紫茉莉对铅胁迫的响应及耐性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿业废弃地的治理和植被恢复是我国面临的紧迫任务之一,也是可持续发展战略优先关注的问题之一,而尾矿废弃地更是金属矿山最常见、最难恢复的矿业废弃弃地,还存在潜在的环境风险。植物稳定技术利用耐性植物的机械固定作用减轻风蚀和水蚀以及根系吸附和根际沉淀作用实现尾矿的长期稳定,降低重金属的生物有效性,是一种比较有前景的环境友好技术。在湖南湘潭和吉首等地矿区调查时发现紫茉莉具有生长迅速、生物量大、适应性强等特点,是一种较为理想修复重金属污染土壤的耐性植物。目前国内外关于紫茉莉在铅胁迫下生理生态响应的研究较少,因此,开展紫茉莉铅胁迫下生理生态响应和耐性机理的研究,将为其应用于重金属污染环境修复技术提供科学依据,进而推动金属矿业废弃地植物稳定技术的商业化应用。
     在大量野外调查的基础上,通过营养液培养实验,综合运用电感耦合等离子体原子发射光谱仪、显微成像系统、透射电子显微镜技术、傅里叶变换红外光谱分析技术等分析手段比较系统地研究不同浓度铅胁迫条件下紫茉莉生物量和器官组织的变化、矿质元素的吸收和累积、不同器官组织化学组分的变化规律,以期为铅污染场地植物稳定提供理论依据。通过研究,取得以下主要结果:
     1.紫茉莉不同器官组织对铅的吸收存在差异性,根系对铅的积累最强,其次是叶、茎。随着生长介质中铅浓度水平的升高,根、茎和叶组织铅含量呈增加态势。紫茉莉吸收的铅绝大部分都积累在植株的根系部位,向地上部分转移量非常少,不同铅处理条件下茎叶的转移系数均小于0.04。这既可降低铅向植株地上部分(茎、叶)的迁移、减轻铅对地上部分营养器官和生殖器官的毒害作用,又能将植株吸收铅固定在根系部位,降低Pb的生物有效性。
     2.不同铅处理条件下,紫茉莉根、茎和叶的大量营养元素含量变化不大,并未随生长介质中铅浓度水平的升高呈明显降低,甚至部分处理条件下出现一定程度的增加。Cu、Mn、Zn等微量元素在根、茎和叶等器官的含量均呈现出在较低铅处理浓度条件下逐渐升高,而在较高浓度铅处理水平下呈下降趋势。在紫茉莉的整个生命周期内,没有发现Ca、Mg、Fe等元素缺乏的现象,大量营养元素的稳态维持可能是紫茉莉对铅胁迫具有较强耐性的一种反馈机制。
     3.不同铅处理条件下,紫茉莉均能正常生长,即使在生长介质铅含量高达到1000μmol·L~(-1)时,紫茉莉仍然能够完成整个生命周期,生物量与对照植株相比没有显著差异。在200μmol·L~(-1)铅胁迫条件下紫茉莉的根部组织结构与对照相比无显著差异;当铅含量达到1000μmol·L~(-1)时植株的根部疏导组织虽然出现了一定程度的减少,但是表皮、皮层、中柱维管组织未发生明显变化,而叶片组织结构基本没有受到影响。这表明紫茉莉有较强的铅耐性,使其有应用植物稳定技术修复铅污染环境的潜力。
     4.傅立叶变换红外光谱分析研究发现,紫茉莉根部某些羧酸、糖类、蛋白质、氨基酸等物质含量出现波动,在中低浓度铅处理下升高,在高浓度下下降,如在2920cm~(-1)处羧酸的峰高在200μmol·L~(-1)铅处理前上升,在500μmol·L~(-1)开始下降。这些物质能够螯合和络合重金属,降低重金属在植物体内活性,可以明显增强植物对重金属的耐性。在不同铅处理水平条件下,紫茉莉茎和叶中羧酸、糖类、蛋白质、氨基酸等物质含量差异不显著,这可能是由于紫茉莉吸收的铅主要集中在根系部位,向植株地上部分(茎、叶)转移少的缘故。
Environmental management and rehabilitation of mine wasteland is one of the pressing needs to be addressed for social and economic development to be healthy and sustainable in China. Tailing wasteland from metalliferous mines often poses the extreme stressful conditions and is tougher for ecological restoration. As a newly emerged environment -friendly technology, phytostabilization is defined as the use of metal -tolerant plant species to reduce the mobility and bioavailability of heavy metals in the substrates either by immobilization or by prevention of migration. Compared with traditional methods, phytostabilization is a cost-effective and environment-friendly technology. Mirabilis jalapa Linn is a plant found in Xiangtan and Jishou tailing wasteland. There are less researches on the toxicity and the tolerance machanisms of M. jalapa to lead up to now. And this would restrain its application on phytostabilization.
     To elucidate systematically the changing of biomass and organs tissue structure, the uptake and accumulation of mineral elements and the alteration of chemistry components in M. jalapa organs to different lead stress, hydroponic experiment were applied in this study based on a lot of field survey by means of a series of instrumentations, such as Inductively -coupled plasma optical emission spectroscopy (ICP-OES), Transmission Electron Microscope (TEM), paraffin- embedded tissue slice and Fourier transform infrared(FTIR). The major results obtained are as follows:
     1. The distribution of lead among roots, stems and leaves in M. jalapa is different. The ICP-OES analysis revealed that the levels of Pb in roots,stems and leaves of the plants increased while the concentration of Pb~(2+) increasing in the culture solution. The results showed that Pb distribution sequence is: roots > leaves > stems.And most of Pb was accumulated in roots, few Pb was transferred in shoots, meanwhile the translocation factor<0.04. This could be one of Pb defense mechanisms employed by M. jalapa. The results indicated that M. jalapa could alleviate toxic effect on vegetative organs and reproductive organs by low transportation ability of Pb from roots to shoots and also reduce the bioavailability of Pb by the Pb immobilization in roots.
     2. In the present work, there existed no significant effects of Pb stress on the concentration of Macronutrients such as Ca、Mg、Fe in different organs of M.jalapa. These elements were not decreasing evidently while the concentration of Pb~(2+) increasing in the culture solution,but increasing in some treatment. The uptake and accumulation of trace elements Cu、Mn、Zn in M. jalapa was researched. All the result showed that the concentrations of Cu、Mn、Zn was rising under the low Pb stress and decreasing under high Pb stress. Macronutrients such as Ca、Mg、Fe was enough in M. jalapa during the whole growth cycle. The homeostasis of macronutrients maintained may revealed that M. jalapa had the strong resistance to Pb stress.
     3. In our study, the biomass of M. jalapa had no significant differences between all rates. The results showed that plant grew normally and did not show any symptoms of lead toxicity during the period of treatment even at 1000μmol·L~(-1) Pb in the growth medium. There were no significant differences between 200μmol·L~(-1) Pb treatment and control plants in M. jalapa roots anatomize tissue structure. Meanwhile, the trachea of root was significant decreasing under 1000μmol·L~(-1) Pb stress, but the structure of epidermis cells, cortical cells and fibrovascular tissue maintained complete. And the tissue structure of leaf was not effected even the Pb treatment reached 1000μmol·L~(-1) basically. Therefore, there is great potential for using M.jalapa in the application of phytostabilization for lead contaminated mining wasteland because of its strong Pb tolerance.
     4. The FTIR of M. jalapa showed the chemical composition such as organic acids, carbohydrate, protein and amino acids was effected by the Pb stress in roots. The absorbance of the dominating bands near 3420, 2920, 1610, 1060 cm~(-1) which correspond to organic acids, carbohydrate, protein and amino acids rose firstly and then decreased in root tissues. These material could reduce the availability and toxicity of heavy metal by chelation and strengthen the tolerance to heavy metal. But M. jalapa did not show obvious changes in leaves and stems because less Pb was transported into shoot tissues in all treatments. This could be a kind of feedback mechanism of Mirabilis jalapa Linn under Pb stress.
引文
[1]中华人民共和国国土资源部.2007.中国地质环境公报(2006)
    [2]中华人民共和国国家环境保护总局.2007.中国环境状况公报(2006)
    [3]蔡嗣经,杨鹏.金属矿山尾矿问题及其综合利用与治理[J].中国工程科学,2000,2(4):89-92
    [4]方晰,田大伦,谢荣秀.湘潭锰矿矿渣废弃地植被修复前的土壤诊断[J].生态学报,2006,26(5):1494-1501
    [5]闫文德,田大伦.湘潭锰矿废弃地土壤酶活性与重金属含量的关系[J].中南林学院学报,2006,26(3):1-3
    [6]韩怀芬,黄玉柱,金漫彤.铬渣的固化/稳定化研究[J].环境污染与防治,2002,24(4):199-200
    [7]薛永杰,朱书景,候浩波.石灰粉煤灰固化重金属污染土壤的试验研究[J].科学研究,2007,46(3):10-12
    [8]王显海.重金属污染土壤化学萃取技术研究:[硕士学位论文].长沙:湖南大学,2007
    [9]Reeves R.D.Metal-accumulating plants.Phytoremediation of toxic metals:using plants to clean up the environment[M].N.Y.:John Wiley&Sons,Inc,2000:193-229
    [10]Mark C S,and John P.Ex-situ remediation of a metal-contaminated super-fund soil using selective extractants.J.Environ.Eng.,1998,124(7):639-645
    [11]Connick C C,Mitigation of heavy metal migration in soil[J].New Engineering,Water Pollution Control Assoc,1985,19(1):4-21
    [12]Wasay S A,Barrington S F and Tokunaga S.Remediation of soils polluted by heavy metal using salts of organic acids and chelating agents[J].Environ.Technol.,1998,19(3):369-380
    [13]Kos B,Lestan D.In.uence of a biodegradable([S,S]EDDS) and nondegrad -able(EDTA) chelate and hydrogen modified soil water sorptioncapacity on Pb phytoextraction and leaching[J].Plant Soil,2003,253:403-411
    [14]刘模平.土壤电动修复技术一种新工艺及其去除红壤中铜的研究:[硕士学位论文].长沙:湖南大学,2007
    [15]Acar Y B,Alshawabkeh A N.Principle.of electrokinetic remediation[J].Environmental Science & Technology,1993,27(13):2638-2647
    [16]王慧,马建伟,范向宇,等.重金属污染土壤的电动原位修复技术研究[J].生态环境 2007,16(1):223-227
    [17]Morimoto K.Tatsumi,et al,Peroxides catalyzed co-polymerization of penta-chlotophenol and a potential humicprecursor[J].Biology&Biochemistry,2000,32(5):1071-1077
    [18]马建伟,王慧,罗启仕.电动力学-新型竹炭联合作用下土壤镉的迁移吸附及其机理[J].环境科学,2007,28(8):1830-1835
    [19]Macaskie LE,Dean ACR,Cheethan AK,Jakeman RJB,Skarnulis AJ.Cadmium accumulation by a citrobacter sp.;The chemical nature of the accumulated metal precipitate and its location on the bacterial cells[J].J Gen.Microbiol.,1987,133:539-544
    [20]王瑞兴,钱春香,吴淼,成亮.微生物矿化固结土壤中重金属研究[J].功能材料,2007,9(38):1523-1530
    [21]Wong MH.Ecological restoration of mine degraded soils,with emphasis on metal contaminated soils[J].Chemosphere,2003,50:775-780
    [22]Schwegler F.Air quality management:a mining perspective.In:Longhurst JWS &BrebbiaCA(Eds) Air Pollution ⅩⅣ,WIT Transactions on Ecology and the Environment,WIT Press,Southampton,UK 2006,86:205-212
    [23]Gonzalez RC & Gonzalez-Chavez MCA.Metal accumulation in wild plants surrounding mining wastes:Soil and Sediment Remediation(SSR)[J].Environmental Pollution,2006,144:84-92
    [24]Wilfried H.O.Ernst.Phytoextraction of mine wastes-Options and impossibili-ties[J].Chemieder Erde.2005,(65)1:29-42
    [25]Chaney R L.Plant up take of inorganic waste constituentes.In:Parr J F,eds Land Treatment of Hazardous Wastes.Park Ridge:Noyes Data Corporation,New Jersey,USA,1983.50-76
    [26]Baker AJM,McGrath SP,Sidoli,et al.The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants.Resources[J].Conservation and Recycling,1994,11:41-49
    [27]Robisnon BH,Brooks RR,Howes AW,et al.The potential of high-biomass Ni hyperaccumulator Berkheya coddii for phytoremediation and phytomining[J].Journal of Geochemical Exploration,1997,60:115-126
    [28]陈同斌,韦朝阳.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3):207-210
    [29]龙新宪.东南景天(Sedum alfredii)对锌的耐性和超积累机制研究:[硕士学位论文].杭州:浙江大学,2002
    [30]薛生国,陈英旭,林琦,徐圣友,王远鹏.中国首次发现的锰超积累植物-商陆[J].生态学报,2003,23(5):935-937
    [31]Ute Kramer.Phytoremediation:novel approaches to cleaning up polluted soils[J].Current Opinion in Biotechnology 2005,16:133-141
    [32]Lotte Van Nevel,et al.Phytoextraction of metals from soils:How far from practice?[J].Environmental Pollution,2007,5(24):1-7
    [33]Elizabeth Pilon-Smits.Phytoremediation[J].Annu.Rev.Plant Biol.2005.56:15-39
    [34]薛生国.湘潭锰矿矿业废弃地生态恢复技术试验研究:[硕士学位论文].株洲:中南林学院,2002
    [35]Tang SR & Fang YH.Copper accumulation by Polygonum microcephalum D.Don and Rumex hastatus D.Don from copper mining spoils in Yunnan Province,P.R.China[J].Environment Geology,2001,40:902-907
    [36]Conesa HM,Faz A & Arnaldos R.Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district (SE Spain)[J].Science of the Total Environment,2006,366:1-11
    [37]Xue SG,Chen YX,Reeves RD,et al.Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb.(Phytolaccaceae)[J].Environmental Pollution,2004,131(3):393-399
    [38]Rizzi L,Petruzzelli G & Poggio G.,et al.Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization[J].Chemos-phere,2004,57:1039-1046
    [39]Rio-Celestino MD,Font R,Moreno-Rojas R,et al.Uptake of lead and zinc by wild plants growing on contaminated soils[J].Industrial Crops and Products,2006,24:230-237
    [40]E Remon,JL Bouchardon,B Cornier,et al.Soil characteristics,heavy metal availability and vegetation recovery at a former metallurgical landfill[J].Environmental Pollution,2005,137:316-323
    [41]Conesa HM,Faz A & Arnaldos R.Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District(SE Spain)[J]. Chemosphere,2007,66:38-44
    [42]Simon L.Stabilization of metals in acidic mine spoil with amendments and red fescue(Festuca rubra L.) growth[J].Environmental Geochemistry and Health,2005,27:289-300
    [43]Chiu KK,Ye ZH & Wong MH.Growth of Vetiveria zizanioides and Phrangmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge:A greenhouse study[J].Bioresource Technology,2006,97:158-170
    [44]Mendez MO,Glenn EP & Maier RM.Phytostabilization potential of quailbush for mine tailings:growth,metal accumulation,and microbial community changes[J].Journal of Environmetal Quality,2007,36:245-253
    [45]Kumpiene J,Lagerkvist A & Maurice C.Stabilization of Pb and Cu contami-nated soil using coal fly ash and peat[J].Environmental Pollution,2007,145:365-373
    [46]Kurate J,Lagerkvist A & Maurice C.Stabilization of As,Cr,Cu,Pb and Zn in soil using amendments-A review[J].Waste Management,2007,345-384
    [47]Ruttens A,Colpaert JV,Mench M.Phytostabilization of a metal contaminated sandy soil:Ⅱ Influence of compost and orinorganic metal immobilizing soil amendments on metal leaching[J].Environmental Pollution,2006,144:533539
    [48]Ye ZH,Yang ZY,Chan GYS,Wong MH.Growth response of Sesbania rostrata and S cannabina.to sludge-amended lead/zinc mine tailings:a green-house study[J].Environment International,2006,26:449-554
    [49]Louie M,Kondor N,DeWitt J.G..Gene expression in cadmium-tolerant Datura innoxia:detection and characterization of cDNAs induced in response to Cd~(2+) Plant[J].Molecular Biology,2003,52,81-89
    [50]张玉秀,柴团耀,李军超.DnaJ-like基因在不同环境胁迫下的表达研究[J].西北植物学报,2000,20(2):171-174
    [51]Tordoff GM,Baker AJM & Willis AJ.Current approaches to the revegetation and reclamation of metalliferous mine wastes[J].Chemosphere,2000,41:219-228
    [52]Newson TA & Fahey M.Measurement of evaporation from saline railings storages:Third British Geotechnical Society Geoenvironmental Engineering Conference[J].Eng Geol,2003,70:217-233
    [53]Schwegler F.Air quality management:a mining perspective.In:Longhurst JWS &Brebbia CA(Eds) Air Pollution ⅩⅣ,WIT Transactions on Ecology and the Environment,2006,86:205-212
    [54]Ford KL&Walker M.Abandoned mine waste repositories:site selection,design,and cost.Technical Note 410.Bureau of Land Management,U.S.Department of Interior,2003
    [55]Wong MH.Ecological restoration of mine degraded soils,with emphasis on metal contaminated soils[J].Chemosphere,2003,50:775-780
    [56]马文丽,金小弟,王转花.铅胁迫对乌麦种子萌发及幼苗生长的影响[J].山西大学学报(自然科学版),2004,27(2):202-204
    [57]王慧忠,何翠屏,赵楠.铅对草坪植物生物量与叶绿素水平的影响[J].草业科学,2003,20(6):73-75
    [58]Liu DH,Jiang WS,Wang W,Zhao FM,Lu C.Effects of lead on root growth,cell division,and nucleolus of Allium cepa[J].Environment Pollution,1994,86:1-4
    [59]Patra J,Lenka M,Panda BB.1994.Tolerance and co-tolerance of the grass Chloris barlata Sw.to tercury,cadmium and zinc[J].New Phytol.,128:165-171
    [60]安志装,陈同斌,雷梅,肖细元,廖晓勇.蜈蚣草耐铅、铜、锌毒性和修复能力的研究[J].生态学报,2003,23(12):2594-2598
    [61]任安芝,高玉葆.铅、镉、铬单一和复合污染对青菜种子萌发的生物学效应[J].生态学杂志,2000,19(1):19-22
    [62]孙兆海,郑春荣,周东美,等.土壤铅污染对青菜和蕹菜生长及脲酶活性的影响[J].农村生态环境,2005,21(1):38-43
    [63]郑春荣,孙兆海,周东美,等.土壤Pb、Cd污染的植物效应Ⅰ-Pb污染对水稻生长和Pb含量的影响[J].农业环境科学学报,2004,23(3):417-421
    [64]周启星,宋玉芳著.污染土壤修复原理与方法[M].科学出版社,2004
    [65]于拴仓,刘立功.Cd,Pb及其相互作用对对3种主要蔬菜胚根伸长的影响[J].种子,2005,24(1):61-63
    [66]Vallee B I.Biochemical effects of mercury,cadmium and lead[J].Annu Rev Biochem.1972,41:91-98
    [67]Klobus q Buczek J.Chlorophyll content,cells and chloroplast number and cadmium distribution in Cd-treated cucumber plants[J].Acta Physiologiae Plantarum.1985,7(3):139-147
    [68]Sinha SK,Srivastava HS,Tripathi RD.Infuence of some growth regulators and canons on the inhibition of chlorophyll biosynthesis by lead in maize[J].Bull Environ Contam Toxicol,1993,51:241-246
    [69]Miranda Mq Hangovan K.Uptake of lead by Lemna gibba L.;influence on specific growth rate and basic biochemical changes[J].Bul Environ Contami Toxi,1996,56:1000-1007
    [70]Alberte RS,Thomber J P,Fiscus EL.Water stress effects on the content and organization of chlorophyll in Mesophyll and bundle sheach chlorlplasts of maize[J].Plant Physiol,1977,59:351-353
    [71]Somashekaraiah BV,Padmajaes K,Prasad RK.Phytotoxicity of cadmium ions on germination seedings of mung bean(Phaseol usv ulgarize);Involvement of lipid peroxides in chlorophyll degradation[J].Physiol Plant,1992,65:85-89
    [72]Prasad DDK,Prasad ARK.Effect of lead and mercury on chlorophy synthesis in mung bean seedlings[J].Phytochemistry,1987,26:881-883
    [73]Kupper H,Kupper F,Spiller M.Environmental relevance of heavy metalsubsti-tuted chlorophylls using the example of water plants[J].Exp Bot.,1996,47:259-266
    [74]徐勤松,施国新,杜开和,郝怀庆.Zn诱导的范草叶抗氧化酶活性的变化和超微结构损伤[J].植物研究,2001,21(4):569-573
    [75]张义贤.重金属对Hordeum vulgare的毒性.环境科学学报,1997:17(2):199-211
    [76]彭鸣,王焕校,吴玉树.福、铅诱导的玉米(Zea mays L.)幼苗细胞超微结构的变化[J].中国坏境科学,1991,11(6):426-431
    [77]Kastori R,Plesniear M,Sakae Z,Pankovie D,Arsenijevie-maksimovie I.Effect of excess lead on sunflower growth and photosynthesis[J],plant Nutrition,1998,21(1):75-85
    [78]魏海英,方炎明,尹增芳等.Pb,Cd单一及复合污染对弯叶灰藓某些生理特性的影响[J].广西植物,2003,23(1):69-72
    [79]Vadim,Anatoliy,Vladimin.The effect of Cu~(2+) on iron transport system of the plant cell plasmalemma[J].Plant Physiol,1997,114:1313-1325
    [80]Koeppe DE.Lead;understanding the minimal toxic of lead in plants.In;Lepp NW(ed).Effect of Heavy Metal Pollution on Plants.London,New Jersey;App Sci Pub,1981,14:55-57
    [81]毛学文,王戈博.氯化铅对豌豆根尖细胞微核和异常分裂的作用[J].植物生理学通讯,2001,37(5):406-408
    [82]李荣春.Pb-Cd及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响[J].植物生态学报,2000,22(4):238-242.
    [83]李合生主编.现代植物生理[M].北京:高等教育出版社,2002
    [84]Kavi Kishor P B,Hong Z L,Miao G H,et al.Overesperssion of I-pyrroline -carboxylate synthetase incrases praline production and confers osmotoleran -ce in transgenic plants[J].Plant Physoil,1995,108:1387-1394
    [85]郭平,刘畅,张海博,宋晓娟,包国章.向日葵幼苗对Pb、Cu富集能力与耐受性研究[J].水土保持学报,2007,21(6):92-113
    [86]张义贤,李晓科.镉、铅及其复合污染对大麦幼苗部分生理指标的影响[J].植物研究,2008,28(1):43-48
    [87]任安芝,高玉葆,刘爽.铬、锅、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112-116
    [88]Van Assche F,Clijsters H(1990).Effects of metal on enzyme activity in plants[J].Plant Cell Environ,13:195 206
    [89]江行玉,赵可夫.Pb污染下芦苇体内Pb的分布和Pb胁迫相关蛋白[J].植物生理与分子生物学学报,2002,28(03):169-174
    [90]Chai TY,Didierjean L,Burkard G,Genot G.Expression of a green tissue-specific 11 kDa proline-rich protein gene in bean in response to heavy metals[J].Plant Sci,1998,133:47-56
    [91]Chai TY,Zhang YX,Burkard G.Heavy metal responsive genes in kidney bean:cloning of cDNA and gene expression analysis[J].Acta Phytophysiol Sin,1998,24(4):399-404
    [92]Didierjean L,Frendo P,Nasser W,Genot G,Marivet J,Burkard G.Heavy-metal-responsive genes inmaize:identification and comparison of their expression upon various forms of abiotic stress[J].Planta,1996,199:1-8
    [93]徐勤松,施国新,周红卫,等.Cd、Zn复合污染对水车前叶绿素含量和活性氢清除系统的影响[J].生态学杂志,2003,22(1):5-8
    [94]张敏.Pb、Cd污染胁迫对四种藓类植物生长发育的影响:[硕士学位论文].南京:南京林业大学,2005
    [95]Huang YS,Luo OH,Kwan KM..Peroxidation damage of oxygen free radicals induced by cadmium to plant[J].Acta.Bot.Sin.1997,39:522-526
    [96]Korlcheva J,Roy S,Vralljlc JA,et al..Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings[J].Environ.Poll.,1997,95:249-258
    [97]Alavala M R,Surabhi G K.Gottimukkala J,et al.Lead induces changes in antioxidant metabolism of horsegram and bengalgram(Cicer arietinum L.)[J].Chemosphere,2005,60:97-401
    [98]严重玲,洪业汤.Cd、Pb胁迫对烟草叶片中活性氧清除系统的影响[J].生态学报,1997,17(5):488-492
    [99]严重玲,钟章成.土壤中Pb、Hg及其交互作用对烟草叶片抗氧化酶的影响[J].环境科学学报,1997,17(4):469-473
    [100]周长芳,吴国荣,陆长梅,等.铅污染对钝顶螺旋藻生长及某些生理性状的影响[J].湖泊科学,1999,11(2):135-140
    [101]Baker AJM.Metal tolerance[J].New Phytol.1987,106:93-111
    [102]何冰,叶海波,杨肖娥.铅胁迫下不同生态型东南景天叶片抗氧化酶活性及叶绿素含量比较[J].农业环境科学学报,2003,22(3):274-278
    [103]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99
    [104]杨仁斌,曾清如.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应[J].农业坏境保护,2000,19(3):152-155
    [105]Tater E,Mihucz VG,Varga A,et al.Determination of organic acids in xylem sap of cucumber;Effect of lead contamination[J].Microchem.J.1998,58:306-314
    [106]Pawlik Skowronska B.Relationship between acid-soluble thiol peptidesand accumulated Pb in the green alga Stichococcus bacillaris[J].Aquatic Toxicol.2000,50:221-230
    [107]罗春玲,沈振国.植物对重金属的吸收和分布[J].植物学通报,2003,20(1):59-66
    [108]杨居荣,鲍子平,张素芹.镉铅在植物体内的分布及其可溶性结合形念[J].中国环境科学,1993,13(4):263-268
    [109]徐勤松,施国新,王学,丁秉中,陈苏雅,许丙军,赵娟.铅(Pb)存凤眼莲(Eichhornia Crassipes Solms)体细胞中分布的电镜观察[J].南京师大学报,2006,29(3):81-85
    [110]谭万能,李志安,邹碧.植物对重金属耐性的分子生态机理[J].植物生态学报,2006,30(4):703-712
    [111]刘小梅,吴启堂,李秉滔.超富集植物治理重金属污染土壤研究进展[J]. 农业环境科学学报,2003,22(5):636-640
    [112]李铉,郝守进,刘颖,等.金属硫蛋白的α、β结构域与铅结合形式及稳定性的研究[J].卫生研究,2001,30(4):198-200
    [113]贺卫国,褚德萤.一种新型结构的金属硫蛋白-Pb2MT'[J].高等学校化学学报,1999,20:248-250
    [114]Salt D E,Rauser W E.Mg ATP-dependent transport of phytochelatins across the tonoplast of oat roots[J].Plant Physiol.1995,107:1293-1301
    [115]Salt D E,Prince R C,Picketing I J,et al.Mechanisms of cadmium mobility and accumulation in Indian mustard[J].Plant Physiol,1995,109:1427-1433
    [116]Barbara Pawlik-Skowronska.Relationships between acid-soluble thiol peptid-es and accumu-lated Pb in the green alga Stichococcus bacillaris[J].Aquatic Toxicology,2000,50:221-230
    [117]Gupta M,Rai NU,Tripathi DR,et al.Lead induced changes in glutathione and phyto-chelatin in Hydrilla verticillata(L.f.) Royle[J].Chemosphere,1995,30(10):2011-2020
    [118]Freeman JL,Persans MW,Nieman K,Albrecht C,Peer W,Picketing IJ,Salt DE.Increased glu tathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators[J].Plant Cell,2004,16:2176 2191
    [119]李双姣,马陶武,姜业芳,刘应迪,李菁.铅胁迫对3种藓类植物抗氧化酶活性的影响[J].西北植物学报,2007,27(10):2035-2040
    [120]杨仁斌,曾清如.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应[J].农业环境保护,2000,19(3):152-155对3种藓类植物抗氧化酶活性的影响[J].西北植物学报,2007,27(10):2035-2040
    [121]孙健,铁柏清,钱湛,等.Cu、Cd、Pb、Zn、As复合污染对灯心草的生理毒性效应[J].土壤(Soils),2007,39(2):279-285
    [122]张凤琴,王友绍,殷建平,董俊德.红树植物抗重金属污染研究进展[J].云南植物研究,2005,27(3):225-231
    [123]Zhao ZQ,Cui YJ,Zhu YG.Effect of mycorrhiza and roots exudates on resistance of plants to heavy metals[J].Chinese Journal of Ecology,2003,22(1):81-84
    [124]Tater E,Mihucz VG,Varga A,et al.Determination of organic acids in xylem sap of cucumber;Effect of lead contamination[J].Microchem.J,1998,58:306-314
    [125]李玉红,宗良纲,黄耀,等.不同有机酸对水稻吸收铅的影响[J].南京农 业大学学报,2002,25(3):45-48
    [126]Jentschke G,Goldbold DL.Metal toxicity and ectomycorrhizas[J].Physiologia Plantarum,2000,107:107-116
    [127]Chen B D,Roos P,Borggaard O K,et al.Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock butmy -corrhiza decreases root to shoot uranium transfer[J].New Phytol,2005,165:591-598
    [128]Chen B D,Jakobsen I,Roos P,et al.Effects of the mycorrhizal fungus Glom us intraradices on uranium up take and accumulation by M edicagotruncatula L.from uranium contaminated soil[J].Plant Soil,2005,275:349-359
    [129]Chen B D,Zhu Y G,Smith F A.Effects of arbuscularmycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern(Pterisvittata L.)from a uranium mining impacted soil[J].Chemosphere,2006,62:1464-1473
    [130]王红新,郭绍义,许信旺,胡和兵.接种丛枝菌根对复垦矿区玉米中重金属含量的影响[J].农业环境科学学报,2007,26(4):1333-1337
    [131]Fayiga A O,Ma L Q,Cao X D,et al.Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L.[J].Environmental Pllution,2004,132(2):289-296
    [132]Liu D,Jiang W,Liu C.Uptake and accumulation of lead by roots,hypocotyls and shoots of Indian mustard(Brassica juncea)[J].BioresoureTechnology,2000,71(3):273-277
    [133]陈柳燕,张黎明,李福燕,等.剑麻对重金属Pb的吸收特性与累积规律初探[J].农业环境科学学,2007,26(5):1879-1883
    [134]朱宇林.银杏对锡、铅及其复合污染的生理响应与杭性研究:[博士学位论文].南京:南京林业大学,2006
    [135]Jones JB Jr 1998 Plant Nutrition Manual.CRC Press,Boca Raton,FL,USA.
    [136]Jones JB Jr Plant tissue analysis in micronutrients.In Mortvedt,J.J.,Cox,F.R.,Shuman,L.M.and Welch,R.M(Eds.) Micronutrients in Agricul-ture,[J].Soil Science Society of America,Inc.,Madison,WI,USA.pp.1991,477-521
    [137]王慧忠,何翠屏,赵楠.铅对草坪植物生物量与叶绿素水平的影响[J].草业科学,2003,20(6):73-75
    [138]倪才英,陈英旭,骆永明,田光明.紫云英(Astragalus siniucus L.)对重金属胁迫的响应[J].中国环境科学,2003,23(5):503-508
    [139]李永丽,刘云国,李欣,李硕,王显海.东方香蒲对铅的富集特征及其 EDTA效应分析[J].生态环境,2005,14(4):555-558
    [140]徐向华.超积累植物商陆吸收累积锰机理研究:[博士学位论文].杭州:浙江大学,2006
    [141]Brown S,Chaney R,Hallfrisch J,et al.In situ soil treatments to reduce the phyto-and-bioavailability of lead,zinc,and cadmium[J].Journal of Environ-mental Quality,2004,33(2):522-531
    [142]LU Yong-quan,DENG Zhen-hua(卢涌泉,邓振华).Practical Analysis of Infrared Spectrum(实用红外光谱解析).Beijing;Electronics Industry Press (北京:电子工业出版社),1987
    [143]迟光宇,刘新会,刘素红,等.Cu污染与小麦特征光谱相关关系研究[J].光谱学与光谱分析,2006,26(07):1272-1276
    [144]陈思宁,刘新会,侯娟,等.重金属锌胁迫的白菜叶片光谱响应研究[J].光谱学与光谱分析,2007,27(9):1797-1810
    [145]任立民,成则丰,刘鹏,等.美洲商陆对锰毒生理响应的FTIR研究[J].光谱学与光谱分析,2008,28(3):582-585
    [146]Didierjean L,Frendo P,Nasser W,Genot G;Marivet J,Burkard G(1996).Heavy metal responsive genes in maize;identification and comparison of their expression upon various forms of abiotic stress[J].Planta,199:1-8
    [147]Chen,J.,Goldsbrough,P.B.,1994.Increased activity of y-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance[J].Plant Physiology,106:233-239.
    [148]Lagriffoul,A.,Mocquot,B.,Mench,M.,Vangronsveld,J.,1998.Cadmium toxicity effects on growth,mineral and chlorophyll contents,and activities of stress related enzymes in young maize plants(Zea mat's L.)[J].Plant and Soil,200:241-250.
    [149]傅开斌,刘红权,董召荣.Cu~(2+),Mn~(2+),Mg~(2+)胁迫对小麦种子发芽状况的影响[J].安徽农学通报,2003,9(5):55-56
    [150]郑春荣,陈怀满.Pb对植物的影响作用.土壤—植物系统中的重金属污染[M].北京,科学出版社,1996:238-247
    [151]龙新宪,王艳红,刘洪彦.不同生态型东南景天对土壤中Cd的生长反应及吸收积累的差异性[J].植物生态学报,2008,32(1):168-175
    [152]司江英.玉米(Zea mays L.)对铜胁迫的响应:[博士学位论文].扬州:扬州大学,2007
    [153]徐根娣,孙文良,刘鹏,陈呤子,龚春风.美洲商陆营养器官的解剖结构 与其耐锰的关系[J].浙江师范大学学报,2008,31(4):452-456
    [154]陈桂珠,郑瑛,蓝崇钰.宽叶香蒲对铅锌的吸收、积累和迁移规律研究[J].中山大学学报,1993,32(1):87-93
    [155]陈桂珠,胡迪琴,蓝崇钰.净化污水植物香蒲形态解剖特征的比较研究[J].植物学通报,1989,6(4):240-244
    [156]孙瑞莲,周启星.高等植物重金属耐性与超积累特性及其分子机理研究[J].植物生态学报,2005,29(3):497-504
    [157]谭万能,李志安,邹碧.植物对重金属耐性的分子生态机理[J].植物生态学报,2006,30(4):703-712

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700