances among Pn and N、Chlorophyll contents in leaves reach significant negative level, while Pn among Zn and Mn contents in leaves of Koelreuteria paniculata Laxm reach positive significant level; For Elaeocarpus decipens, Relevances Pn among N、P、K、Mg、Ca、Fe、Mn、Zn and Chlorophyll contents in leaves all fail to meet the significant level.
     4. Survival rate and height growth rate of Koelreuteria paniculata Laxm are lower than those of Elaeocarpus decipens. height growth rate of Koelreuteria paniculata Laxm each treatment (exceptW3) is higher than that in fall; the average diameter growth in order is W3>W4>CK>W2>W1, W1 and W2 are less than the contrast, while W3 and W4 are larger than the contrast. It means that low concentration inhibits diameter growth, while high concentration promotes it.
     Elaeocarpus decipens grow fast and grow well, height growth rate in summer is far more higher than that in autumn. The average diameter growth in order is CK> W2> W1> W3> W4, all treatments are lower than the contrast, heavy metal treatments in the soil inhibits diameter growth, and with the increase in the concentration of heavy metal, the inhibitory effect gets more obvious.
     5. Among all the heavy metals, content of Mn losses the most. Compared with its in the early stage of experiment, for both of the two species, W2 lost the most Mn content, W1 lost the least, at the end stage of the experiment, Mn content in the soil of each treatment of Koelreuteria paniculata Laxm in order is 62.9%,21.34%, 50.33%,43.38% of its early stage; For Elaeocarpus decipens, Mn content in the soil of each treatment in order is 63.45%,21.1%,41.2%,41.66% of its early stage. The causes of so much loss in Mn content are mainly due to rainfall、irrigation and absorption of the plants. Elaeocarpus decipens has better capacity to absorb Mn and Pb elements than Koelreuteria paniculata Laxm, while Koelreuteria paniculata Laxm absorbs more Cu and Zn elements than Elaeocarpus decipens.
引文
[1]李凌浩,刘庆,任海.恢复生态学[M].北京:科学出版社,2008
    [2]李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100
    [3]章家恩,徐琪.恢复生态学研究的一些基本问题探讨[J].应用生态学报,1999,10(1):109-113
    [4]白中科,赵景逵.工矿土地复垦与生态重建[M].北京:中国农业科学出版社,2000
    [5]龙健,黄昌勇,腾应,等.矿区重金属污染对土壤环境质量微生物学指标的影响[J].农业环境科学学报,2003,22(1):60-63
    [6]龙健,黄昌勇,腾应.我国南方红壤矿山复垦土壤的微生物特征研究[J].水土保持学报,2002,16(2):126-132
    [7]袁敏,铁柏清,唐美珍.土壤重金属污染的植物修复及其组合技术的应用[J].中南林学院学报,2005,25(1):81-85
    [8]孙健,铁柏清,钱湛,等.湖南有色金属矿区重金属污染土壤的植物修复[J].中南林学院学报,2006,26(1):125-128
    [9]方晰,田大伦,谢荣秀.湘潭锰矿矿渣废弃地植被修复前的土壤诊断[J].生态学报,2006(5):1494-1501
    [10]谢荣秀,田大伦,方晰.湘潭锰矿废弃的土壤重金属污染及其评价[J].中南林学院学报,2005(2):38-41
    [11]闫文德,田大伦.湘潭锰矿废弃的土壤酶活性与重金属含量的关系[J].中南林学院学报,2006(3):1-4
    [12]方晰,田大伦,康文星.湘潭锰矿废弃地植被修复盆栽试验[J].中南林学院学报,2007(1):14-19
    [13]闫文德,向建林,田大伦.湖南湘潭矿业废弃地土壤特性研究[J].林业科学,2006(4):12-18
    [14]闫文德,田大伦.湘潭锰矿废弃地土壤特性与植物生长关系研究[J].中国水土保持,2006(7):16
    [15]潘瑞炽.植物生理学(第四版)[M].北京:高等教育出版社,2001,29-33
    [16]王慧忠,何翠屏.铅对草坪植物生物量与叶绿素水平的影响[J].草业科学,2003(6):73-75
    [17]杨丹慧.重金属离子对高等植物光合膜结构与功能的影响[J].植物学通报,1991,15(2):159-166
    [18]夏增禄.Cd、Zn、Pb及其相互作用对烟草、小麦的影响[J].生态学报,1984,4(3):231-235
    [19]BarceloJ, PoschenriederC. Plant water relations as affected by heavy metal stress:a review[J].Plant Nutr,1990,13:1-37
    [20]常学秀,段昌辉.根分泌作用与植物对金属毒害的抗性[J].应用生态学报,2000,11(2):315-320
    [21]Macfarlane G R,Burchett MD.Toxicity growth and accumulation relationships of copper lead and zinc in the grey mangrove Avicennia marina(Forsk)Vierh[J].Marina Environ Res,2002,54:65-84
    [22]刘登义,谢建春,杨世勇,等.铜尾矿对小麦生长发育和生理功能的影响[J].生态学报,2001,12(1):126-128
    [23]张义贤.重金属对大麦(Hordeum vulgare)毒性的研究[J].环境科学学报,1997,17(2):199-204
    [24]莫文红,李懋学.镉离子对蚕豆根尖细胞分裂的影响[J].植物学通报.1992,9(3):30-34
    [25]夏增绿.土壤环境容量及其应用[M].北京:气象出版社,1988
    [26]洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报,1991,17(2):199-204
    [27]刘海亮,崔世民,等.镉对作物种子萌芽、幼苗生长及氧化酶同工酶的影响[J].环境科学,1991,12(6):29-31
    [28]陈桂珠.重金属对黄瓜籽苗发育影响的研究[J].植物学通报,1990,7(1):34-39
    [29]Moral R,Gomez I, et al. Effect of cadmium on nutrient distribution,yield and growth of tomato grown in soilless culture.Journal of Plant Nutrition.1994,17(6): 953-962
    [30]Lee S,Moon J S,Ko T S,et al.Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to Cadimium stress.Plant Physiology.2003,131:656-663
    [31]马朝红,曾德生.土壤中镉对水稻生长的影响[J].湖北农业科学,1992,(2):26-30
    [32]王凯荣.镉对不同基因型水稻生长毒害影响的比较[J].农村生态环境, 1996,12(3):18-2
    [33]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99
    [34]罗红艳.三种木本植物幼树重金属抗性的比较研究[D].南京:南京林业大学,2003
    [35]李元,王焕校,吴云树,等.Cd、Fe及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,1(22):147-153
    [36]杨居荣,贺建群,蒋婉茹,等.Cd污染对植物生理化的影响[J].农业环境保护,1995,14(15):193-197
    [37]杨丹慧.重金属离子对高等植物光合膜结构与功能的影响[J].植物学通报,1991,(83):26-29
    [38]Hendrik K.In situ detection of heavy metal substituted chlorophylls in water plants. Photosynthesis Research,1998,5 (82):123-133
    [39]钟闱桢.锰矿区尾矿坝及锰镉复合污染对植物的生态毒理学研究[D].广西师范大学,2008,1-20
    [40]黄玉山,邱国华.紫茅抗铜和敏感品种在发育早期对铜离子反应的理差异[J].应用与环境生物学报,1998,4(2):126-131
    [41]Ouzounidou G.Copper induced changes on growth.methalcontent and photosynthetic function of Alyssum montanum plants.Environ.Experi.Bot. 1994,34(2):165-172
    [42]刘全吉.砷对小麦生长和光合特性的影响[J].生态学报,2009,29(2):854-859
    [43]朱宇林,曹福亮,汪贵斌.Cd、Pb胁迫对银杏光合特性的影响[J].西北林学院学报,2006,21(1):47-50
    [44]杨卫韵,刘鹏,徐根娣.锰对大豆光合特性的影响[J].种子,2005,24(12):80-81
    [45]Zhang G P,Fukami M.Sekimoto H.influence of Cadmium on mineral concentrations and components in wheat genotypes differing in Cd tolerance at seedlings stage[J].Field crops Res.2002,77:93-98
    [46]余国莹,吴玉树,王焕校.不同化合形态镉、锌及其复合污染对小麦生理的影响[J].生态学报,1992,12(1):93-96
    [47]Klobus G,Buczek J. Chlorophyll, content, cells and chloroplast number and cadmium distribution in Cd-treated cucumber plants. Acta Physiologiae Plantarum,1985,7(3):139-147
    [48]Gil J,moral R,et al. Effects of cadmium on physiological and nutritional aspects of tomato plant.I. Chlorophyll(a and b)and carotenoids. Fresenius Environ Bull.1995,4:430-435
    [49]黄会一,张春兴.重金属镉、铅对木本植物光合作用影响的初步研究[J].生态学杂志,1986,5(2):6-9
    [50]彭鸣,王焕校,吴玉树,等.镉、铅诱导的玉米(Zea mays L.)幼苗细胞超微结构的变化[J].中国环境科学,1991,11(6):426-431
    [51]Baszynski T,Wasda L,et al.photosynthetic activities of cadmium-treated tomato plants. Physiol Plant.1980,48:365-370
    [52]杨丹慧,许春辉,赵福洪,等.镉离子对菠菜叶绿体光系统Ⅱ的影响[J].植物学报,1989,31(9):702-707
    [53]王焕校.污染生态学基础[M].昆明:云南大学出版社,1990.91-108
    [54]Alva A. K., Chen E. Q. Effects of external copper concentrations on uptake of trace elements by citrus seedlings. Soil Sci.1995,159(1):59-64
    [55]Lidon F. C.,Henriques F.S.Effects of copper toxicity on growth and uptake and translocation of metals in rice plants. J. Plant Nutr.,1993,16:1449-1464
    [56]Rhoads F. M., Olson S. M., Manning A. Copper toxicity in tomato plants. J Environ. Qual,1989,18(2):195-197
    [57]徐红宁,许嘉琳.土壤环境中重金属复合污染对小麦的影响[J].中国环境科学,1993,13(5):367-371
    [58]许嘉林,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995.24-36
    [59]秦天才,吴玉树,王焕校,等.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46-50
    [60]Burzynski M.The influence of lead and cadmium on the absorption and distribution of potassium,calcium,magne-sium and iron in cucumber seedlings.Acta Physiologiae Plantarum.l987,9(4):229-238
    [61]杨明杰,林咸永.等.Cd对不同种类植物生长和养分积累的影响[J].应用生态学报,1998,9(1):89-94
    [62]张金彪,黄维南.镉对植物的生理生态效应的研究进展[J].生态学报,2000,20(3):514-523
    [63]Lamoreaux RJ, Chaney WR. Grow and water movement in silver maple seedling affected by cadmium.J Environ Qual.1977,6:201-205
    [64]Fridovich I.The biology of oxygen radical.Science.1978,201:875-880.
    [65]潘瑞炽,董愚得,编著.植物生理学(第三版).高等教育出版社.1995
    [66]曹玲.四种城市绿化树种对土壤镐铅污染的抗性研究[D].东北林业大学.2005
    [67]杨世勇,王方,谢建春.重金属对植物的毒害及植物的耐性机制[J].安徽师范大学学报(自然科学版).2004(1):72
    [68]Baker A.J. M. Metal tolerance. New Phytol.1987,106(suppl.):93-111
    [69]戴玲芬,高宏,夏建荣.雪松聚球藻对重金属镉的抗性和解毒作用[J].应用与环境生物学报.1998,4(3):192-195
    [70]Nies DH, Silver S. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zine and cobalt in Alcaligenes eutrophus.J Bacteriol. 1989,171:896-900
    [71]Salt DE, Prince R, Pickering IJ, et al. Mechanism of cadmium mobility and accumulation in Indian mustard. Plant Physiol.1995,109:1427-1433
    [72]Ye ZH, BakerAJM, WongMH, Willis AJ. Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed, Phragmites aus- tralis (Cav.) Trin. ex Steudel. Annals of Botany.1997,80:363-370
    [73]Nishizono H.The role of the root cell wall in the heavy metal tolerance of Athyrium Yokoscense.[J].Plant and Soil,1987,101:15-20
    [74]Rauser WE,Acker CA, Localization of cadmium in granules within. differentiating and mature root cells.CanJ Bot.1987,65:643-646
    [75]孙赛初,王焕校,李启任,等.水生维管束植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,1985,11(2):113-121
    [76]Grill E. Phytochelatins:The principal heavy-metal complexing peptides of higher plant.Science.1985,230:674-676
    [77]Steffens JC, Hunt DF, et al. Accumulation of non-protein metal-binding polypeptides(r-glutamycysteinyl)n-glycine in selected cadmium resistant tomato-cells. J Biol Chem.1986,261:13879-13882
    [78]龚雨松,李振国,余叔文,等.小麦幼苗根系镉螯合素[J].植物生理学报,1990,16(1):19-25
    [79]李振国,余叔文.植物重金属结合蛋白(肽)[J].植物生理学通讯,1990,(1):7-13
    [80]Grill E.Phytocheclatins,a class of heavy metal-binding peptides of from plants,are functionally analogous to metallothioneins. Proc. Natl.Acad.Sci.USA. 1999,96:7110-7115
    [81]潘瑞炽.植物生理学(第五版)[M].北京:高等教育出版社,2004
    [82]罗勇.湖南省主要树种光合特性及其对环境因子的响应研究[D].株洲:中南林学院.2004
    [83]黄丽化,陈训,崔炳芝.黄褐毛忍冬光合特征于水分利用日变化研究[J].贵州科学,2007,25(1):54-58
    [84]张希明,斯蒂堪W,龙格M.自然条件下幼龄欧洲山毛榉的光合速率与气候因子的关系[J].植物学报,1993,35(8):611-618
    [85]许大全.光合作用“午睡”现象的生态、生理与生化[J].植物生理通讯,1990,(6):5-10
    [86]许大全,沈允钢.植物光合作用效率的日变化[J],植物生理学报,1997,23(4):410-416
    [87]苏培玺,杜明武,张立新,等.日光温室草4光合特性及对CO2浓度升高的响应[J].园艺学报,2002,29(5):423-426
    [88]路丙社,白志英,董源,等.阿月浑子光合特性及其影响因子的研究[J].园艺学报,1996,26(5):287-290
    [89]张大鹏,黄丛林,王学臣,等.葡萄叶片光合速率与量子效率日变化的研究及利用[J].植物学报,1995,37(1):23-25
    [90]Farquhar G·D, Sharkey T D. Stomatal conductance and photo synthesis. Ann RePlant Physiol,1982,33:317-345
    [91]QuartacciM F, Pinzino C, Cristina L M. Growth in excess copper induces changes in the lipid composition and fluidity pf PS Ⅱ-enriched membranes in wheat Physiologia Plantarum,2000,108:87-93
    [92]BasakM, ShamaM, ChakrabortyU. Biochemical responses of Camellia sinensis(L) O. Kuntze to heavy metal stress. J Enw iron Bio,l 2001,22(1):37-41
    [93]李荣春.Pb、Cd及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响[J].植物生态学报,2000,22(4):238-242
    [94][西德]W.拉夏埃尔.植物生理学[M].北京:科学出版社,1982
    [95]陈志澄、陈海珍,黄辉,等.铝对亚热带果树幼苗生长影响的模拟研究[J].农业环境科学学报,2005,24(增刊):34-37
    [96]Chapina, F. S., A. J. Bloom, C. B. Filed, and R. H. Waring, Plant responses to multiple environmental factors [J]. BioScience.1987,37:49-57
    [97]赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998,17(2):38-42
    [98]Field C. Allocating leaf nitrogen for the maximization of carbon gain:lea fage as a control on the allocatin program[J]. Oecologia.1989,56:341-34
    [99]Field C, Mooney H A. The photosynthesis-nitrogen relationship in wild plants. On the Economy of Form and Function [M] Ed. T J. Givnish. Cambridge Univ. Press. Cambridge, U. K.1986:25-55
    [100]Yoshida S, Coronel V. Nitrogen nutrition, leaf resistance, and leaf photosynthetic rate of the rice plant.Soil Sci. Plant. Nutr.1976,22 (2):207-211
    [101]Mitchell A K and Hinckley T M. Effects of foliar nitrogen concentration on photosynthesis and water use efficiency on Douglas-fir[J]. Tree physiology. 1993,12:403-410
    [102]曹翠玲,李生秀,苗芳.氮素对植物某些生理生化过程影响的研究进展[J].西北农业大学学报,1999,27(4):96-101
    [103]Linder S.林静芳摘译针叶树的光合作用和呼吸作用[J],林业文摘,1980,(2):1-3
    [104]张开明,黄苏珍,原海燕,等.铜污染的植物毒害、抗性机理及其植物修复[J].江苏环境科学,2005,18(1):4-9
    [105]丁海东,齐乃敏,朱为民,等.镉、锌胁迫对番茄幼苗生长及其脯氨酸与谷胱甘肽含量的影响[J].中国农业生态学报,2006,14(2):53-55
    [106]沈允刚,施教耐,许大全.动态光合作用[M].北京:科学出版社.1998
    [107]Shigesaburo Jsunoda.Photosynthesis efficiency in rice and wheat[J].Rice breeding(IRRI),1992,475-497
    [108]Eehide Monma,Shigesaburo Jsunod.Photosynthesis heterosis in maize[J].Japan J Breed.1997,29(2)159-165
    [109]BurzynskiM, KlobusG. Changes of photosynthetic parameters in cucumber leaves underCu, Cd, and Pb stress. Photosynthetica,2004,42(4): 505-510.
    [110]徐红霞,翁晓燕,毛伟华,等.镉胁迫对水稻光合、叶绿素荧光特性和能量分配的影响[J].中国水稻科学,2005,19(4):338-342
    [111]李德明,朱祝军,刘永华,等.镉对小白菜光合作用特性影响的研究[J].浙江大学学报(农业与生命科学版),2005,31(4):459-464
    [112]Truong P N V, Claridge J. Effects of heavy metals toxi cities on vetiver growth [J]. Vetiver Newsletter,1996,15:32-36
    [113]谷绪环,金春文,王永章,等.重金属Pb与Cd对苹果幼苗叶绿素含量和光合特性的影响[J].安徽农业科学,2008,3(24):10328-10337
    [114]略阳县志编纂委员会.略阳县志[M].西安:陕西人民出版社,1992:44-45
    [115]秦天才,阮捷,王腊娇.镉对植物光合作用的影响[J].环境科学与技术,2000,(增刊):33-35
    [116]王志香.重金属胁迫对三种木本植物影响的研究[D].北京:北京中国林业科学研究院,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700