2,4,6-三氯酚慢性暴露对青鳉生长和生殖影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2,4,6-三氯酚(2,4,6-TCP)是化工生产中的重要原料,可用作杀菌剂、防腐剂、脱叶剂,在有机合成、造纸和印染行业中得到使用广泛,目前在工业废水、污水处理厂排放废水、农药废水、垃圾渗滤液、饮用水和河水中都检测到它的存在,美国环境保护署(EPA)已经确定2,4,6-三氯酚为疑似致癌物。
     目前,针对三氯酚的毒性研究大多集中于水生生物某一生理阶段上的急性和亚急性毒性,而它在整个世代暴露的慢性影响研究较少。在自然环境中,大多数情况下污染物对鱼类的影响可能作用于整个发育和繁殖过程,慢性毒性研究的结果将更接近于实际环境,有助于人们了解环境内分泌干扰物对鱼类生理生态的影响机制。
     青(?)是发源于日本的一种小型鱼类,易于饲养,对水质的环境变化特别敏感。成熟青(?)个体小,体长3-4 cm,繁殖力强。20世纪初日本开始将青(?)用于毒理学实验研究,作为供试物种在生理学、生态学和内分泌学等领域被逐渐采用,研究涉及青(?)的培育、饲养管理和实验操作等方面,目前被广泛用于毒理学实验。
     本文以日本青(?)(Oryzias latipes)为实验动物,研究了2,4,6-三氯酚对青(?)整个世代生长、生殖能力和子代质量的影响。取性成熟的青(?)鱼,暴露在不同浓度水平(0,10,30,100,100,10000μg/L)的2,4,6-TCP溶液中,以0.01%(v/v)DMSO为溶剂对照。暴露28 d后,收集鱼卵,统计分析每对产卵数、存活个数和受精率;选取一组清水恢复饲养,另一组继续暴露直到性成熟,分别观察胚胎发育、孵化天数、孵化率、畸形率等生长和生殖指标的变化;成鱼暴露5周后,取鱼样考察畸形率和死亡率。本文获得了如下研究成果:
     1.总体来说,随着2,4,6-三氯酚暴露浓度的增加,青(?)的体长和体重均下降,但雄鱼在高浓度水平有回升现象;雌鱼的肝脏指数下降,而雄鱼在各浓度水平无明显影响。在低浓度组中,青(?)卵巢指数无显著变化;在高浓度组中,卵巢指数显著下降(p<0.05)。
     2.随着2,4,6-三氯酚暴露浓度的增加,青(?)的每天产卵对数没有明显变化,但每条雌鱼的产卵量下降;鱼卵的受精率下降,特别是在1000μg/L浓度水平,存在显著性差异(p<0.05);鱼卵的存活数在300和1000μgL浓度水平也显著下降(p<0.05)。
     3.子代孵化率在清水饲养后其孵化天数没有明显变化。孵化率在300和1000μg/L浓度组中显著下降。畸形率在100、300和1000μg/L各浓度组中都显著增加。继续暴露的子代,在孵化天数上仍然没有显著的变化。孵化率和畸形率在100、300和1000μg/L浓度组中均有显著性上升。与在清水中饲养的鱼卵相比,孵化率下降,畸形率均上升。暴露后,幼鱼在不同程度上出现了大量的畸形,出生后不久就死亡。
2,4,6-trichlorophenol (2,4,6-TCP) is a kind of important chemical material which could be much used as a antiseptic, food preservative and defoliant in industries like organic synthesis, paper making, and priting and dyeing. It could be detected in drinking water, river water, landfill leachate, and wastewater from chemical factories, sewage plants, and agricultural chemicals, etc. So,2,4,6-TCP may be potentially harmful to the aquatic ecosystem. The EPA has claimed that 2,4,6-TCP is, to some extent, carcinogenic substance.
     At present, research work on 2,4,6-TCP mostly lies on the acute and subacute researches on a certain physiological stage of the aquatic animals, while there has been less research work on the chronic influence researches exposed in the whole generation. In the natural environment and in most cases, the pollutants may be influential on the whole development and breeding process. And the results of the chronic research will be much closer to the actual environment, which contributes to people's comprehension of the physiological and ecological effect mechanism that the endocrine disruptors effect on the fish.
     medaka which is a kind of small fish originated from Japan, is easy to raise and very sensitive to the changes of water quality. The mature medaka is small with a full-length of 3 to 4 cm, and has strong reproductive capacity. In the beginning of 19~(th) century in Japan, the research on medaka has been started, which has been commonly used in physiology, ecology, endocrinology, and alike. Also, there have been systematic researches on breeding, feeding management, experiment operations, and so on. Nowadays, the medaka is widely used in toxicity test.
     With the medaka as the model organism, this dissertation researches into the influence of 2,4,6-TCP on the whole generation's development, reproductive performance, and the filial-generation's quality of the medaka.
     Take 20 pairs, each set, of medaka of sexual maturity and respectively expose them in the 2,4,6-TCP (0,10,30,100,100,10000μg/L),0.01%(v/v) DMSO of different concentration solvent as comparison. After 28 d of exposure, collect the roes and take statistics; choose one set and breed them in clear water, and another set still in the solvent until they get sexually mature; observe the embryos respectively; after the 5-week exposure of the mature fish, take some samples and make analysis.
     After the decline of the length and weight of the male, the dose-effect relationship takes on as the strength of the solvent intensifies. For the female, the length and weight declines in light concentration solvent as the concentration goes up, and picks up in high concentration solvent. The liver index of the male lowers with the solvent strength's increasing, while female's liver index doesn't take on significant changes in each solvent set of different concentration. The ovary index doesn't change markedly in sets of light concentration solvent; but it declines notably (p< 0.05) in sets of high concentration solvent.
     For medaka in the solvent, the number of laying-egg medaka doesn't make notable difference, but the egg laying amount of the female goes down, while, about the filial-generation's hatchability, the number of hatching days is of no marked changes during the feeding in the clear water. The hatching rate doesn't change significantly in solvent sets of light concentration, but goes down notably in solvent sets of high concentration (p< 0.05). The teratological rate begins to increase significantly in solvent sets of relatively high concentration (p< 0.05).
引文
[1]A. Boyd, D.R. Shelton. Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge [J]. Appl. Environ. Microbiol,1984,47(2):272-277.
    [2]邹桂香,戴友芝.氯酚类有机物的厌氧生物降解性[J].杭州化工,2007,37(3):12-13.
    [3]董爱明.氯酚类化合物生物降解的研究现状及其应用前景[J].净水技术,1996,55(1):18.
    [4]姜梅,牛世全,展惠英.氯酚类化合物的微生物降解研究进展[J].应用生态学报,2003,14(6):1003-1006
    [5]M.A. Farah, B. Ateeq, M.N. Ali, et al. Studies on lethal concentrations and toxicity stress of some xenobiotics on aquatic organisms [J]. Chemosphere,2004,55(2):257-265.
    [6]Y.S. Chen, Y.Y. Zhuang, S.G. Dai. A survey on the microbial degradation of chlorinated aromatic compounds [J]. Adv Environ Sci,1997,5(2):17-26.
    [7]G.W. Gribble. Natural production of organochlorine compounds. In:V. Turoski, Editor. Chlorine and chlorine compounds in the paper industry [M]. Chelsea Michigan:Ann Arbor Press,1995, 89-107.
    [8]F. Hodin, H. Boren, A. Grimvall, et al. Formation of chlorophenols and related compounds in natural and technical chlorination processes [J]. Water Science and Technology,1991,24: 403-410.
    [9]M.J. Grimwood, E. Dixon. Assessment of risks posed by List Ⅱ metals to Sensitive Marine Areas (SMAs) and adequacy of existing environmental quality standards (EQSs) for SMA protection [M]. Report to English Nature,1997.
    [10]J.M. Besser, N. Wang, F.J. Dwyer, et al. Assessing contaminant sensitivity of endangered and threatened aquatic species:Part Ⅱ. Chronic toxicity of copper and pentachlorophenol to two endanger species and two surrogate species [J]. Arch. Environ. Contain. Toxicol.,2005,48: 155-165.
    [11]USEPA. Environmental protection agency office of research and development national center for environmental assessment Cincinnati, OH. http: //nsdl.org/resource/2200/20061123103800304T,2002.
    [12]D.Q. Yin, H.J. Jin, L.W. Yu, et al. Deriving freshwater quality criteria for 2,4-dichlorophenol for protection of aquatic life in China [J]. Environmental Pollution,2003,122:217-222
    [13]D.Q. Yin, S.Q. Hu, H.J. Jin, et al. Deriving freshwater quality criteria for 2,4,6-trichlorophenol for protection of aquatic life in China [J]. Chemosphere,2003,52(1):67-73.
    [14]P.R. Parrish, E.E. Dyar, J.M. Enos, et al. Chronic toxicity of chlordane, trifluralin, and pentachlorophenol to sheepshead minnows (Cyprinodon variegatus) (EPA-600/3-78/010). United States Environmental Protection Agency, Washington, DC,1978.
    [15]P.W. Borthwick, S.C. Schimmel. Toxicity of pentachlorophenol and related compounds to early life stages of selected estuarine animals [M]. In:Rao KR (Ed) Pentachlorophenol:Chemistry, pharmacology, and environmental toxicology. Plenum:New York,1978,141-146.
    [16]杨霓云,刘征涛,王宏.五氯苯酚与邻氯苯酚和2,4-二氯苯酚对斑马鱼的联合毒性[J].环境科学研究,2006,19(6):145-148.
    [17]李静,吴端生,彭放.硝基苯类、氯酚类化合物对金鱼的急性毒性研究[J].湖南环境生物职业技术学院学报,2007,13(4):8-9.
    [18]卢玲,沈英娃.酚类、烷基苯类、硝基苯类化合物和环境水样对剑尾鱼和稀有驹鲫的急性毒性[J].环境科学研究,2002,15(4):57-59.
    [19]聂晶磊,刘锋,周春玉.氯酚类化合物对金鱼的急性和亚急性毒性研究[J].环境科学研究,2001,14(3):7-8.
    [20]E. Argese, C. Bettiol, A. Ghelle, et al. Submitochondrial particles as toxicity biosensors of chlorophenols [J]. Environ. Toxicol. Chem.,1995,14:363-368.
    [21]王连生,张峻峰,张峰.多氯酚类化合物对离体培养细胞的QSAR研究及毒性机理初探[J].科学通报,2004,(2):125-129.
    [22]王芳.水及鱼胆中氯酚的化学测定[J].国外医学卫生学分册,1997,24(3):162-164.
    [23]王芳,林少彬,陈亚妍.鱼组织中氯酚及其共轭物的分离与测定[J].卫生研究,1997,27(3):204-205.
    [24]D. Mckay, W.Y. Shui, K.C. Ma. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate of Organic Chemicals [M]. Lewis Publishers,1997, pp351-374.
    [25]I.H. Rogers, C.D. Levings, W.L. Lockhart, et al. Observations of Overwintering Juvenile Chinook Salmon(Oncorhynchus tshawytscha) Exposed to Bleached Kraft Mill Effluent in the Upper Fraser River, British Columbia [J]. Chemosphere,1989,19:1853-1868.
    [26]ATSDR. Agency for Toxic Substances and Disease Registry (ATSDR)/US Public Health Service, Toxicological Profile for Pentachlorophenol (Update), ATSDR, Atlanta, Georgia, USA, 1994.
    [27]王建龙.微生物群落对多氯酚的脱氯特性及机理研究[J].中国科学(B辑),2003,33(1):48-52.
    [28]J.L. Wang, Y. Qian. Microbial degradation of 4-chlorophenol by microorganisms entrapped in carrageenan-chitosan gels [J]. Chemosphere,1999,38:3109-3117.
    [29]N. Christiansen, B.K. Ahring. Desulftiobacterium hafiensen sp. nov, an anaerobic, reductively dechlorinating bacterium [J]. Int J Syst Bacteriol,1996,46:442-448.
    [30]T. Madsen, J. Aamand. Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture [J]. Appl Environ Microbiol,1992,58:557-561.
    [31]刘兴平.氯酚类有机污染物的生物降解研究进展[J].水资源保护,2008,24(4):58-61.
    [32]USEPA. Water Quality Criteria Summary, Ecological Risk Assessment Branch (WH-585) and Human Risk Assessment Branch (WH-550D). Health and Ecological Criteria Division, USEPA, Washington DC, USA,1991.
    [33]叶雪平,邵晓阳,祝丽萍.五氯酚对银鲫生理代谢的影响[J].农业环境科学学报,2006,25(4):880-884.
    [34]章征忠,张兆琪,董双林.pH、盐度、碱度对淡水养殖种类影响的研究进展[J].中国水产科学,1999,6(12):95-98.
    [35]郭宪光,张耀光,陈达丽.酸性水对鱼类的影响[J].淡水渔业,2003,33(1):46-49.
    [36]H. Igisu, N. Hamasaki, M. Ikeda. High cooperative inhibition of acetycholinesterase by pentachlorophenol in human erythocytes [J]. Biochem P Harmacol,1993,46(1):175-177.
    [37]Yin D Q, Jin H J, Yu L W, et al. Deriving freshwater quality criteria for 2,4-dichlorophenol for protection of aquatic life in China [J]. Environmental Pollution,2003,122:217-222
    [38]Yin DQ, Hu SQ, Jin HJ, et al. Deriving freshwater quality criteria for 2,4,6-trichlorophenol for protection of aquatic life in China. Chemosphere,2003,52:67-73
    [39]Besser J M, Wang N, Dwyer F J, et al. Assessing contaminant sensitivity of endangered and threatened aquatic species:Part Ⅱ. Chronic toxicity of copper and pentachlorophenol to two endanger species and two surrogate species [J]. Arch. Environ. Contain. Toxicol.,2005,48: 155-165.
    [40]Parrish P R, Dyar E E, Enos J M, et al. Chronic toxicity of chlordane, trifluralin, and pentachlorophenol to sheepshead minnows (Cyprinodon variegatus) (EPA-600/3-78/010) [M]. United States Environmental Protection Agency, Washington, DC.,1978.
    [41]Preston B L, Snell T W, Fields D M, et al. The effects of fluid motion on toxicant sensitivity of the rotifer Brachionus calyciflorus [J]. Aquatic Toxicology,2001.52:117-131.
    [42]RTECS. Phenol, pentachloro-(SM 6300000) and phenol, pentachloro-, sodium salt (SM 6650000). In:Lewis, R.J., Tathen Sr., R.L. (Eds.), Registry of Toxic Effects of Chemical Substances,1979 ed., Vol.2. US Department of Health and Human Services, Cincinnati, OH, 1980.
    [43]Johnson W W, Finley M T. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. Resource Publication 137, US Department of Interior, Fish and Wildlife Service,
    Washington, DC,1980, pp.6-56.
    [44]Rasanen L, Hattula ML, Arstila AU.1977. The mutagenicity of MCPA and its soil metabolites, chlorinated phenols, catechols and some widely used slimicides in Finland. Bulletin of environmental contamination and toxicology,18(5):565-571.
    [45]Argese E, Bettiol C, Ghelle A, et al. Submitochondrial particles as toxicity biosensors of chlorophenols [J]. Environ. Toxicol. Chem.1995,14,363-368.
    [46]Wang F, Lin S B, Chen Y Y. Study on the existence, distribution and bioaccumulation of chlorophenols in Crucian carps [J]. Journal of Hygiene Research,1999,28(3):169-171.
    [38]EPA. Health and environmental effects document for chlorinated phenols. US Environmental Protection Agency:Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Office of Research and Development. Cincinatti, OH. ECAO-CIN-G013,1987.
    [47]Sappington L C, Mayer F L, Dwyer F J, et al. Contaminant sensitivity of threatened and endangered fishes compared to standard surrogate species [J]. Environ Toxicol Chem.2001, 20(12):2869-2876.
    [48]USEPA,2002. Environmental protection agency office of research and development national center for environmental assessment Cincinnati-OH. http://nsdl.org/resource/2200/ 20061123103800304T.
    [49]蒋洁,陈江宁,于红霞,等.多氯酚类化合物对离体培养细胞的QSAR研究及毒性机理初探[J].科学通报,2004,49(2):125-129.
    [50]张民,王珺,顾宇飞,等.鲫鱼肝脏代谢酶和血清性激素对低浓度五氯酚的响应[J].’环境科学研究,2004,17(4):57-60.
    [51]洪华常,周海云,蓝崇钰.五氯酚对斜生栅藻的毒性效应研究[J].环境科学研究,2003,16(6):23-25.
    [52]邓义敏.水中苯酚、五氯酚、2,4,6-三氯酚的高效液相色谱法[J].云南环境科学,2000,19(4):59-61.
    [53]尚素芬,蒋守规.一氯酚、三氯酚和五氯酚的高效液相色谱测定方法[J].河北大学学报(自然科学版),1995,15(4):37-41
    [54]仔昌松,赵萍.顶空固相微萃取气相色谱法测定水中2,4,6-三氯酚的研究[J].中国卫生检验杂志,2003,13(1):58-59
    [55]Roger Galve, Fnarcisco Snachez-Baeza, Fnarciseo Camps, et al. Indierct competitive immunoassay for trtichloprhenol determination Ratlona levaluation of the competitor heterology effect [J]. Anal. Chim. Acta,2002,452(2):191-206.
    [56]赵兵,刘征涛,徐章法,等.酚类化合物对金鱼幼鱼的雌激素效应研究[J].环境科学学报,2005,25(9):1259-1264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700