钢渣的处理与综合应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢渣是一种工业废渣,堆放它们会压占大量的土地资源,造成水体和空气污染。对钢渣进行回收利用不仅可以保护环境,还能充分利用自然资源,提高利用率。本课题的研究目的是通过实验寻找能处理利用钢渣的工艺,解决钢厂的固体废弃物污染问题。针对本课题所用钢渣的特性,寻找合理的应用方法。
     为寻找合理的应用方法,首先要了解钢渣的性质,尤其是化学成分、化学性质和矿物学成分,所以在实验之前,必须对钢渣进行相关的测试,经测定知道本钢渣中铁、铝、硅、钙是主要元素,它们主要以各种矿物的形式存在,如硅酸二钙(C2S)、硅酸三钙(C3S)、铁铝酸钙、水化硅酸钙(CSH)和氢氧化钙(CH)等,它们具有一定的水化胶凝特性,可以用于工程建设。
     针对钢渣的胶凝特性,可以将钢渣用作熟料制备钢渣水泥,石膏对其胶凝特性具有一定的激发能力,按照水泥熟料的各种指标设计各物质间的配比,并参照国家标准GB/T 17671-1999规定的测试方法测试相关性能,通过分析发现钢渣已经发生一定程度的水化,胶凝性能明显减弱,各项强度远小于国家标准的要求。所以利用钢渣生产钢渣水泥的方法不可行,必须寻找其他利用方式。
     由钢渣的化学成分可知,可以利用钢渣制备絮凝剂,但是在合成絮凝剂之前必须使铁、铝溶解出来。经过参阅有关文献可知盐酸是最好的溶剂,并考查固液比、酸浸温度以及酸浸时间对浸出率的影响,通过实验找到最佳浸出条件,即1g钢渣加入3mol/L的盐酸16mL在60℃的条件下浸取2h,此时铁、铝的浸出率最大。然后外加一定聚合度的硅酸进行聚合,即可制备絮凝剂。分别考察Si:(Fe+Al)、熟化聚合温度和聚合pH值对絮凝剂性能的影响,通过单因素实验和正交试验,发现最佳聚合工艺,即Si:(Fe+Al)为3(摩尔比),聚合温度为60℃,聚合pH值为1.5,聚合时间为2h以上。
     在水处理中,絮凝剂的投加量和水样的pH值都是影响絮凝效果的主要因素,为寻找最佳使用条件分别考察絮凝剂对模拟废水以及大蒜废水的处理效果,主要考察指标有浊度和COD的去除率。此次制备的絮凝剂聚硅酸氯化铝铁的最佳投加量为120mg/L,适用pH值在7.0~8.0之间,是一种非常经济的水处理剂。
     利用工业废物生产工业产品实现以废制废的目的,不仅节约成本还可以治理环境污染,是一种非常有潜力的方法。
Steel slag as one of industrial waste took up large quantities of land resources, and caused water and air pollution. The recycling of steel slag can not only protect the environment, but also make use of natural resources effectively and promote utilization ratio of resources. The research purpose of this paper is to look for the reasonable method of reusing the steel slag comprehensively through the experiment, and then solve the pollution problem.
     In order to find a reasonable method of application, we must first understand the various properties of steel slag, especially the chemical composition, chemical properties and mineralogical composition. So before the experiment, relative testing on the slag must be conducted. By the determination it shows that iro、aluminum、silicon and calcium are the main elements which are mainly in the form of various minerals, such as calcium silicate(C2S)、. tricalcium silicate(C3S), calcium silicate hydrate(CSH) and calcium hydroxide(CH), et al. These elements have some cementitious properties of hydration and can be used in building material industry.
     Because of its cementitious properties, steel slag can be used as clinker to prepare the steel slag cement. Cementitious properties of steel slag can be activated to a certain degree by gypsum. According to various indicators of cement, the proportion of each substance was determined. Compressive strength and flexural strength was tested in accordance with state Standard GB/T 17671-1999. The results showed that steel slag had hydrated to a certain degree. Its activity reduced significantly and the intensity is much less than the national standard. Therefore, using steel slag to produce slag cement is not feasible, we must look for some other ways.
     As the chemical composition of steel slag, it can be prepared for flocculant, but before that, iron and aluminum must be dissolved out. Referring to the literature, the best method was using hydrochloric acid. Then the influence of solid-liquid ratio, leaching temperature and leaching time on leaching rate was examined, and then the best leaching conditions was found, that was, under the condition of 60℃and 2h, adding 3 mol/L of hydrochloric acid to 1g slag, aluminum and iron leaching rate was the highest. Flocculant could be prepared after a certain degree of polymerization of silicic acid was added. Many flocculant performance parameters was studied, such as Si:(Fe+Al), curing polymerization temperature and polymerization pH value. Through single factor experiments and orthogonal test, the best polymerization process was found, namely Si:(Fe+Al) was 3 (molar ratio), polymerization temperature was 60℃, pH was 1.5 and polymerization reaction time was more than 2h.
     In water treatment, the dosage of flocculants and pH value of water sample are the main factors which affect flocculation. In order to search for the best condition, the experiment study using steel slag flocculant to process simulated wastewater and garlic wastewater respectively. The indicators turbidity and COD removal efficiency were studied. Results show the best dosage of flocculant (PAFCSi) is 120mg/L, pH range from 7.0 to 8.0, so it is a very economical water treatment agent.
     Turning waste into industrial products can achieve the purpose of using waste to treat environmental pollution, it is also a kind of economic and effective method which has great significance.
引文
[1]舒型武.钢渣特性及其综合利用技术.有色冶金设计与研究,2007,28(5):31~34
    [2]钱强.攀钢钢渣、铁渣中金属铁资源的回收.矿产保护与利用,2007,(4):52-54
    [3]黄勇刚,狄焕芬,祝春水.钢渣综合利用的途径.工业安全与环保,2005,31(1):44~46
    [4]Topkaya Y, Sevinc N, Gunaydin A. Slag treatment at Kardemir integrated iron and steel works. International journal of mineral processing,2004,74 (1~4):31~39
    [5]张乐军,陆雷,赵莹.钢渣粉煤灰微晶玻璃的研制.新型建筑材料,2007,(1):7-9.
    [6]Karamberi A, Orkopoulos K, Moutsatsou A. Synthesis of glass-ceramics using glass cullet and vitrified industrial by-products. Journal of the European Ceramic Society,2007,27(2~3):629~ 636
    [7]袁萍,孙家瑛,任传军.钢渣微分对沥青混合材料性能影响研究.建筑施工,2007,29(6):443-444
    [8]朱跃刚,陈仁民,梁润红.钢渣在道路工程中的应用研究.中国废钢铁,2007,1(1):20-22
    [9]Maslehuddin M, Shameem M, Ibrahim M, et al. Comparison of properties of steel slag and crushed limestone aggregate concretes. Construction and Building Materials,2003,17 (2):105~112
    [10]Perviz A, Burak S. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. Journal of Hazardous Materials,2009,165 (1~3):300~305
    [11]Hisham Q, Faisal S, Ibrahim A. Use of low CaO unprocessed steel slag in concrete as fine aggregate. Construction and Building Materials,2009,23 (2):1118~1125
    [12]Tsakiridis P E, Papadimitriou G D, Tsivilis S. Utilization of steel slag for Portland cement clinker production. Journal of Hazardous Materials,2008,152 (2):805~811
    [13]Monshi A, Asgarani M K. Producing portland cement from iron and steel slags and limestone. Cement and Concrete Research.1999,29 (9):1373~377
    [14]Shi C J. Characteristics and cementitious properties of ladle slag fines from steel production. Cement and Concrete Research,2002,32 (3):459~462
    [15]Altun I A, Yilmaz I S. Study on steel furnace slags with high MgO as additive in Portland cement. Cement and Concrete Research,2002,32 (8):1247~1249
    [16]Shi P H, Wu Z Z, Chang H L. Characteristics of bricks made from waste steel slag. Waste Management,2004,24 (10):1043~1047
    [17]Medhat S, ElMahllawy E. Characteristics of acid resisting bricks made from quarry residues and waste steel slag. Construction and Building Materials,2008,22 (8):1887~1896
    [18]刘盛余,马少健,高谨,等.钢渣吸附剂吸附机理的研究.环境工程学报,2008,2(1):115-119
    [19]Jha V K, Kameshima Y, Nakajima A. Hazardous Ions Uptake Behavior of Thermally Activated Steel Making Slag. Journal of Hazardous Materials,2008,156 (1-3):156-162
    [20]娄阳,杜玉如.钢渣处理含镍废水试验研究.化工技术与开发.2009,38(3):38~40
    [21]张运徽.钢渣处理含铬废水的研究.三明高等专科学校学报,2001,18(4):6-9
    [22]邓雁希,许虹,钟佐焱,等.钢渣对废水中磷的去除.金属矿山,2003,(5):49~51
    [23]郑礼胜,王士龙,张虹.用钢渣处理含砷废水.化工环保,1996,16(6):342~343
    [24]张从军,甘义群,蔡鹤生.利用钢渣处理含铜废水的试验研究.环境科学与技术,2005,28(1):85~88
    [25]林美群.利用钢铁生产废弃钢渣吸附水中苯胺的研究.矿产保护与利用,2007,(5):50-51
    [26]Kang H J, An KG, Kim D S. Utilization of steel slag as an adsorbent of ionic lead in wastewater. Journal of Environmental Science and Health,2004,39 (11~12):3015~3028
    [27]王士龙,张虹,刘军,等.用钢渣处理含镍废水.贵州环保科技,2003,9(2):45-48
    [28]张玉龙,李军,刘鸣达,等.辽宁省水田土壤硅素肥力状况的初步研究.土壤通报,2003,34(6):543-547
    [29]刘鸣达,张玉龙,李军,等.施用钢渣对水稻土硅素肥力的影响.土壤与环境,2001,10(3):220~223
    [30]张玉龙,刘鸣达,王耀晶,等.施用钢渣对土壤和水稻植株中硅、铁、锰的影响.土壤通报,2003,34(4):308~311
    [31]李军,张玉龙,刘鸣达,等.钢渣对辽宁省水稻的增产作用.沈阳农业大学学报,2005,36(1):45~48
    [32]付翠彦,郑轶荣,刘建秋.对不同配比钢渣脱硫剂脱硫性能的实验研究.洁净煤技术,2008,14(1):61-64
    [33]刘建秋,李俊荣.钢渣脱硫剂配比的研究.河北化工,2005,(6):63-64
    [34]刘建秋,郑轶荣,付翠彦,等.钢渣脱除烧结烟气中二氧化硫的实验研究.环境污染治理技术与设备,2006,7(8):104-106
    [35]刘建忠,吴晓蓉,程军,等.工业废弃物在煤燃烧过程中脱硫行为的研究.环境科学学报,2000,20(6):790-793
    [36]于同川,于才渊,胡冠男.基于湿法脱硫技术的钢渣脱硫剂性能研究.化学工程,2009,37(8):55~58
    [37]丁希楼,郭应春,唐胜,等.废钢渣粉渣湿法脱硫工艺实验研究.环境工程,2009,27 (3):99-102
    [38]杨林军,张霞,孙露娟,等.二氧化碳矿物碳酸化固定的技术进展.现代化工,2007,27(8):13-16
    [39]包炜军,李会泉,张懿.温室气体CO2矿物碳酸化固定研究进展.化工学报,2007,58(1):1-8
    [40]Teir S, Eloneva S, Zevenhoven R, et al. Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy,2007,32 (4):528~539
    [41]Eloneva S, Teir S, Salminen J, et al. Steel converter slag as a raw material for precipitation of pure calcium carbonate. Industrial & Engineering Chemistry Research,2008,47(18):7104-7111
    [42]Lackner K S, Butt D P, Wendt C H. Progress on binding CO2 in mineral substrates. Energy Conversion and Management,1997,38 (1):S259~S264
    [43]Motz H, Geiseler J. Products of steel slags an opportunity to save natural resources. Waste Management,2001,21 (3):285-293
    [44]甄广常,李瑞英.影响钢渣沸石水泥强度诸因素的探讨.房材与应用,1998,(1):39~41
    [45]张同生,刘福田,王建伟,等.钢渣安定性与活性激发的研究进展硅酸盐通报.2007,26(5):980~984
    [46]李义凯,刘福田,周宗辉,等.复合激发剂活化钢渣制备复合胶凝材料研究.武汉理工大学学报,2009,31(4):11~21
    [47]张同生,刘福田,李义凯,等.激发剂对钢渣胶凝材料性能的影响.建筑材料学报,2008,11(4):469~474
    [48]范付忠,冯涛,施惠生,等.掺高f-CaO物料的水泥抗硫酸盐性的初步研究.水泥,2001,(5):4-7
    [49]Bapat J D. Performance of cement concrete with mineral admixtures. Advances in Cement Research,2001,3 (4):139~215
    [50]赵三银,赵旭光,李 宁.高钢渣掺量钢矿水泥体积安定性的研究水泥工程.水泥工程,2002,(2):7-9
    [51]方宏庄.酸溶法从粉煤灰中制取聚合氯化铝的研究.环境工程,1990,(6):27~31
    [52]谢炜平,张策.利用酸溶-微波热解法从粉煤灰中制取聚合氯化铝的研究.煤炭加工与综合利用,1998,(4):45-47
    [53]许佩瑶,卢素焕,张振生,等.聚硅酸金属盐类混凝剂的絮凝机理研究.环境科学研究,2000,13(6):26~29
    [54]张燮.工业分析化学.北京,化学工业出版社,2003,27
    [55]谢治民,易兵.工业分析.北京,化学工业出版社,2009,26
    [56]王先平.复合型无机高分子絮凝剂的现状及发展.内蒙古环境科学,2008,20(5):56~59
    [57]Kuo H S, Wamser. Aqueous basic ployalunium-iron halide solution. US:4417996,1982-12-7
    [58]王根礼,李义久,刘亚菲.铝土矿制备聚合氯化铝铁及其应用研究.天津化工,2003,17(1):4-6
    [59]胡弘鲤,刘永春,谢家理,等.用铝酸钙粉制备聚合氯化铝铁絮凝剂的研究.四川大学学报:自然科学版,2002,39(1):88~91
    [60]欧阳敏,王长青.用盐酸酸洗废液生产聚合氯化铝铁.江西冶金,2003,23(4):29~31
    [61]Lan W, Qiu H Q, Zhang J, et al. Characteristic of a novel composite inorganic polymer coagulant-PFAC prepared by hydrochloric pickle liquor. Journal of Hazardous Materials,2009,162(1): 174-179
    [62]陈芳艳,唐玉斌,何军.用聚合氯化铝铁混凝处理炼油废水的研究.辽城乡环境科技,2000,20(5):27~29
    [63]汤继军.聚合铝铁在工业废水处理中的应用.西南给排水,2001,23(1):20-22
    [64]胡勇有,宁寻安,周勤,等.聚合氯化铝铁的混凝性能.环境科学与技术,2001,24(2):9-11
    [65]Besra L, SenguPta D K, Roy S K, et al. Influence of surfactants on flocculation and dewatering of kaolin suspensions by polyaluminum ferric sulfate (PAFS) flocculant. Separ Pur Technol,2003, 30 (3):251~264
    [66]刘峙嵘,方裕勋,艾卫青,等.聚合硫酸铝铁的制备及其活性成分分析.湿法冶金,2002,21(4):191~194
    [67]骆丽君.聚合硫酸铝铁和PAM复合混凝剂处理造纸废水的研究.安徽化工,2005,31(3):54~56
    [68]陈伟红,李明玉,唐启红,等.聚硅酸盐混凝剂的性能研究.化学研究,2000,11(4):28-31
    [69]薛笑莉,李瑞丰,张瑞士.聚硅酸铝铁、聚合氯化铝、聚合硫酸铁絮凝效果的比较.天津化工,2005,19(4):40~42
    [70]朱开金,薛笑莉,李敏,等.粉煤灰制备聚硅酸铝铁及条件选择.化工环保,2004,24:338-340
    [71]Zhi W S, Ren N. Properties and coagulation mechanisms of polyferric silicate sulfate with high concentration. Journal of Environmental Sciences,2008,20(2):129-134
    [72]Zouboulis A I, Moussas P A. Polyferric silicate sulphate (PFSiS):Preparation, characterisation and coagulation behaviour. Desalination 2008,224 (1~3):307~316
    [73]袁斌,吕 松,袁世平.聚硅硫酸铝絮凝剂的研制及性能研究.哈尔滨工业大学学报,2001,33(4):562~565
    [74]乔燕,邱慧琴.聚合铝硅复合混凝剂的制备与性能研究.净水技术,2006,25(3):62-64
    [75]Wen P C, Fung H C, Chun C L, et al. A study on the removal of organic substances from low-turbidity and low-alkalinity water with metal-polysilicate coagulants. Colloids and Surfaces, 2008,312 (2-3):238-244
    [76]Jinming D, John G. The influence of silicic acid on aluminium hydroxide precipitation and flocculation by aluminium salts. Journal of Inorganic Biochemistry,1998,69 (3):193~201
    [77]胡翔,周定高.高效无机混凝剂聚硅酸铁铝的研究.中国环境科学,1999,19(3):266-269
    [78]汤顺林,程鸿德.一类新型的废水处理药剂——PSAFC的研制及对印染废水的处理工业水处理.2001,21(6):20~23
    [79]罗道成,易平贵,刘俊峰,等.用煤矸石和鼓风炉淤泥制备聚硅酸铁铝混凝剂.化工环保,2002,22(5):287~292
    [80]郭旭颖,白润才.粉煤灰制备絮凝剂聚硅酸铝铁工艺条件研究[J].应用化学,2009,38(3):369-374
    [81]Xu X, Yu S L, Shi W X, et al. Effect of acid medium on the coagulation efficiency of polysilicate-ferric(PSF) — A new kind of inorganic polymer coagulant. Separation and Purification Technology,2009,66 (3):486~491
    [82]李凡修.铝盐混凝剂作用机理研究进展.工业水处理,1999,19(5):15-17
    [83]胡勇有,王占生,汤鸿霄.聚磷氯化铝溶液形态分布及转化规律.环境科学学报,1995,15(2):224~231
    [84]徐晓军.化学絮凝剂作用原理.北京:科学出版社,2005,169
    [86]戴安邦,江龙.硅酸及其盐的研究.化学学报,1957,23:90~98
    [87]许韵华,杨玉国,王永生,等.酸性介质对硅酸聚合胶凝的影响.武汉大学学报(理学版),2005,51(2):177-180
    [85]孔德仁.聚合硅酸硫酸铝铁絮凝剂的制备与性能机理研究.哈尔滨:哈尔滨工业大学,2006
    [88]王亚辉,李彤彤.絮凝剂在废水处理中的应用.广东化工,2009,36(10):143-144
    [89]何慧琴,童仕唐.水处理中絮凝剂的研究进展.应用化工,2001,30(4):14-16
    [90]高飞,刘卫海,李科林,等.复合聚铁絮凝剂FPAS处理造纸中段废水的实验研究.精细化工中间体,2009,39(2):56~59
    [91]QiuZM, Jiang W T, HeZJ. Post-treatment of banknote printing wastewater using polysilicate ferro-aluminum sulfate (PSFA). Journal of Hazardous Materials,2009 (2~3),166:740~745
    [92]Song Z, Williams C J, Edyvean R G J. Treatment of tannery wastewater by chemical coagulation. Desalination,2004,164 (3):249~259
    [93]Manikavasagam K, Nishant D, Pradyumna P, et al. Biodegradability enhancement of purified terephthalic acid wastewater by coagulation-flocculation process as pretreatment. Journal of Hazardous Materials,2008,154(1-3):721-730
    [94]Zhang C X, Wang Y X. Removal of dissolved organic matter and phthalic acid esters from landfill leachate through a complexation-flocculation process. Waste Management,2009,29 (1):110~ 116
    [95]Hamidi A A, Salina A, Mohd N A, et al. Colour removal from landfill leachate by coagulation and flocculation processes. Bioresource Technology,2007,98 (1):218~220
    [96]Tatsi A A, Zouboulis A I, Matis K A, et al. Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere,2003,53 (7):737~744
    [97]Ntampou X, Zouboulis A I, Samaras P. Appropriate combination of physico-chemical methods (coagulation/flocculation and ozonation) for the efficient treatment of landfill leachates. Chemosphere,2006,62 (5):722~730
    [98]徐晓军.化学絮凝剂作用原理.北京:科学出版社,2005,11-12
    [99]李风亭,张善发,赵艳.混凝剂与絮凝剂.北京:化学工业出版社,2005,3
    (100]胡芳,胡惠仁.复合高分子铝盐絮凝剂增效机理的研究进展.中国造纸,2007,26(9):53-57
    [101]魏复盛,寇洪茹,洪水皆,等.水和废水检测分析方法,第四版.北京:中国环境科学出版社,2002,210
    [102]李建,王三反,李雯.大蒜切片废水预处理工艺研究.广州化工,2008,36(6):63-65
    [103]王宁,史岩眉,朱军,等.大蒜的药理作用、生物活性和开发利用研究进展.中国中医药信息杂志,2003,10(10):91-93
    [104]Segre A, David M. Antimicrobial properties of allicin from garlic. Mierobes and Infection,1999, 1 (2):125~129
    [105]Ross Z M, Ogara E A, Hill D J, et al. Antimicrobial properties of Garlic oil against Human Enteric Bacteria:Evaluation of Methodologies and Comparisons with Garlic oil Sulfides and Garlic Powder. Applied and Environmental Microbiology,2001,67 (1):475~480
    [106]郭涛.大扶康、大蒜素、大蒜油注射液对深部真菌的抑杀作用.沈阳药科大学学报,2000,17(3):214~218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700