石墨结构碳及其载Pt催化剂强化臭氧降解水中草酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国饮用水源水普遍受到微量有机物污染和国家生活饮用水标准不断提高的情况下,饮用水深度处理技术的研究与开发具有重要的现实意义。臭氧氧化技术具有很好的应用前景,但同时还存在臭氧只能选择性氧化与臭氧利用效率低等缺点;而催化臭氧化技术则可以有效地克服臭氧氧化技术的若干缺点,具有广阔的应用前景。
     活性炭(无定形碳)在催化臭氧化体系中表现出很高的催化活性,但稳定性不高,在氧化过程中自身也会逐渐被分解消耗。本论文采用石墨结构碳(碳纳米管和石墨)作为催化臭氧化反应的催化剂,选择臭氧氧化有机物过程中生成的典型产物——草酸作为目标物,研究石墨结构碳在催化臭氧化降解草酸体系中的反应活性及相关机理。
     从物理化学性质、催化活性以及在催化臭氧化体系中的稳定性三个方面对活性炭和石墨结构碳进行了比较研究。比表面积测试结果和表面官能团滴定结果表明,无论是比表面积的大小还是表面官能团的含量,石墨结构碳均低于活性炭。在催化臭氧化体系中,碳纳米管和活性炭对草酸降解的催化活性相当,石墨则略差一些;然而石墨结构碳具有比活性炭更高的稳定性,特别是石墨催化剂。
     本文考察了操作条件和水体条件对碳纳米管催化臭氧化降解草酸的影响。改变臭氧投加量对草酸催化臭氧化降解效果影响很小;催化剂的投加量、反应物的初始浓度以及溶液温度对草酸降解效果有一定影响;而溶液pH值的变化对碳纳米管催化臭氧化体系的影响最大。当溶液的初始pH值为3.0时,碳纳米管催化臭氧化对草酸的去除率最高。此时无论是增加还是降低溶液的初始pH值,都会导致碳纳米管催化降解草酸活性的降低。
     通过臭氧氧化处理和高温热处理两种不同的方法对碳纳米管进行改性,研究其表面化学性质与催化活性之间的关系。对臭氧氧化预处理的碳纳米管而言,随着处理时间的延长其催化活性逐渐降低,官能团滴定显示其表面的酸性官能团逐渐增加,而碱性官能团不断减少,质量滴定结果显示其pHPZC也在不断降低。而对经过硝酸处理后的碳纳米管而言,不论是在氮气还是在氢气气氛下的高温热处理均使得其表面的酸性官能团减少,碱性官能团增加,pHPZC也相应地升高,处理后的碳纳米管具有更高的催化活性。分析指出,碱性官能团的数量和pHPZC的高低与碳纳米管的催化活性密切相关,具有大量的表面碱性官能团和高的pHPZC的碳纳米管具有更高的催化活性。
     以石墨和碳纳米管为载体,以H2PtCl6·6H2O为贵金属活性组分前驱物,采用等体积浸渍法制备了Pt/石墨和Pt/碳纳米管催化剂,并与活性炭负载Pt催化剂进行比较。采用SEM、TEM、XRD以及XPS等分析方法对所制备催化剂的形貌、结构以及活性组分分布进行了表征。在各种催化剂表面负载的活性组分Pt均以Pt0的形式存在,但相同Pt负载量(1.0%)对石墨结构碳和活性炭催化活性的影响却明显不同。Pt的负载提高了石墨和碳纳米管催化臭氧化降解草酸的活性,而对活性炭的催化活性则影响甚微,这与不同碳材料的孔结构有关。
     以草酸的去除效率为催化活性指标,对Pt/石墨和Pt/碳纳米管两种催化剂的制备条件进行了优化。结果表明,载体预处理和浸渍时间对两种催化剂的活性均没有明显影响;活性组分Pt的负载量、催化剂的热处理温度和热处理方式对两种催化剂的活性影响都比较大;而浸渍活性组分的溶剂的不同对两者的催化活性的影响却完全不同,溶剂的不同对Pt/石墨的催化活性基本没有影响,而对Pt/碳纳米管的催化活性却影响显著。ICP测试结果表明两种催化剂的活性组分Pt在催化臭氧化过程中均比较稳定。
     对石墨结构碳及其载Pt催化剂的催化臭氧化机理进行了研究。采用加入自由基捕获剂(叔丁醇)的方法考察·OH在碳纳米管催化臭氧化降解草酸过程中的作用,发现自由基捕获剂在一定程度上抑制了碳纳米管的催化臭氧化活性,表明·OH参与了催化臭氧化降解过程。将草酸在不同的初始pH值情况下在碳纳米管表面的吸附情况和溶液初始pH值变化对碳纳米管催化活性的影响结合起来进行分析,显然碳纳米管的表面反应在催化臭氧化降解草酸过程中有着重要的作用。然而,自由基捕获剂的加入对石墨结构碳载Pt催化剂催化臭氧化降解草酸的活性影响较小,相关的结构表征结果则显示Pt的分散状态以及Pt的存在形式对催化剂的活性有着显著的影响,说明载Pt催化剂催化臭氧化降解草酸的反应主要发生在催化剂表面,推测Pt氧化还原电对(Ptred/Ptox)在反应过程中起着主要作用。
Advanced treatment technologies for drinking water purification are becoming more important since micropollutants are widely distributed in the drinking water sources of China and the standard for drinking water quality is gradually improved. Investigation and exploitation of drinking water treatment technologies seem crucially urgent nowadays. Ozonation technology has been widely used in water treatment plants, whereas, its application was restrained due to the incomplete oxidation and the low ozone use efficiency. Catalytic ozonation technology can avoid the limitation of ozonation technology; therefore, it has got much more attention and developed rapidly in recent years.
     Activated carbon (AC) is a promising catalyst except for its instability in heterogeneous catalytic ozonation process. In this study, taking graphitic carbons (carbon nanotubes (CNTs) and graphite) as catalysts for ozonation process and oxalic acid as refractory target pollutant, the effect and mechanism of oxalic acid removal were investigated in the presence of ozone and graphitic carbons.
     The physico-chemical properties, catalytic activity and stability of graphitic carbons in heterogeneous catalytic ozonation process were investigated, and were compared with AC. The results of BET and selective neutralization analysis showed that graphitic carbons have lower surface area and less functional groups than that of AC. In heterogeneous catalytic ozonation experiment on oxalic acid degradation, CNTs and AC showed similar performance and both of the two above catalysts have higher activity than that of graphite. However, graphitic carbons were more stable than AC, especially for graphite.
     The influence of different operation conditions on CNTs catalyzed ozonation process was investigated, including the oxalic acid initial concentration, ozone gas concentrations, catalyst dosage, temperature, and initial pH of solution. Experimental results indicated that the variable of ozone gas concentration has little effect on the removal efficiency of oxalic acid; the variables of oxalic acid initial concentration, catalyst dosage, temperature, and initial pH of solution have strong effect on oxalic acid removal, especially for the initial pH of solution. A high efficiency on oxalic acid removal was obtained when the initial pH of solution was 3.0, higher or lower pH value around this point would result in a decrease in removal efficiency.
     Surface modification on CNTs was carried out using two methods, preozonation treatment and heat treatment. The relationship between surface property and catalytic performance of CNTs was investigated based on the results obtained with modification of CNTs. The exposure time to ozone gas increased the number of acid groups and decreased the number of basic groups on CNTs; and the catalytic activity of CNTs went down as well as its pHPZC value. As for heat treatment in nitrogen or hydrogen atmosphere, the number of acid groups decreased while the number of basic groups increased on CNTs. Besides, the higher pHPZC value was obtained in heat treatment with a higher temperature and the catalytic activity of corresponding catalyst was enhanced. The above results clearly indicated that the catalytic performance of CNTs strongly depends on the number of basic groups and the pHPZC value. CNTs with a large number of basic groups and a high pHPZC value should have a good performance in catalytic ozonation process.
     Pt/graphite and Pt/CNTs catalysts were prepared by incipient wetness impregnation using H2PtCl6·6H2O as precursor, and the Pt/AC catalyst was prepared with the same procedure for comparison. The micro-morphology and structure of catalysts were characterized by SEM, TEM, XRD and XPS. The active phase on all the catalysts surface is in the form of Pt0. However, with a same loading amount, the effect of Pt loading on catalytic activity is totally different for graphitic carbons and AC. Pt loading on graphite and CNTs enhanced their catalytic ability, whereas, no obvious effect was found on the performance of AC. This distinction should be caused by the different pore structures of the above carbon materials.
     Taking oxalic acid degradation efficiency as an index, the preparation conditions of Pt/graphite and Pt/CNTs were optimized. It was proved that pretreatment of supports and impregnation time had no effect on the activity of catalysts. Pt loading amount, reduction temperature and pyrolysis atmosphere significantly influenced the activity of catalysts. Solvent had no effect on the performance of Pt/graphite catalyst but obviously influenced the activity of Pt/CNTs catalyst. ICP analysis indicated that the active component, Pt, on both of the two catalysts surface were stable in heterogeneous catalytic ozonation process.
     The mechanisms of oxalic acid degradation by graphitic carbons or graphitic carbons supported Pt catalyzed ozonation processes were studied. Using the tert-butanol as radical scavenger, the role of hydroxyl radicals in CNTs catalyzed ozonation process was investigated. It was found that the catalytic activity of CNTs was inhibited to some extent after tert-butanol addition, which means that the hydroxyl radicals have participated in oxalic acid degradation process. Based on the effect of pH value on the performance of CNTs, the adsorption of oxalic acid on CNTs at different pH was analyzed. It could be concluded that surface reactions play an important role in catalytic ozonation process for oxalic acid degradation. However, the catalytic activity of graphitic carbons supported Pt was not remarkably influenced by tert-butanol addition. According to structure analysis, the dispersion and the chemical form of Pt have significant influence on the catalysts performance. It was pointed out that oxalic acid degradation mainly occurred on catalyst surface, and the redox couple of Ptred/Ptox was supposed to play a key role in this catalytic ozonation process.
引文
1 R. P. Schwarzenbach, B. I. Escher, K. Fenner, et al. The Challenge of Micropollutants in Aquatic Systems. Science. 2006, 313(5790): 1072~1077
    2国家环境保护总局. 2006年中国环境状况公报. http://www.zhb.gov.cn/ plan/zkgb/06hjzkgb/200706/p020070619274778023610.pdf
    3芮旻,高乃云,徐斌,等.饮用水处理工艺去除两种典型内分泌干扰物的性能.给水排水. 2006, 32(4): 1~7
    4 T. Leiknes, H. ?degaard, H. Myklebust. Removal of Natural Organic Matter (NOM) in Drinking Water Treatment by Coagulation-microfiltration Using Metal Membranes. J. Membrane Sci. 2004, 242(1-2): 47~55
    5 Y. Zhang, C. Causserand, P. Aimar, et al. Removal of Bisphenol A by a Nanofiltration Membrane in View of Drinking Water Production. Water Res. 2006, 40(20): 3793~3799
    6 S. A. Dastgheib, T. Karanfil, W. Cheng. Tailoring Activated Carbons for Enhanced Removal of Natural Organic Matter from Natural Waters. Carbon. 2004, 42(3): 547~557
    7罗晓鸿,曹莉莉,王占生.不同分子量的有机物在净水工艺中的去除研究.中国环境科学, 1998, 18(4): 341~344
    8 U. von Gunten. Ozonation of Drinking Water: Part I. Oxidation Kinetics and Product Formation. Water Res. 2003, 37(7): 1443~1467
    9 U. von Gunten. Ozonation of Drinking Water: Part II. Disinfection and By-production Formation in Presence of Bromide, Iodide or Chlorine. Water Res. 2003, 37(7): 1469~1487
    10 J. Hoigné, H. Bader. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water. Part I. Non-dissociating Organic Compounds. Water Res. 1983, 17(2): 173~184
    11 J. Hoigné, H. Bader. Rate Constants of Reaction of Ozone with Organic and Inorganic Compounds in Water. Part II. Dissociating Organic Compounds. Water Res. 1983, 17(2):185~194
    12 J. Hoigné, H. Bader. The Role of Hydroxyl Radical Reactions in Ozonation Processes in Aqueous Solutions. Water Res. 1976, 10(5): 377~386
    13 C. C. D. Yao, W. R. Haag. Rate Constants for Direct Reactions of Ozone with Several Drinking Water Contaminants. Water Res. 1991, 25(7): 761~ 773
    14 W. R. Haag, C. C. D. Yao. Rate Constants for Reactions of Hydroxyl Radicals with Several Drinking Water Contaminants. Environ. Sci. Technol. 1992, 26(5): 1005~1013
    15 F. J. Benitez, F. J. Beltrán, J. L. Acero, et al. Degradation of Protocatechuic Acid by Two Advanced Oxidation Processes: Ozone/UV Radiation and H2O2/UV Radiation. Water Res. 1996, 30(7): 1597~1604
    16 S. P. Tong, D. M. Xie, H. Wei, et al. Degradation of Sulfosalicylic Acid by O3/UV O3/TiO2/UV, and O3/V-O/TiO2: A Comparative Study. Ozone Sci. Eng. 2005, 27 (3): 233~238
    17 F. J. Beltrán, G. Ovejero, F. J. Rivas. Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 4. Ozone Combined with Hydrogen Peroxide. Ind. Eng. Chem. Res. 1996, 35(3): 891~898
    18 A. A. A. El-Raady, T. Nakajima. Effect of UV Radiation on the Removal of Carboxylic Acids from Water by H2O2 and O3 in the Presence of Metallic Ions. Ozone Sci. Eng. 2006, 28(1): 53~58
    19 N. Kishimoto, Y. Morita, H. Tsuno, et al. Advanced Oxidation Effect of Ozonation Combined with Electrolysis. Water Res. 39(19): 4661~4672
    20 L. K. Weavers, F. H. Ling, M. R. Hoffmann. Aromatic Compound Degradation in Water Using a Combination of Sonolysis and Ozonolysis. Environ. Sci. Technol. 1998, 32(18): 2727~2733
    21 N. Al-Hayek, B. legube, M. Doré. Catalytic Ozonation (FeIII/Al2O3) of Phenol and Its Ozonation By-products. Environ. Technol. Lett. 1989, 10(4): 415~426
    22 B. Kasprzyk-Hordern, M. Zió?ek, J. Nawrocki. Catalytic Ozonation and Methods of Enhancing Molecular Ozone Reactions in Water Treatment. Appl. Catal. B: Environ. 2003, 46(4): 639~669
    23郑志民,雷挺,许嘉炯,等.嘉兴石臼水厂深度处理工程设计与运行.给水排水. 2005, 31(10): 10~13
    24 R. Gracia, J. L. Aragues, J. L. Ovelleiro. Study of the Catalytic Ozonation of Humic Substances in Water and Their Ozonation Byproducts. Ozone Sci. Eng.1996, 18(3): 195~208
    25 R. Gracia, J. L. Aragues, J. L. Ovelleiro. Mn(II)-Catalysed Ozonation of Raw Ebro River Water and Its Ozonation By-Products. Water Res. 1998, 32(1): 57~62
    26 C. H. Ni, J. N. Chen, P. Y. Yang. Catalytic Ozonation of 2-Chlorophenol by Metallic Ions. Water Sci. Technol. 2002, 47(1): 77~82
    27施银桃,李海燕,曾庆福,等.臭氧氧化法去除水中邻苯二甲酸二甲酯的初步研究.环境化学. 2002, 21(5): 500~504
    28柳葛贤,吕功煊.催化臭氧化降解罗丹明B的初步研究.环境化学. 2007, 26(5): 626~629
    29 R. Andreozzi, R. Marotta, R. Sanchirico. Manganese-catalysed Ozonation of Glyoxalic Acid in Aqueous Solutions. J. Chem. Technol. Biotechnol. 2000, 75(1): 59~65
    30 J. Ma, N. J. D. Graham. Degradation of Atrazine by Manganese-catalysed Ozonation: Influence of Humic Substances. Water Res. 1999, 33(3): 785~793
    31 J. Ma, N. J. D. Graham. Degradation of Atrazine by Manganese-catalysed Ozonation: Influence of Radical Scavengers. Water Res. 2000, 34(15): 3822~3828
    32 S. P. Tong, W. P. Liu, W. H. Leng, et al. Characteristics of MnO2 Catalytic Ozonation of Sulfosalicylic Acid and Propionic Acid in Water. Chemosphere. 2003, 50(10): 1359~1364
    33童少平,杜桂荣,张鉴清.液相中MnO2催化臭氧化降解磺基水杨酸.环境化学. 2003, 22(5): 454~458
    34 J. S. Park, H. Choi, J. Cho. Kinetic Decomposition of Ozone and para-Chlorobenzoic Acid (pCBA) during Catalytic Ozonation. Water Res. 2004, 38(9): 2284~2291
    35 H. Jung, H. Park, J. Kim, et al. Preparation of Biotic and Abiotic Iron Oxide Nanoparticles (IOnPs) and Their Properties and Applications in Heterogeneous Catalytic Oxidation. Environ. Sci. Technol. 2007, 41(13): 4741~4747
    36鲁金凤,张涛,马军,等.羟基氧化铁催化臭氧氧化对滤后水THMs生成势的控制作用.环境科学. 2006, 27(5): 935~940
    37 H. Allemane, B. Delouane, H. Paillard, et al. Comparative Efficiency of Three Systems (O3, O3/H2O2 and O3/TiO2) for the Oxidation of NaturalOrganic Matter in Water. Ozone Sci. Eng. 1993, 15(5): 419~432
    38 Y. X. Yang, J. Ma, Q. D. Qin, et al. Degradation of Nitrobenzene by Nano-TiO2 Catalyzed Ozonation. J. Mol. Catal. A: Chem. 2007, 267(1-2): 41~48
    39 M. Ernst, F. Lurot, J. C. Schrotter. Catalytic Ozonation of Refractory Organic Model Compounds in Aqueous Solution by Aluminum Oxide. Appl. Catal. B: Environ. 2004, 47(1): 15~25
    40 B. Kasprzyk-Horden, U. Raczyk-Stanis?awiak, J. ?wietlik, et al. Catalytic Ozonation of Natural Organic Matter on Alumina. Appl. Catal. B: Environ. 2006, 62(3-4): 345~358
    41 W. J. Huang, G. C. Fang, C. C. Wang. A Nanometer-ZnO Catalyst to Enhance the Ozonation of 2,4,6-trichlorophenol in Water. Colloids and Surfaces A. 2005, 260(1-3): 45~51
    42 H. Jung, H. Choi. Catalytic Decomposition of Ozone and para-Chlorobenzoic Acid (pCBA) in the Presence of Nanosized ZnO. Appl. Catal. B: Environ. 2006, 66(3-4): 288~294
    43 Y. M. Dong, K. He, L. Yin, et al. A Facile Route to Controlled Synthesis of Co3O4 Nanoparticles and Their Environmental Catalytic Properties. Nanotechnology. 2007, 18(43): 435602
    44孙志忠,赵雷,马军.改性蜂窝陶瓷催化臭氧化降解水中微量硝基苯.环境科学. 2005, 26(6): 84~88
    45 F. J. Rivas, M. Carbajo, F. J. Beltrán, et al. Perovskite Catalytic Ozonation of Pyruvic Acid in Water: Operating Conditions Influence and Kinetics. Appl. Catal. B: Environ. 2006, 62(1-2): 93~103
    46 M. Carbajo, F. J. Beltrán, F. Medina, et al. Catalytic Ozonation of Phenolic Compounds: The Case of Gallic Acid. Appl. Catal. B: Environ. 2006, 67 (3-4): 177~186
    47 Y. M. Dong, K. He, B. Zhao, et al. Catalytic Ozonation of Azo Dye Active Brilliant Red X-3B in Water with Natural Mineral Brucite. Catal. Commun. 2007, 8(11): 1599~1603
    48 Y. M. Dong, K. He, L. Yin, et al. Catalytic Degradation of Nitrobenzene and Aniline in Presence of Ozone by Magnesia from Natural Mineral. Catal. Lett. 2007, 119(3-4): 222~227
    49 F. J. Beltrán, F. J. Rivas, R. Montero-de-Espinosa. Ozone-Enhanced Oxidationof Oxalic Acid in Water with Cobalt Catalysts. 2. Heterogeneous Catalytic Ozonation. Ind. Eng. Chem. Res. 2003, 42(14): 3218~3224
    50 J. H. Qu, H. Y. Li, H. J. Liu, et al. Ozonation of Alachlor Catalyzed by Cu/Al2O3 in Water. Catal. Today. 2004, 90: 291~296
    51 S. P. Tong, W. H. Li, J. Q. Zhang, et al. Catalytic Ozonation of Sulfosalicylic Acid. Ozone Sci. Eng. 2002, 24(2): 117~122
    52 R. Gracia, S. Cortes, J. Sarasa, et al. Catalytic Ozonation with Supported Titanium Dioxide. The Stability of Catalyst in Water. Ozone Sci. Eng. 2000, 22(2): 185~193
    53 R. Gracia, S. Cortes, J. Sarasa, et al. Heterogeneous Catalytic Ozonation with Supported Titanium Dioxide in Model and Natural Waters. Ozone Sci. Eng. 2000, 22(5): 461~471
    54尹琳. Zn-粘土催化剂对染料废水的O3氧化降解性能的影响.高校地质学报. 2000, 6(2):260~264
    55 F. Delano?, B. Acedo, N. K. V. Leitner, B. Legube. Relationship between the Structure of Ru/CeO2 Catalysts and Their Activity in the Catalytic Ozonation of Succinic Acid Aqueous Solutions. Appl. Catal. B: Environ. 2001, 29(4): 315~325
    56 U. Jans, J. Hoigné. Activated Carbon and Carbon Black Catalyzed Transfor-mation of Aqueous Ozone into OH-Radicals. Ozone Sci. Eng. 1998, 20(1): 67~90
    57 J. Ma, M. H. Sui, T. Zhang, et al. Effect of pH on MnOx/GAC Catalyzed Ozonation for Degradation of Nitrobenzene. Water Res. 2005, 39(5): 779~786
    58 M. Muruganandham, S. H. Chen, J. J. Wu. Evalution of water treatment sludge as a catalyst for aqueous ozone decomposition. Catal. Commun. 2007, 8(11): 1609~1614
    59 C. Cooper, R. Burch. Mesoporous Materials for Water Treatment Processes. Water Res. 1999, 33(18): 3689~3694
    60 H. Fujita, J. Izumi, M. Sagehashi, et al. Adsorption and Decomposition of Water-dissolved Ozone on High Silica Zeolites. Water Res. 2004, 38(1): 159~165
    61 M. Sagehashi, K. Shiraishi, H. Fujita, et al. Adsorptive Ozonation of 2-methylisoborneol in Natural Water with Preventing Bromate Formation.Water Res. 2005, 39(16): 3900~3908
    62 B. Kasprzyk-Horden, J. Nawrocki. The Feasibility of Using a Perfluroinated Bonded Alumina Phase in the Ozonation Process. Ozone Sci. Eng. 2003, 25(3): 185~197
    63 B. Kasprzyk-Horden, P. Andrzejewski, A. D?browska, et al. MTBE, DIPE, ETBE and TAME Degradation in Water Using Perfluorinated Phases as Catalysts for Ozonation Process. Appl. Catal. B: Environ. 2004, 51(1): 51~66
    64 R. Vahala, V. A. L?ngvik, R. Laukkanen. Controlling Adsorbable Organic Halogens(AOX) and Trihalomethanes(THM) Formation by Ozonation and Two-step Granule Activated Carbon(GAC) Filtration. Water Sci. Technol. 1999, 40(9): 249~256
    65 C. A. Zazor. Enhanced Oxidation of Toxic Effluents Using Simultaneous Ozonation and Activated Carbon Treatment. J. Chem. Technol. Biotechnol. 1997, 70(1): 21~28
    66 S. Muramoto, J. Nishino. An Advanced Purification System Combining Ozonation and BAC, Developed by the Bureau of Waterworks, Tokyo Metropolitan Government. Desalination. 1994, 98(1-3): 207~215
    67 W. H. Kim, W. Nishijima, E. Shoto, et al. Pilot Plant Study on Ozonation and Biological Activated Carbon Processes for Drinking Water Treatment. Water Sci. Technol. 1997, 35(8): 21~28
    68 M. Sánchez-Polo, E. Salhi, J. Rivera-Utrilla, et al. Combination of Ozone with Activated Carbon as an Alternative to Conventional Advanced Oxidation Processes. Ozone Sci. Eng. 2006, 28(4): 237~245
    69 F. J. Beltrán, F. J. Rivas, R. Montero-de-Espinosa. Mineralization Improve-ment of Phenol Aqueous Solutions through Heterogeneous Catalytic Ozonation. J. Chem. Technol. Biotechnol. 2003, 78(12): 1225~1233
    70 M. M. Hassan, C. J. Hawkyard. Decolourisation of Dye and Dyehouse Effluent in a Bubble-column Reactor by Heterogeneous Catalytic Ozonation. J. Chem. Technol. Biotechnol. 2006, 81(2): 201~207
    71 J. Rivera-Utrilla, M. Sánchez-Polo, M. A. Mondaca, et al. Effect of Ozone and Ozone/activated Carbon Treatments on Genotoxic Activity of Naphthalenesulfonic Acids. J. Chem. Technol. Biotechnol. 2002, 77(8): 883~890
    72 F. J. Beltrán, B. Acedo, F. J. Rivas, et al. Pyruvic Acid Removal from Water by the Simultaneous Action of Ozone and Activated Carbon. Ozone Sci. Eng. 2005, 27(2): 159~169
    73 H. Valdés, C. A. Zaror. Advanced Treatment of Benzothiazole Contaminated Waters: Comparison of O3, AC, and O3/AC Processes. Water Sci. Technol. 2005, 52(10-11): 281~288
    74 S. H. Lin, C. L. Lai. Kinetic Characteristics of Textile Wastewater Ozonation in Fluidized and Fixed Activated Carbon Beds. Water Res. 2000, 34(3): 763~772
    75 S. H. Lin, C. H. Wang. Ozonation of Phenolic Wastewater in a Gas-induced Reactor with a Fixed Granular Activated Carbon. Ind. Eng. Chem. Res. 2003, 42(8): 1648~1653
    76 P. C. C. Faria, J. J. M.órf?o, M. F. R. Pereira. Mineralisation of Colored Aqueous Solutions by Ozonation in the Presence of Activated Carbon. Water Res. 2005, 39(8):1461~1470
    77 J. P. Kaptijn. The Ecoclear? Process. Results from Full-Scale Installations. Ozone Sci. Eng. 1997, 19(4): 297~305
    78 M. Sánchez-Polo, U. von Gunten, J. Rivera-Utrilla. Efficiency of Activated Carbon to Transform Ozone into·OH Radicals: Influence of Operational Parameters. Water Res. 2005, 39(14): 3189~3198
    79 M. S. Elovitz, U. von Gunten. Hydroxyl Radical/Ozone Ratios during Ozonation Processes. I. The Rct Concept. Ozone Sci. Eng. 1999, 21(71): 239~ 260
    80 L. C. Lei, L. Gu, X. W. Zhang, et al. Catalytic Oxidation of Highly Concentrated Real Industrial Wastewater by Integrated Ozone and Activated Carbon. Appl. Catal. A: Gen. 2007, 327(2): 287~294
    81 J. D. Méndez-Díaz, M. Sánchez-Polo, J. Rivera-Utrilla, et al. Ozonation in Aqueous Phase of Sodium Dodecylbenzenesulphonate in the Presence of Powdered Activated Carbon. Carbon. 2005, 43(14): 3031~3034
    82 J. Rivera-Utrilla, J. Méndez-Díaz, M. Sánchez-Polo, et al. Removal of the Surfactant Sodium Dodecylbenzenesulphonate from Water by Simultaneous Use of Ozone and Powdered Activated Carbon: Comparison with Systems Based on O3 and O3/H2O2. Water Res. 2006, 40(8): 1717~1725
    83 M. Sánchez-Polo, J. Rivera-Utrilla. Ozonation of Naphthalenetrisulphonic Acid in Presence of Activated Carbons Prepared from Petroleum Coke. Appl. Catal. B: Environ. 2006, 67(1-2): 113~120
    84 H. Valdés, C. A. Zaror. Ozonation of Benzothiazole Saturated-activated Carbons: Influence of Carbon Chemical Surface Properties. J. Hazard. Mater. 2006, 137(2): 1042~1048
    85 J. Ma, M. H. Sui, Z. L. Chen, et al. Degradation of Refractory Organic Pollutants by Catalytic Ozonation-Activated Carbon and Mn-loaded Activated Carbon as Catalysts. Ozone Sci. Eng. 2004, 26(1): 3~10
    86 B. S. Oh, S. J. Song, E. T. Lee, et al. Catalyzed Ozonation Process with GAC and Metal Doped-GAC for Removing Organic Pollutants. Water Sci. Technol. 2004, 49(4): 45~49
    87周云瑞,祝万鹏,刘福东,等.催化剂载体对催化臭氧化活性的影响.清华大学学报(自然科学版). 2007, 47(9): 1481~1484
    88 L. S. Li, W. P. Zhu, P. Y. Zhang, et al. Comparision of AC/O3-BAC and O3-BAC Processes for Removing Organic Pollutants in Secondary Effluent. Chemosphere. 2006, 62(9): 1514~1522
    89 L. S. Li, W. P. Zhu, P. Y. Zhang, et al. AC/O3-BAC Processes for Removing Refractory and Hazardous Pollutants in Raw Water. J. Hazard. Mater. 2006, 135(1-3): 129~133
    90 I. A. Balcio?lu, E. Tarlan, C. Kivilcimdan, et al. Merits of ozonation and catalytic ozonation pre-treatment in the algal treatment of pulp and paper mill effluxents. J. Environ. Manage. 2007, 85(4): 918~926
    91张彭义,余刚,孙海涛,等.臭氧/活性炭协同降解有机物的初步研究.中国环境科学. 2000, 20(2): 159~162
    92 J. Rivera-Utrilla, M. Sánchez-Polo. Ozone of 1,3,6-naphthalenetrisulphonic Acid Catalysed by Activated Carbon in Aqueous Phase. Appl. Catal. B: Environ. 2002, 39(4): 319~329
    93 H. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla, et al. Effect of Ozone Treatment on Surface Properties of Activated Carbon. Langmuir. 2002, 18(6): 2111~2116
    94 M. Sánchez-Polo, J. Rivera-Utrilla. Effect of the Ozone-carbon Reaction on the Catalytic Activity of Activated Carbon During the Degradation of 1,3,6-Naphthalenetrisulphonic Acid with Ozone. Carbon. 2003, 41(2): 303~307
    95 J. Rivera-Utrilla, M. Sánchez-Polo. Ozone of Naphthalenetrisulphonic Acid in the Aqueous Phase in the Presence of Basic Activated Carbons. Langmuir. 2004, 20(19): 9217~9222
    96 P. C. C. Faria, J. J. M.órf?o, M. F. R. Pereira. Ozonation of Aniline Promoted by Activated Carbon. Chemosphere. 2007, 67(4): 809~815
    97 F. J. Beltrán, J. F. Garciá-Araya, I. Giráldez, et al. Kinetics of Activated Carbon Promoted Ozonation of Succinic Acid in Water. Ind. Eng. Chem. Res. 2006, 45(9): 3015~3021
    98 M. Sánchez-Polo, R. Leyva-Ramos, J. Rivera-Utrilla. Kinetics of 1,3,6-Naphthalenetrisulphonic Acid Ozonation in Presence of Activated Carbon. Carbon. 2005, 43(5): 962~969
    99 P. C. C. Faria, J. J. M.órf?o, M. F. R. Pereira. Ozone Decomposition in Water Catalyzed by Activated Carbon: Influence of Chemical and Textural Properties. Ind. Eng. Chem. Res. 2006, 45(8): 2715~2721
    100 F. J. Beltrán, F. J. Rivas, P. Alvarez, et al. Kinetics of Heterogeneous Catalytic Ozone Decomposition in Water on an Activated Carbon. Ozone Sci. Eng. 2002, 24(4): 227~237
    101 M. Guiza, A. Quederni, A. Ratel. Decomposition of Dissolved Ozone in the Presence of Activated Carbon: an Experimental Study. Ozone Sci. Eng. 2004, 26(3):299~307
    102 P. M. Alvárez, J. F. Garciá-Araya, F. J. Beltrán, et al. The Influence of Various Factors on Aqueous Ozone Decomposition by Granular Activated Carbons and the Development of a Mechanistic Approach. Carbon. 2006, 44(14): 3102~3112
    103 F. P. Logemann, J. H. J. Annee. Water Treatment with a Fixed Bed Catalytic Ozonation Process. Water Sci. Technol. 1997, 35(4): 353~360
    104 F. J. Beltrán, F. J. Rivas, L. A. Fernández, et al. Kinetics of Catalytic Ozonation of Oxalic Acid in Water with Activated Carbon. Ind. Eng. Chem. Res. 2002, 41(25): 6510~6517
    105 I. Giráldez, J. F. García-Araya, F. J. Beltrán. Activated Carbon Promoted Ozonation of Polyphenol Mixtures in Water: Compareison with Single Ozonation. Ind. Eng. Chem. Res. 2007, 46(24): 8241~8247
    106 F. J. Beltrán, J. F. Garciá-Araya, I. Giráldez. Gallic Acid Water OzonationUsing Activated Carbon. Appl. Catal. B: Environ. 2006, 63(3-4): 249~259
    107 H. Valdés, C. A. Zaror. Heterogeneous and Homogeneous Catalytic Ozonation of Benzothiazole Promoted by Activated Carbons: Kinetic Approach. Chemosphere. 2006, 65(7): 1131~1136
    108 H. E. van Dam, H. van Bekkum. Preparation of Platinum on Activated Carbon. J. Catal. 1991, 131(2): 335~349
    109 C. Zaror, G. Soto, H. Valdés, et al. Ozonation of 1,2-Dihydroxybezene in the Presence of Activated Carbon. Water Sci. Technol. 2001, 44(5): 125~130
    110 B. W. Dussert, S. L. Kovacic. Impacting of Drinking Water Preozonation on Granular Activated Carbon Quality and Performance. Ozone Sci. Eng. 1997, 19(1): 1~11
    111 N. K. V. Leitner, F. Delano?, B. Acedo et al. Reactivity of Various Ru/CeO2 Catalysts during Ozonation of Succinic Acid Aqueous Solutions. New J. Chem. 2000, 24(4): 229~233
    112 H. X. Fu, N. K. V. Leitner, B. Legube. Catalytic Ozonation of Chlorinated Carboxylic Acids with Ru/CeO2–TiO2 Catalyst in the Aqueous System. New J. Chem. 2002, 26(11): 1662~1666
    113 N. K. V. Leitner, H. X. Fu. pH Effects on Catalytic Ozonation of Carboxylic Acid with Metal on Metal Oxides Catalysts. Top. Catal. 2005, 33(1-4): 249~256
    114 M. Carbajo, F. J. Rivas, F. J. Beltrán, et al. Effects of Different Catalysts on the Ozonation of Pyruvic Acid in Water. Ozone Sci. Eng. 2006, 28(4): 229~235
    115 Y. R. Zhou, W. P. Zhu, F. D. Liu, et al. Catalytic Activity of Ru/Al2O3 for Ozonation of Dimethyl Phthalate in Aqueous Solution. Chemosphere. 2007, 66(1): 145~150
    116周云瑞,祝万鹏,陈迅.铈掺杂Ru/Al2O3催化臭氧化降解邻苯二甲酸二甲酯.中国环境科学. 2006, 26(4): 445~448
    117 J. J. Lin, T. Nakajima, T. Jomoto, et al. Effective Catalysts for Wet Oxidation of Formic Acid by Oxygen and Ozone. Ozone Sci. Eng. 2000, 22(3): 241~247
    118 D. S. Pines, D. A. Reckhow. Solid Phase Catalytic Ozonation Process for Destruction of a Model Pollutant. Ozone Sci. Eng. 2003, 25(1): 25~39
    119 C. Quispe, J. Villaseňor, G. Pecchi, et al. Catalytic Ozonation of Oxalic Acid with MnO2/TiO2 and Rh/TiO2. J. Chil. Chi. Soc. 2006, 51(4): 1049~1051
    120 B. Tepu?, M. Simoni?. The Effect of Platinum Catalyst on Decomposition of Ozone and Atrazine Removal. J. Adv. Oxid. Technol. 2007, 10(1): 202~208
    121 M. Sánchez-Polo, J. Rivera-Utrilla, U. von Gunten. Metal-doped Carbon Aerogels as Catalysts during Ozonation Processes in Aqueous Solutions. Water Res. 2006, 40(18): 3375~3384
    122朱宏伟,吴德海,徐才录.碳纳米管.机械工业出版社, 2003: 43
    123 H. O. Pierson. Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications. Noyes Publications, 1993: 44
    124 D. D. L. Chung. Review Graphite. J. Mater. Sci. 2002, 37(8): 1475~1489
    125 S. Iijima. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354(6348): 56~58
    126 E. T. Thostenson, Z. F. Ren, T. W. Chou. Advances in the Science and Technology of Carbon Nanotubes and Their Composites: a Review. Comp. Sci. Technol. 2001, 61(13): 1899~1912
    127 P. M. Ajayan. Nanotubes from Carbon. Chem. Rev. 1999, 99(7): 1787~1799
    128 J. M. Planeix, N. Couste, B. Coq, et al. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis. J. Am. Chem. Soc. 1994, 116(17): 7935~7936
    129 P. Serp, M. Corrias, P. Kalck. Carbon Nanotubes and Nanofibers in Catalysis. Appl. Catal. A: Gen 2003, 253(2): 337~358
    130 M. F. R. Pereira, J. L. Figueiredo, J. J. M.órf?o, et al. Catalytic Activity of Carbon Nanotubes in the Oxidative Dehydrogenation of Ethylbenzene. Carbon. 2004, 42(14): 2807~2813
    131 A. M. Zhang, J. L. Dong, Q. H. Xu, et al. Palladium Cluster Filled in Inner of Carbon Nanotubes and Their Catalytic Properties in Liquid Phase Benzene Hydrogenation. Catal. Today. 2004, 93-95: 347~352
    132 F. Luck. Wet Air Oxidation: Past, Present and Future. Catal. Today. 1999, 53: 81~91
    133 H. T. Gomes, P. V. Samant, P. Serp, et al. Carbon Nanotubes and Xerogels as Supports of Well-dispersed Pt Catalysts for Environmental Applications. Appl. Catal. B: Environ. 2004, 54(3): 175~182
    134 J. Garcia, H. T. Gomes, P. Serp, et al. Platinum Catalysts Supported on MWCNT for Catalytic Wet Air Oxidation of Nitrogen Containing Compounds. Catal. Today 2005, 102-103: 101~109
    135 J. Garcia, H. T. Gomes, P. Serp, et al. Carbon Nanotubes Supported Ruthenium Catalysts for the Treatment of High Strength Wastewater with Aniline Using Wet Air Oxidation. Carbon. 2006, 44(12): 2384~2391
    136 G. Ovejero, J. L. Sotelo, M. D. Romero, et al. Mulltiwalled Carbon Nano-tubes for Liquid-phase Oxiadation. Functionalization, Characterization, and Catalytic Activity. Ind. Eng. Chem. Res. 2006, 45(7): 2206~2212
    137 G. Ovejero, J. L. Sotelo, A. Rodríguez, et al. Platinum catalyst on multiwalled carbon nanotubes for the catalytic wet air oxidation of phenol. Ind. Eng. Chem. Res. 2007, 46(20): 6449-6455
    138 S. Yang, W. Zhu, X. Li, et al. Multi-walled Carbon Nanotubes (MWNTs) as an Efficient Catalyst for Catalytic Wet Air Oxidation of Phenol. Catal. Commun. 2007, 8(12): 2065~2069
    139 S. Yang, X. Li, W. Zhu, et al. Catalytic Activity, Stability and Structure of Multi-walled Carbon Nanotubes in the Wet Air Oxidation of Phenol. Carbon 2008, 46(3):445~452
    140温轶,施利毅,方建慧,等.压缩集结碳纳米管电极对活性艳红染料的电催化降解研究.化学学报. 2006, 64(5): 439~443
    141孔祥晋,潘湛昌,张环华,等.石墨负载TiO2薄膜电极光电催化降解甲基橙研究.工业水处理. 2005, 12(12): 24~26
    142李明玉,熊林,陈芸芸,等.光/电/化学催化降解水中酸性大红3R染料的研究.中国科学(B辑):化学. 2005, 35(2): 144~150
    143 E. Auer, A. Freund, J. Pietsch, et al. Carbons as Supports for Industrial Precious Metal Catalysts. Appl. Catal. A: Gen. 1998, 173(2): 259~271
    144 F. Lücking, H. K?ser, M. Jank, et al. Iron Powder, Graphite and Activated Carbon as Catalysts for the Oxidation of 4-chlorophenol with Hydrogen Peroxide in Aqueous Solution. Water Res. 1998, 32(9): 2607~2614
    145 Z. P. G. Masende, B. F. M. Kuster, K. J. Ptasinski, et al. Kinetics of Malonic Acid Degradation in Aqueous Phase over Pt/graphite Catalyst. Appl. Catal. B: Environ. 2005, 56(3): 189~199
    146 P. Gallezot, S. Chaumet, A. Perrard, et al. Catalytic Wet Air Oxidation ofAcetic Acid on Carbon-supported Ruthenium Catalysts. J. Catal. 1997, 168(1): 104~109
    147 J. Viňals, E. Juan, A. Roca, et al. Leaching of Metallic Siliver with Aqueous Ozone. Hydrometallurgy. 2005, 76(3-4): 225~232
    148 J. Viňals, E. Juan, M. Ruiz, et al. Leaching of Gold and Palladium with Aqueous Ozone in Dilute Chloride Media. Hydrometallurgy. 2006, 81(2): 142~151
    149 K. L. Rakness, G. Gordon, B. Langlais, et al. Guideline for Measurement of Ozone Concentration in the Process Gas from an Ozone Generator. Ozone Sci. Eng. 1996, 18(3): 209~229
    150 H. Bader, J. Hoigné. Determination of Ozone in Water by the Indigo Method. Water Res. 1981, 15(4): 449~456
    151 H. Bader, V. Sturzenegger, J. Hoigné. Photometric Method for the Determination of Low Concentrations of Hydrogen Peroxide by the Peroxidase Catalyzed Oxidation of N,N-Diethyl-p-Phenylenediamine (DPD). Water Res. 1988, 22(9): 1109~1115
    152 J. S. Noh, J. A. Schwarz. Effect of HNO3 Treatment on the Surface Acidity of Activated Carbons. Carbon. 1990, 28(5): 675~682
    153 J. A. Menéndez, J. Phillips, B. Xia, et al. On the Modification and Characterization of Chemical Surface Properties of Activated Carbons: In the Search of Carbons with Stable Basic Properties. Langmuir. 1996, 12(18): 4404~4410
    154 H. P. Boehm. Chemical Identification of Surface Groups. In Advances in Catalysis (Edited by D. D. Eley, H. Pines, P. B. Weisz) Academic Press, 1966, 16: 179~274
    155 H. P. Boehm. Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon. 1994, 32(5): 759~769
    156 H. Hu, P. Bhowmik, B. Zhao, et al. Determination of the Acidic Sites of Purified Single-walled Carbon Nanotubes by Acid-base Titration. Chem. Phys. Lett. 2001, 345(1-2): 25~28
    157 P. C. C. Faria, J. J. M.órf?o, M. F. R. Pereira. Activated Carbon Catalytic Ozonation of Oxamic and Oxalic Acids. Appl. Catal. B: Environ. 2008, 79(3): 237~243
    158 M. Gurrath, T. Kuretzky, H. P. Boehm, et al. Palladium Catalysts on Activated Carbon Supports Influence of Reduction Temperature, Origin of the Support and Pretreatments of the Carbon Surface. Carbon. 2000, 38(8): 1241~1255
    159 A. Guha, W. Lu, T. A. Zawodzinski Jr., et al. Surface-modified Carbons as Platinum Catalyst Support for PEM Fuel Cells. Carbon. 2007, 45(7): 1506~ 1517
    160孙志忠,赵雷,马军.水中本底成分对催化臭氧化分解微量硝基苯的影响.环境科学. 2006, 27(2): 285~289
    161 Y. C. Hsu, J. H. Chen, H. C. Yang. Calcium Enhanced COD Removal for the Ozonation of Phenol Solution. Water Res. 2007, 41(1): 71~78
    162 F. J. Beltrán, O Gimeno, F. J. Rivas, et al. Photocatalytic Ozonation of Gallic Acid in Water. J. Chem. Technol. Biotechnol. 2006, 81: 1787~1796
    163 M. Toebes. Carbon Nanofibers as Catalyst Support for Noble Metals. Ph.D. Thesis of Utrecht University. 2001: 6
    164 S. Banerjee, S. S. Wong. Rational Sidewall Functionalization and Purification of Single-Walled Carbon Nanotubes by Solution-phase Ozonolysis. J. Phys. Chem. B. 2002, 106(47): 12144~12151
    165 D. B. Mawhinney, V. Naumenko, A. Kuznetsova, et al. Infrared Spectral Evidence for the Etching of Carbon Nanotubes: Ozone Oxidation at 298K. J. Am. Chem. Soc. 2000, 122(10): 2383~2384
    166 O. Byl, J. Liu, J. T. Yates. Etching of Carbon Nanotubes by Ozone - A Surface Area Study. Langumir. 2005, 21(9): 4200~4204
    167 Z. Y. Chen, K. J. Ziegler, J. Shaver, et al. Cutting of Single-Walled Carbon Nanotubes by Ozonolysis. J. Phys. Chem. B. 2006, 110(24): 11624~11627
    168 M. L. Sham, J. Y. Kim. Surface Functionalities of Multi-wall Carbon Nano-tubes After UV/ozone and TETA Treatments. Carbon. 2006, 44(4): 768~777
    169 J. M. Simmons, B. M. Nichols, S. E. Baker, et al. Effect of Ozone Oxidation on Single-Walled Carbon Nanotubes. J. Phys. Chem. B. 2006, 110(14): 7113~7118
    170 A. Kuznetsova, D. B. Mawhinney, V. Naumenko, et al. Enhancement of Adsorption Inside of Single-walled Nanotubes: Opening the Entry Ports. Chem. Phys. Lett. 2000, 321(3-4): 292~296
    171 A. Kuznetsova, I. Popova, J. J. T. Yates, et al. Oxygen-containing Functional Groups on Single-wall Carbon Nanotubes: NEXAFS and Vibrational Spectroscopic Studies. J. Am. Chem. Soc. 2001, 123(43): 10699~10704
    172 M. Endo, B. J. Lee, Y. A. Kim, et al. Transitional Behaviour in the Transformation from Active End Planes to Stable Loops Caused by Annealing. New. J. Phys. 2003, 5(121): 1~9
    173 D. B. Mawhinney, V. Naumenko, A. Kuznetsova, et al. Surface Defect Site Density on Single Walled Nanotubes by Titration. Chem. Phys. Lett. 2000, 324(1-3):213~216
    174 J. A. Menéndez, B. Xia, J. Phillips, et al. On the Modification and Characterization of Chemical Surface Properties of Activated Carbons: Microcalorimetric, Electrochemical, and Thermal Desorption Probes. Langmuir. 1997, 13(13): 3414~3421
    175 J. Lin, A. Kawai, T. Nakajima. Effective Catalysts for Decomposition of Aqueous Ozone. Appl. Catal. B: Environ. 2002, 39(2): 157~165
    176 T. Onoe, S. Iwamoto, M. Inoue. Synthesis and Activity of the Pt Catalyst Supported on CNT. Catal. Commun. 2007, 8(4): 701~706
    177 H. Vu, F. Gon?alves, R. Philippe, et al. Bimetallic Catalysis on Carbon Nanotubes for the Selective Hydrogenation of Cinnamaldehyde. J. Catal. 2006, 240(1):18~22
    178 A. Guerrero-Ruiz, P. Badenes, I. Rodríguez-Ramos. Study of Some Factors Affecting the Ru and Pt Dispersions Over High Surface Area Graphite-supported Catalysts. Appl. Catal. A: Gen. 1998, 173(2): 313~321
    179潘履让.固体催化剂的设计与制备.南开大学出版社, 1993: 171~181
    180 F. Coloma, A. Sepúlveda-Escribano, J. L. G. Fierro, et al. Preparation of Platinum Supported on Pregraphitized Carbon-blacks. Langmuir 1994, 10(3): 750~755
    181 A. Sepúlveda-Escribano, F. Coloma, F. Rodríguez-Reinoso. Platinum Catalysts Supported on Carbon Blacks with Different Surface Chemical Properties. Appl. Catal. A: Gen. 1998, 173(2): 247~257
    182 A. E. Schweizer, G. T. Kerr. Thermal Decomposition of Hexachloroplatinic Acid. Inorg. Chem. 1978, 17(8): 2326-2327
    183 P. C. Biswas, Y. Nodasaka, M. Enyo. Electrocatalytic Activities of Graphite-supported Platinum Electrodes for Methanol Electrooxidation. J. Appl. Electrochem. 1996, 26(1): 30~35
    184 G. Jia, H. F. Wang, L. Yan, et al. Cytotoxicity of Carbon Nanomaterials: Single-wall Nanotube, Multi-wall Nanotube, and Fullerene. Environ. Sci. Technol. 2005, 39(5): 1378~1383
    185 K. A. D. Guzmán, M. R. Taylor, J. F. Banfield. Environmental Risk of Nano-technology: National Nanotechnology Initiative Funding, 2000-2004. Environ. Sci. Technol. 2006, 40(5):1401~1407
    186 K. Otsuka, Y. Abe, N. Kanai, et al. Synthesis of Carbon Nanotubes on Ni/carbon-fiber Catalysts under Mild Conditions. Carbon. 2004, 42(4): 727~736
    187 S. Kawasaki, M. Shinoda, T. Shimada, et al. Single-walled Carbon Naotubes Grown on Natural Minerals. Carbon. 2006, 44(11): 2139~2141
    188 S. F. Yin, B. Q. Xu, W. X. Zhu, et al. Carbon Nanotubes-supported Ru Catalyst for the Generation of COx-free Hydrogen from Ammonia. Catal. Today. 2004, 93-95: 27~38
    189 K. S. Kim, N. Winograd, R. E. Davis. Electron Spectroscopy of Platinum-oxygen Surfaces and Application to Electrochemical Studies. J. Am. Chem. Soc. 1971, 93(23): 6296~6297
    190 R. T. K. Baker, N. Rodriguez, A. Mastalir, et al. Platinum/graphite Nanofiber Catalysts of Various Structure: Characterization and Catalytic Properties. J. Phys. Chem. B 2004, 108(38): 14348~14355
    191 B. Legube, N. K. V. Leitner. Catalytic Ozonation: a Promising Advanced Oxidation Technology for Water Treatment. Catal. Today 1999, 53: 61~72
    192 R. Andreozzi, A. Insola, V. Caprio, et al. The Kinetics of Mn(II)-catalysed Ozonation of Oxalic Acid in Aqueous Solution. Water Res. 1992, 26(7): 917~921
    193 R. Andreozzi, A. Insola, V. Caprio, et al. The Use of Manganese Dioxide as a Heterogeneous Catalyst for Oxalic Acid Ozonation in Aqueous Solution. Appl. Catal. A: Gen. 1996, 138(1): 75~81
    194 R. Andreozzi, A. Insola, V. Caprio, et al. Kinetics of Oxalic Acid Ozonation Promoted by Heterogeneous MnO2 Catalyst. Ind. Eng. Chem. Res. 1997, 36(11): 4774~4778
    195 D. S. Pines, D. A. Reckhow. Effect of Dissolved Cobalt(II) on the Ozonation of Oxalic Acid. Environ. Sci. Technol. 2002, 36(19): 4046~4051
    196 F. J. Beltrán, F. J. Rivas, R. Montero-de-Espinosa. Ozonation-enhanced Oxidation of Oxalic Acid in Water with Cobalt catalysts. 1. Homogeneous Catalytic Ozonation. Ind. Eng. Chem. Res. 2003, 42(14): 3210~3217
    197 F. J. Beltrán, F. J. Rivas, R. Montero-de-Espinosa. Catalytic Ozonation of Oxalic Acid in an Aqueous TiO2 Slurry Reactor. Appl. Catal. B: Environ. 2002, 39(3): 221~231
    198 K. M. Bulanin, J. C. Lavalley, A. A. Tsyganenko. Infrared Study of Ozone Adsorption on TiO2(Anatase). J. Phys. Chem. 1995, 99(25): 10294~10298
    199 F. J. Beltrán, F. J. Rivas, R. Montero-de-Espinosa. A TiO2/Al2O3 Catalyst to Improve the Ozonation of Oxalic Acid in Water. Appl. Catal. B: Environ. 2004, 47(2): 101~109
    200 F. J. Beltrán, F. J. Rivas, R. Montero-de-Espinosa. Iron Type catalysts for the Ozonation of Oxalic Acid in Water. Water Res. 2005, 39(15): 3553~3564
    201 C. A. Leon y Leon, J. M. Solar, V. Calemma, et al. Evidence for the Protonation of Basal Plane Sites on Carbon. Carbon. 1992, 30(5): 797~811
    202 M. S. Hossain, D. Tryk, E. Yeager. The Electrochemistry of Graphite and Modified Graphite Surfaces: the Reduction of O2. Electrochimica. Acta. 1989, 34(12): 1733~1737
    203 E. Ahumada, H. Lizama, F. Orellana, et al. Catalytic Oxidation of Fe(II) by Activated Carbon in the present of Oxygen. Effect of the Surface Oxidation Degree on the Catalytic Activity. Carbon. 2002, 40(15): 2827~2834
    204 K. Sehested, H. Corfitzen, J. Holcman, et al. On the Mechanism of the Decomposition of Acidic O3 Solutions, Thermally or H2O2-Initiated. J. Phys. Chem. A 1998, 102(16): 2667~2672
    205 I. Fábián. Reactive Intermediates in Aqueous Ozone Decomposition: a Mechanistic Approach. Pure Appl. Chem. 2006, 78(8): 1559~1570
    206 H. H. Huang, M. C. Lu, J. N. Chen, et al. Catalytic Decomposition of Hydrogen Peroxide and 4-Chlorophenol in the Presence of Modified Activated Carbons. Chemosphere. 2003, 51(9): 935~943
    207 L. C. A. Oliveira, C. N. Silva, M. I. Yoshida, et al. The Effect of H2 Treat-ment on the Activity of Activated Carbon for the Oxidation of OrganicContaminants in Water and the H2O2 Decomposition. Carbon. 2004, 42(11): 2279~2284
    208钟理.叔丁醇水溶液臭氧氧化的降解过程及反应机理研究.现代化工. 1999, 19(2): 25~27
    209 J. Nawrocki, B. Kasprzyk-Hordern. Comments on“Solid Phase Catalytic Ozonation Process for the Destruction of a Model Pollutant”by D. S. Pines and D. A. Reckhow (Ozone Sci. Eng. 25(2003), 25). Ozone Sci. Eng. 2003, 25(6): 535~537
    210 C. Moreno-Castilla. Adsorption of Organic Molecules from Aqueous Solutions on Carbon Materials. Carbon 2004, 42(1): 83~94
    211 Y. Pi, M. Ernst, J. Schrotter. Effective of Phosphate Buffer upon CuO/Al2O3 and Cu(II) Catalyzed Ozonation of Oxalic Acid Solution. Ozone Sci. Eng. 2003, 25(5): 393~397
    212 L. R. Radovic, C. Moreno-Castilla, J. Rivera-Utrilla, Carbon Materials as Adsorbents in Aqueous Solutions. In Chemistry and Physics of Carbon (Edited by: L. R. Radovic) Dekker, 2001, 27: 227~406
    213 W. H. Glaze, J. W. Kang. Advanced Oxidation Processes Test of a Kinetic Model of the Oxidation of Organic Compounds with Ozone and Hydrogen Peroxide in a Semibatch Reactor. Ind Eng Chem Res. 1989, 28(11):1580~ 1587
    214 M. A. Montes-Morán, D. Suárez, J. A. Menéndez, et al. On the Nature of Basic Sites on Carbon Surfaces: An Overview. Carbon 2004, 42(7): 1219~1225
    215 T. J. Fabish, D. E. Schleifer. Surface Chemistry and the Carbon Black Work Function. Carbon 1984, 22(1): 19-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700