湘潭锰矿废弃地土壤退化及其植被恢复的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿产资源开发和利用而形成的矿业废弃地所带来的一系列生态、社会及经济等问题己成为环境与发展的焦点。本研究从土壤生态学和恢复生态学的角度评价了矿渣废弃地退化生态系统土壤的特征;并再比较恢复植被根系旁的土壤与未经人工改良的矿渣废弃地的土壤理化性质的差异、恢复植被与无重金属污染的植被吸收重金属含量差异的基础上,探讨植被恢复对土壤改良效果及其对重金属富集情况,得出以下结论。
     通过对湘潭锰矿矿渣废弃地土壤样品进行分析,该矿渣废弃地土壤的基本理化性质如下:(1) 矿渣废弃地土壤以少石质粗砂土为主。(2) 矿渣废弃地土壤自然含水量、土壤密度和孔隙度分别为:17.79%、1.44g/cm~3、45.24%。(3) pH值为7.49,土壤呈中性,矿渣废弃地土壤有机质、N、P、K、Ca和Mg的平均含量分别为(g/kg):、18.68、1.37、1.01、4.41、14.97和3.79。(4) 矿渣废弃地土壤的Mn、Cu、Pb、Cd、Zn、Ni的平均含量分别为(mg/kg):77990.21、66.38、401.15、640.32、13.15和91.33,大小排序为:Mn>Zn>Pb>Ni>Cu>Cd。矿渣废弃地土壤Mn、Cu、Cd、Ni、Zn、Pb的平均含量比对照地高出18.59、1.32、4.10、4.66、4.44和3.16倍。
     通过土壤资源评价,植被恢复之前矿渣废弃地的土壤肥力综合指数为8,对照有林地的为12。限制矿渣废弃地土壤肥力的主要因子是土壤的机械组成和土壤养分。用三种不同的背景值对废弃地土壤重金属污染程度的评价结果是一致的,6种重金属元素的单项污染指数均大于2,表示被污染,其中以Mn、Pb、Cd污染最为严重;6种重金属元素的综合污染指数均大于3,达5级,为重污染。因此在进行植被恢复时,进行土壤基质改良,改善土壤结构,同时添加营养物质和选择对重金属具有耐性和富集能力的植物进行生态恢复。
     恢复植被根系旁(恢复植被栾树和杜英根系旁的土壤)的土壤密度和土壤孔隙度与矿渣废弃地(植被恢复过程中未经人工改良的矿渣废弃地土壤)和对照地(邻近非矿区废弃地杉木林林地土壤)存在显著差异,说明人工松土措施降低了土壤密度,增加了土壤孔隙度,改善了土壤结构;矿渣废弃地和恢复植被根系旁的土壤pH值、N、P和Ca的平均含量与对照地差异显著,而恢复植被根系旁土壤的各指标的含量与矿渣废弃地差异均不显著,说明植被恢复时间短,对土壤的化学性质改善不明显;土壤中各重金属元素的平均含量大小排序规律一致,都是矿渣废弃地>恢复植被根系旁>对照地,除Cu和Ni外,恢复植被根系旁和对照地土壤中的Mn、Pb、zn、Cd的平均含量与矿渣废弃地均存在显著差异。说明进行植被恢复和土壤基质改良后,恢复植
A series of ecology, society and economy issues from the discards of mine developing and utilizing has already become the focus of environment and development. According to the angle of soil ecology and restoration ecology, the characteristics of degeneration ecosystem on the slag wastelands have described. And then, the difference of soil physical and chemical properties between soil in the vicinity of root of re-vegetation and the slag wasteland are compared. More over the difference on accumulating amount of heavy metals between re-vegetation and the tree without polluted was studied too. The main results of research are as follows:The soil characteristic was investigated and analyzed in the slag wasteland of Xiangtan Manganese Mine. The basic physical and chemical properties of the tailing wastelands were as following: (1) The soil texture in the slag wasteland is mainly sandy soil with a little stone. (2)The soil moisture , soil bulk density and total capillary of slag wasteland is 17.79%、1.44g/cm~3、 45.24% respectively. (3) Soil pH is 7.49 in the slag wasteland. The average contents (g/kg) of organic matter, total N, total P, total K, total Ca and total Mg in the slag wasteland are 18.683, 1.37, 1.01, 4.41, 14.97 and 3.79 respectively. (4)The average contents (mg/kg) of Mn, Cu, Pb, Zn ,Cd, Ni in soil collected from the slag wasteland of Xiangtan Manganese Mine are 77990.21、66.38、 401.15、 640.32、 13.15 and 91.33 respectively. The average contents of heavy metals in soil collected from the slag wasteland in the following order: Mn>Zn>Pb>Ni>Cu>Cd. The content of Mn, Cu, Pb, Zn ,Cd and Ni are 18.59、1.32、4.10、 4.66、 4.44 and 3.16 times of the contrasting area respectively.Before the re-vegetation, the soil fertility composite index of slag wasteland is 8 and the contrasting area is 12 by assessment on the soil resource. The main factors that influence the soil fertility are soil disposition and soil nutrient. Individual event pollution index of 6 kinds of heavy metals by three different background values are all greater than 2, which shows the soil has been contaminated, and Mn, Pb, Cd are the most serious among these heavy metals. And the comprehensive pollution index are all greater than 3, which shows the pollution grade of the soil reaches five grade heavy pollution. So soil
    amelioration and the selection of tolerant species are applied in the process of the re-vegetationConcerned on the soil density.and soil total capillary, there are remarkable difference between soil in the vicinity of root of re-vegetation and contrasting area and slag wasteland. It indicated that loosen the soil has reduced the soil density, increased the soil total capillary and improved the soil structure. The difference of soil PH value and the average content of N, P, Ca between slag wasteland and contrasting ground is remarkable, but it is not remarkable between slag wasteland and soil in the vicinity of root of re-vegetation. It proved that the soil chemical properties can not be improved obviously in a short time, the metallic content of different soil has the same order: the slag wasteland >soil in the vicinity of root of re-vegetation > contrasting area .Besides Cu and Ni, the average content of Mn, Pb, Zn and Cd in the vicinity of root of re-vegetation and contrasting area is remarkable different from slag wasteland. The results show that after re-vegetation and soil amelioration, the average content of soil heavy metals in the vicinity of root of re-vegetation fall to some extent.Based on the comparison of soil physical and chemical properties of the same kind of re-vegetation {Koelreuteria paniculata and Elaeocarpus decipiens), there is not marked difference in soil physical properties, soil nutrient and content of soil heavy metals between survival and dead vegetation in the vicinity of root of the same kind of re-vegetation. The results shows that the reason why re-vegetation died is unconnected with soil, maybe relate to the plant itself or some other reasons.The soil on the re-vegetation growing better and worse was investigated. The results show that the growing-state of re-vegetation relates to the content of soil heavy metals, but unconnected with soil structure and soil fertility.It is indicated that Koelreuteria paniculata accumulates Mn, Elaeocarpus decipiens accumulates Pb and Zn.
引文
[1] 李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100.
    [2] 吴欢,周兴.矿山废弃地生态恢复研究[J].广西师范学院学报,2003,20(增刊):32-35.
    [3] Bradshaw,A,(程志勤译).西欧废弃地的管理和恢复[J].生态学报,1990,10(1):24-26.
    [4] 蓝崇钰,束文圣,张志权.采矿地的复垦[M].中国科技出版社.1993,132-138.
    [5] 束文圣,蓝崇钰,张志权.中国矿业废弃地的复垦对策研究[J].生态科学,2000,19(2):24-28.
    [6] Dudka S and Adriano D C.. Environmental impacts of mental ore mining and processing: a review[J]. Journal of Environmental Quality, 1997, 590-602.
    [7] 章家恩等.恢复生态学研究的一些基本问题探讨[J].应用生态学报.1999.10(1):109-113.
    [8] 代宏文,陈荣华,王政一,等.复垦项目中的尾矿库粉尘控制研究[A].见:第六次全国复垦学术会议论文集[C].1999,415-425.
    [9] 黄铭洪等.环境污染与生态恢复[M].北京:科学出版社,2004.
    [10] Guan W B, Xie C H, Ma K M, etal. A vital method for constructing regional ecological security pattern: Landscape ecological restoration and rehabilitation[J]. Acta Ecologica Sinica, 2003, 23(1): 64-73.
    [11] Toomik A, Liblik V. Oil shale mining and processing impact on landscapes in north-east Estonia[J]. Landscape Urban Planning, 1998, 41: 285-292.
    [12] Lan C Y, Shu W S, Wong M H. Revegetation of lead/zine mine railings at Shaoguan[J]. Guangdong Province. China: Phytotoxicity of the tailings. In: Wise D Led Global Environmental Biotechnology Amsterdam.Elsever, 1997,119-130.
    [13] Lan C Y, Shu W S, Zhang Z Q.Effects of acid leaching on heavy metals mobility of Pb/Zn tailings and the phytotoxieity of leach ate[J]. China Environ Science, 1996, 16(4): 461-465.
    [14] 夏汉平,蔡锡安.采矿地的生态恢复技术[J].应用生态学报,2002,13(11):1471-1476.
    [15] Wang JWC, Ip CM, Wong MH. Acid-forming capacity of lead-zinc tailings and its implication for mine rehabilitation[J].Envenom Geochem Health, 1998, 20: 149-155.
    [16] Ye ZH,Wong JWC,Wong MH.Vegetation response to lime and manure compost amendments on acid lead/zinc mine tailings: A greenhouse study J]. Rest Ecol, 2000, 8: 289-295.
    [17] Evangelou VP. Pyrite micro encapsulation technologies: Principles and potential field application [J]. Ecol Eng, 2001, 17: 165-178.
    [18] Bradshaw A. D. Restoration of mined lands-Using natural process [J]. Ecol Eng. 1997, 8: 255-269.
    [19] Tedesco MJ,Teixeira EC,Medina C, et al. Reclamation of spoil and refuse material produced by coal mining using bottom ash and lime [J]. Environ Technol. 1999, 20: 523-529.
    [20 Doolittle J J, Hossner, Wilding LP.Simulated aerobic pedogenesis in pyretie overburden with a positive acid-base account [J]. Soil Sic Soc Am J, 1993, 57: 1330-1336.
    [21] Zipper C. Balfour w, Roth R, et al. Domestic water supply impacts by underground coal mining in Virgia, USA[J]. Environ Geol, 1997, 29:84-93.
    [22] Cherry D S, Currie RJ, soncek D. J, et al. An integrative assessment of a watershed impacted by abandoned mined land discharges [J]. Environ Poll, 2001Ⅴ, Ⅲ: 377-388.
    [23] Dobson A P, Bradshaw A D, Baker A J M. Hopes for the future [J]. Restoration ecology and conservation biology. Science, 1997, 277: 515-22.
    [24] Cherry D S, Currie RJ Soucek DJ et al. An integrative assessment of a watershed impacted by abandoned mined land discharges[J]. Environ Poll 2001, Ⅲ: 377-388.
    [25] Shaw J. Heavy mental tolerance in Plant: Evolutionary Aspects [J]. Boca Raton, Florida: CRC Press.
    [26] Bradshaw A D.The reconstruction of ecosystem.[J]. Journal of Applied Ecology.1983,20: 1-17.
    [27] Dobson A P, Bradshaw A D and Baker A J M. Hopes for future, restoration ecology and construction biology [J]. Science, 1997, 277: 515-522.
    [28] Skousen J G, Call C A and Knight R W. National regeneration of and unreclaimed lignite surface mine in east-central Texas (USA) [J]. Southwestern Naturalist. 1990, 35: 434-440.
    [29] Kimmerer R W. Natural re-vegetation of abandoned lead and zinc mines (Wisconsin)[J].Restoration and Management Notes, 1981, 1: 20-25.
    [30] Gibson D J. The natural re-vegetion of lead/zinc mine spoil in northeastern Oklahoma [J].The Southwestern Naturalist, 1982, 27: 425-436.
    [31] Kalin M and van Everdingen R O. Ecologieal engineering: biological and geochemical aspects phase. Experiments[J]. In: Salomons W and Forstner U (eds). 1988, 114-130. Chemistry and Biology of Solid Waste. Spring-Verlag, Berlin.
    [32] Antonovics J, Bradshaw A D and Turner R G. Heavy mental tolerance in plants[J]. Advance in Ecological Research. 1971, 7: 1-85.
    [33] Ernst W H O. Response of plants and vegetation to mine tailings and dredged materials[J]. In: Salomons W and Forstner U (eds.), 1988, 54-72, Chemistty and Biology of Solid Waste. Spring-Verlag, Berlin.
    [34] Wu L. Colonization and establishment of plants in contaminated environments [J]. In: Shaw A J (ed.), 1990, 269-284.
    [35] Bradshaw A D. Restoration of mined-using natural process[J]. Ecological Engineering,1997, 8: 255-269.
    [36] Antonovics J, Bradshaw A.D and Turner R G. Heavy metal tolerance in plants [[J]. Advances in Ecological Research. 1971, 7: 1-85.
    [37] Gemmell R P. Natural colonization of industrial wasteland[M].Edward Arnold, London. 1977.
    [38] Brooks R R. 1998. Plants that hyper accumulates heavy metals[J]. CAB International, Wallingford.
    [39] 束文圣,张志权,蓝崇钰.广东乐昌铅锌尾矿的酸化潜力研究[J].环境科学,2001,22(3):113-117.
    [40] 束文圣,崇钰,张志权.凡口铅锌尾矿影响植物定居的主要因素分析[J].应用生态学报.1997,8:314-318.
    [41] 李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100.
    [42] 吴欢,周兴.矿山废弃地生态恢复研究[J].广西师范学院学报,2003,20(增刊):32-35.
    [43] Bradshaw,A,(程志勤译).西欧废弃地的管理和恢复[J].生态学报,1990,10(1):24-26.
    [44] Comwell S M, Jackson M L. The availability of nitrogen in acid coal-mine spoil, Nature, 1968, 217: 768-769.
    [45] Dancer W S, Handley J F and Bradshaw A D. Nitrogen accumulation in Kaolin mining waste in Cornwall 1. Natural communities. Plant and Soil, 1997, 48: 153-167.
    [46] Bradshaw A D, Huttl R F. Future mine site restoration involves a broader approach [J]. Ecol Eng, 2001, 17: 87-90.
    [47] Anthony Bradshaw. Restoration of mined lands-using natural processes [J]. Ecological Engineering. 1997, (8): 225-269.
    [48] 束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦与研究[J].生态科学.2000,19(2):73-78.
    [49] 莫测辉,蔡全英,王江海等.城市污泥在矿山废弃地复垦的应用技术[J].生态学.志,2001,20(2):44-47.
    [50] 扬修,高林.德兴铜矿矿山废弃地植被恢复与重建研究[J].生态学报,2001,21(1):1933-1940.
    [51] 王文英,李晋川,卢崇恩等.矿区废弃地植被重建技术[J].山西农业科学,2002,30(3):82-86.
    [52] 刘海龙.采矿废弃地的生态恢复与可持续景观设计[J].生态学报,2004,24(2):323-32.
    [53] 宋书巧,周永章.矿业废弃地及其生态恢复与重建[J].矿产保护与利用,2001,(5):43-49.
    [54] Cairns, L, J.(ed).The Recovery Process in Damaged Ecosystems[M]. Ann Arbor Science Publishers Inc. 1980.
    [55] Cairns, L, J. K. Ldicksos and E. E. Herricks (eds).. Rehabilitation Damaged Ecosystems[M]. CRC, Press, Boca Raton. 1988.
    [56] Cairns, L, L(ed). Rehabilitating Damaged Ecosystems (Second Edition)[M]. Lewis Publishers. 1995.
    [57] 康乐.生态系统的恢复与重建[J].北京.科学出版社1990:43-127.
    [58] Jordan A D, Gilpin M E and J D. Restoration Ecology: A synthetic Approach to Ecological Research [M]. Cambridge University Press. 1987.
    [59] Bradshaw A. D. Wasteland management and restoration in Western Europe [J]. Journal of Ecology, 1989, 26: 775-786.
    [60] 全志刚等.赴德国矿区复垦考察报告[R].国外林业技术考察报告选编,1996,41-45.
    [61 卢琦.关于参加“恢复退化森林生态系统专家会议”的报告[R].国外林业技术考察报告选编,1996,104-107.
    [62] 刘国华,舒洪岚.矿区废弃地生态恢复研究进展[J].江西林业科技,2003,2:21-25.
    [63] 薛生国.湘潭锰矿矿业废弃地生态恢复技术实验研究[D].长沙:中南林学院生态教研室,2001.
    [64] Jiang G M, Putwain P D, Bradshaw A D. Response of Agrostis stoloniferia to limestone and nutritional factors in the reclamation of colliery spoils [J]. Chinese Jouraal of Botany, 1994, 6(2): 155-162.
    [65] Smith R A H, Bradshaw A D.The use of metal tolerant plant populations for the reclamation of metalliferous wastes[J]. Journal of Applied Ecology, 1979, 16: 595-612.
    [66] Costigan P A, Bradshaw A D, Gemmell R. An reclamation of acidic colliery spoil waste I[J]. Acid production potential. Journal of Applied Ecology,1981, 18: 865-878.
    [67] Marrs R H, Bradshaw A D.Nitrogen accumulation, cycling and the reclamation of China clay wastes [J]. Journal of Environmental Management, 1982, 15: 139-157.
    [68] Wang J H, Ma M. Biological mechanisms of phytoremediafion. Chinese Bulletin of Botany, 2000, 17(6): 504-510.
    [69] Crocker R, Major J. Soil development in relation to vegetation and surface age of Glacier Bay, Alaska. Journal of Eoology, 1955, 43: 427-428.
    [70] Hall I G. The ecology of disused pit heaps in England[J]. Journal of Ecology, 1957, 45: 689-720.
    [71] Jansen I J. Reconstrucing soil after surface mining of prime agricultural land. Mining Engineering, 1981, 6: 312-314.
    [72] Jiang G M.Theory and practice in renegotiafions of mining wasteland [J]. In: The researches on degraded ecosystem in China. Beijing: Chinese Science & Technology Press, 1996.193-204.
    [73] Virendra S. Utilization of medicinal plants for wasteland[J], Journal of Economic and Taxonomic. Botany, 2000, 24(1): 99-103.
    [74] 朱震达,刘恕.中国的沙漠化及其治理[M].北京:科学出版社,1989.
    [75] 束文圣,扬开颜,扬兵,等.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究[J].应用与环境生物学报,2001,7(1):7-13.
    [76] 扬修,高林.德兴铜矿矿山废弃地植被恢复与研究[J].生态学报,2001,21(11):1932-1941.
    [77] 戈峰,刘向辉,潘卫东,等.蚯蚓在德兴铜矿废弃地生态恢复中的作用[J].生态学报,2001,21(11):1790-1795.
    [78] 章家恩等,恢复生态学研究的一些基本问题探讨[J].应用生态学报1999,10(1):109-113.
    [79] 束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦与研究[J].生态科学.2002,19(2):24-29.
    [80] Yong K. Destruction of ecological habitats by mining activities[J]. Agricultural Ecology, 1988, 16: 37-40.
    [81] 王仰麟,韩荡.矿区废弃地复垦的景观生态规划与设计[J].生态学报,1998,19(5):455-463.
    [82] 何书金,苏光全.矿区废弃地土地复垦潜力评价方法与应用实例[J].地理研究,2000,19(2):165-172.
    [83] 孙泰森,白中科.大型露天煤矿废弃地生态重建的理论与方法[J].水土保持学报,2001,15(5):56-60.
    [84] 胡宏伟,姜必亮,蓝崇钰,等.广东乐昌铅锌尾矿废弃地酸化控制研究[J].中山大学学报(自然科学版),1999,3:68-71.
    [85] 陈龙乾,郭达志,张明,等.矿区地表采掘废弃地充填复垦材料及技术研究[J].中国矿业大学学报,2002,31(1):59-64.
    [86] 聂湘平,蓝崇钰,张志权,等.锌对大叶相思-根瘤菌共生固氮体系的影响[J].植物生态学报,2002,26(3):264-268.
    [87] 陈同斌,韦朝阳,黄泽春.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47:207-210.
    [88] 张慧娟,刘云国,黄保荣,等.锰矿尾渣污染土壤上植物受重金属污染状况调查[J].生态学杂志,2004,23(1):111-113.
    [89] 白中科,吴梅秀.矿区废弃地复垦中的土壤学与植物营养学问题[J].煤矿环境保护,1996,10(5):39-42.
    [90] 阳承胜,蓝崇钰,束文圣.矿业废弃地生态恢复的土壤生物肥力[J] 生态科学,2000,19(3):73-78.
    [91] 龙健,黄昌勇,腾应,等.我国南方红壤矿山复垦土壤微生物特征研究[J].水土保持学报,2002,16(2):126-129.
    [92] 陈芳清,卢斌,王祥荣.村坪磷矿废弃地植物群落的形成与演替[J].生态学报,2001,21(8):1347-1354.
    [93] 白中科,李晋川,王文英.中国山西平朔安太堡大型煤矿退化土地生态重建研究[J].中国土地科学,2000,14(1):1-4.
    [94] 刘世忠,夏汉平,孔国辉,等.茂名北排油页岩废渣场的土壤与植被特性研究[J].生态科学,2002,21(1):25-29.
    [95] 王宏瑸,文传浩,等.云南会泽铅锌矿矿渣废弃植被重建初探[J].云南环境科学,1998,17(2):56-61.
    [96] 代宏文.澳大利亚矿山复垦现状.中国土地科学[J].1995(4):23-24.
    [97] 蓝崇钰,束文圣,孙庆业.采矿地的复垦[J].见:陈昌笃主编.持续发展与生态学.北京:中国科技出版社,1993.132-138.
    [98] Dudka S and Adriano D C. Environmental impacts of metal ore mining and processing: a review[J]. Journal of Environmental Quality, 1997, 26: 590-602.
    [99] Wong M H, Environmental impacts of iron ore retailing, the case of Tolo Harbour, Hong Kong. Environmental Management, 1981, 5: 135-145.
    [100] 束文圣,叶志鸿,张志权,黄铭洪,蓝崇钰.华南铅锌尾矿生态恢复的理论与实践[J].生态学报,2003,23(8):1629-1639.
    [101] Hloimes P M. Shrub land restoration following woody alien invasion and mining: Effects of topsoil depth, seed source, and fertilizer addition. Rest Ecol, 2001. 9: 71-84.
    [102] 白中科,赵景逵.工矿土地复垦与生态重建[M].北京:中国农业科学出版社,2000.
    [103] 束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦对策研究(Ⅰ)[J].生态科学,2000,19(2):25-29.
    [104] Dobson A P, Bradshaw A D and Baker A J M. Hopes for further, restoration ecology and conservation biology Science, 1997, 277: 515-522.
    [105] Jordan W R Ⅲ, Gilpin ME and Aber J D. Restoration Ecology[M]: A Synthetic Approach to Ecological Research. Cambridge: Cambridge University Press,1987.
    [106] Bradshaw A. D. and Chadwick M. J. The Restoration of Land, the Ecology and Reclamation of Derelicand Degraded Land[M]. Berkeley: University of California Press, 1980.
    [107] 中国科学院南京土壤研究所编.土壤理化分析[M].上海科学技术出版社,1978.
    [108] 郝黎仁,樊元,郝哲欧等.SPSS实用统计分析[M].中国水利水电出版社,2002.
    [109] 叶文虎,栾胜基.环境质量评价学[M].高等教育出版社,1997.
    [110] 夏家淇.土壤环境质量标准详解[M].北京:中国环境科学出版社.1996.
    [111] GB15618-1995.中华人民共和国土壤环境质量标准[S].
    [112] 中国环境监测站.中国土壤元素背景值[M].北京:中国环境科学出版社.1990。
    [113] 北京林学院.土壤学[M].北京:中国林业出版社,1982.
    [114] 唐世荣,B.M.Wilke.植物修复技术与农业生物环境工程[J].农业工程学报,1999,15(2):21-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700