高比表面共轭材料的合成和环境净化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文合成了一系列高比表面的共轭材料,并将其应用于环境净化领域,探讨了共轭材料的结构与吸附性能以及光催化性能之间的关系。在吸附方面,我们采用高比表面的二维共轭材料氧化石墨烯(GO)和石墨烯为吸附剂,吸附作用可以依靠其本身片层结构在表面进行,在提高吸附性能的同时还有利于脱附和再生。在光催化方面,我们采用具有共轭结构的可见光光催化剂g-C3N4为研究对象,对其进行了纳米形貌调控,成功制备出了高比表面的g-C3N4纳米片和多孔g-C3N4,纳米结构有利于光生电子空穴的分离以及光生载流子的迁移,因此可以有效地提高g-C3N4的光催化性能。
     GO和石墨烯对双酚A (BPA)都表现出了优异的吸附性能。Langmuir等温线模型拟合出的GO对BPA的最大吸附量约为87.8mg·g1(25°C,pH=6.0),且半小时即可达到吸附平衡状态远快于活性碳的吸附速率,石墨烯对BPA的最大吸附量约为181.8mg·g1(29°C,pH=6.0)。GO具有优异的再生使用能力,经过5次循环实验后依然可以保持83%的吸附量。GO和石墨烯对BPA表现出优异的吸附性能主要是由于两者结构中的单层石墨平面内的苯环以及表面的含氧基团,会与BPA分子结构中的两个苯环以及两个羟基基团之间产生π-π作用和氢键作用,这两种吸附作用机理通过FTIR得到了进一步的验证。
     通过改良的Hummers法制备出了高比表面的单层g-C3N4纳米片。与g-C3N4相比,g-C3N4纳米片拥有了更高的比表面积(87.5m2g-1),更快的光生电子和空穴的分离效率以及光生载流子的迁移速率,在紫外光、可见光和模拟太阳光下的光催化和光电流响应性能都发生了明显的提高。我们还发现加热回流过程可以有效地除去g-C3N4纳米片的结构缺陷,进一步提高g-C3N4纳米片对目标污染物的吸附性能、促进光生电子和空穴的分离以及光生载流子的迁移,使g-C3N4纳米片拥有更为优异的光催化和光电流响应性能。
     通过气泡模板法制备了高比表面的多孔g-C3N4,且煅烧升温速率越快,硫脲加入比例越高,多孔g-C3N4的比表面积越大,吸附和光催化性能越好。与g-C3N4相比,多孔g-C3N4拥有丰富的纳米孔结构,更高的比表面积,更快的光生电子和空穴的分离效率以及光生载流子的迁移速率,使其对目标污染物的吸附性能以及在可见光和模拟太阳光下的光催化降解和光电流响应性能都发生了明显的提高。
In our work, a series of π-conjugated materials with high surface area wassynthesized and applied in environmental purification. The relationship between thestructure of π-conjugated materials and their adsorption and photocatalystic propertieswas also systematically investigated. We adopted graphene oxide (GO) and graphene asthe adsorbent. The adsorption can directly occur on their lamellar surface due to thetwo-dimensional structure which will improve the adsorption efficiency andrecyclability. We also adopted graphite-like carbon nitride (g-C3N4) as the photocatalyst.Single-layered g-C3N4nanosheets and nanoporous g-C3N4with high surface area weresuccessfully synthesized. Compared with the bulk g-C3N4, nanostructured g-C3N4canexhibit enhanced photocatalytic activity due to the improved separation ofphotogenerated electron-hole pairs and higher efficiency of charge carriers transfer.
     GO and graphene both showed excellent adsorption capacity for bisphenol A (BPA).The maximum adsorption capacity (qm) of GO for BPA estimated from the Langmuirisotherm was87.8mg·g1at25°C, pH=6.0. And its required contact time to reachadsorption equilibrium was about30min, which was much shorter than that of activatedcarbon. Besides, qmof graphene for BPA estimated from the Langmuir isotherm was181.8mg·g1at29°C, pH=6.0. The GO had good recyclability and could retain about83%of their adsorption ability after five adsorption-desorption cycles. The largeadsorption affinity of GO and graphene for BPA were thought to be attributed to theirsingle-layered graphene planes with aromatic rings and surface oxygen-containinggroups, which can form π-π interaction and hydrogen bonding with the two benzenerings and two hydroxyl groups of BPA, respectively. The adsorption mechanism wasalso proved by the FTIR spectra.
     Single-layered g-C3N4nanosheets with high surface area were obtained via amodified Hummers method. Compared with the bulk g-C3N4, g-C3N4nanosheets ownedhigher surface area (87.5m2g-1), improved separation of photogenerated electron-holepairs and higher efficiency of charge carriers transfer. Accordingly, the photocatalyticactivity and photocurrent of g-C3N4nanosheets were remarkably enhanced under UV,visible light and simulated solar light irradiation. Moreover, it was found that an additional refluxing process can effectively remove the structural defects of g-C3N4nanosheets. It further increased the adsorption capacity for the target pollutants,improved the separation of photogenerated electron-hole pairs and charge carrierstransfer of g-C3N4nanosheets, which resulted in higher photocatalytic activity andphotocurrent.
     Nanoporous g-C3N4with high surface area was prepared by a bubble templatemethod. Faster calcination heating rate and higher proportion of thiourea canresult in higher surface area, better adsorption and photocatalytic properties ofnanoporous g-C3N4. Compared with the bulk g-C3N4, nanoporous g-C3N4possessed a higher surface area and pore volume, improved separation ofphotogenerated electron-hole pairs, and higher efficiency of charge carrierstransfer. Accordingly, the adsorption capacity for the target pollutants, thephotocatalytic activity and photocurrent under both visible light and simulatedsolar light irradiation of nanoporous g-C3N4were greatly improved.
引文
[1]刘转年,金奇庭,周安宁.废水的吸附法处理.水处理技术,2003,29(6):318-322.
    [2] Fujishima A, Honda K. Electrochemical photocatalysis of water at a semiconductor electrode.Nature,1972,238:37-38.
    [3] Watanabe T, Hashimoto K, Fujishima A. Photocatalytic purification and treatment of water andair. Amsterdam: Elsevier,1993:747-751.
    [4] Osterloh F E. Inorganic materials as catalysts for photochemical splitting of water. Chem Mater,2008,20(1):35-54.
    [5] Fox M A, Dulay M T. Heterogeneous photocatalysis. Chem Rev,1993,93(1):341-357.
    [6] Dikin D A, Stankovieh S, Zimney E J, et al. Preparation and characterization of graphene oxidepaper. Nature,2007,448(7152):457-460.
    [7] Stankovich S, Dikin D A, Dommett G H B, et al.Graphene-based composite materials. Nature,2006,442(7100):282-286.
    [8] Kovtyukhova N I, Olliver P I, Martin B R, et al. Layer-by-layer assembly of ultrathin compositefilms from micro-sized graphite oxide sheets and polycations. Chem Mater,1999,11:771-778.
    [9] Hirata M, Gotou T, Ohba M. Thin-film particles of graphite oxide: preliminary studies forinternal micro fabrication of single particle and carbonaceous electronic circuits. Carbon,2005,43:503-510.
    [10] Cassagneau T, Guerin F, Fendler J H. Preparation and characterization of ultrathin filmslayer-by-layer self-assembled from graphite oxide nanoplatelets and polymers. Langmuir,2000,16:7318-7324.
    [11] Ezawa M. Supersymmetry and unconventional quantum hall effect in monolayer, bilayer andtrilayer graphene. Physica E,2007,40(2):269-272.
    [12] Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. NatNanotechnol,2008,3:10-105.
    [13] Staudenmaier L. Verfahren Zur Darstellung Der Graphitsaure. Ber Dtsh Chem Ges,1898,31:1481-1487.
    [14] Brodie B C. On the atomic weight of graphite. Ann Chim Phys,1860,59:466-472.
    [15] Hummers W S, Offeman R E. Preparation of graphitic oxide. J Am Chem Soc,1958,80(6):1339-1339.
    [16] Peckett J W, Trens P, Gougeon R D, et al. Electrochemically oxidised graphite:characterisation and some ion exchange properties. Carbon,2000,38(3):345-353.
    [17] Hudson M J, Hunter-Fujita F R, Peckett J W, et al. Electrochemically prepared colloidal,oxidised graphite. J Mater Chem,1997,7:301-305.
    [18] Gao W, Alemany L B, Ci L J, et al. New insights into the structure and reduction of graphiteoxide. Nat Chem,2009,1(5):403-408.
    [19] Liu Z, Robinson J T, Sun X M, et al. PEGylated nanogrehene oxide for delivery ofwater-insoluble cancer drugs. J Am Chem Soc,2008,130(33):10876-10877.
    [20] Wang H L, Hao Q L, Yang X J, et al. Graphene oxide doped polyaniline for supercapacitors.Electrochem Commun,2009,11(6):1158-1161.
    [21] Chen H, Muller M B, Gilmore K J, et al. Mechanically strong, electrically conductive, andbiocompatible graphene paper. Adv Mater,2008,20(18):3557-3561.
    [22] Li X L, Wang H L, Robinson J T, et al. Simultaneous nitrogen doping and reduction ofgraphene oxide. J Am Chem Soc,2009,131(43):15939-15944.
    [23] Matsuo Y, Higashika S, Kimura K, et al. Synthesis of polyaniline-intercalated layeredmaterials via exchange reaction. J Mater Chem,2002,12(5):1592-1596.
    [24] Cano-Marquez A G, Rodriguez-Macias F J, Campos-Delgado J, et al. Ex-MWNTS: graphenesheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes.Nano Lett,2009,9(4):1527-1533.
    [25] Chua Y H, Yamagishi M, Wang Z M, et al. Adsorption characteristics of nanoporouscarbon-silica composites synthesized from graphite oxide by a mechanochemical intercalationmethod. J Colloid Interf Sci,2007,312(2):186-192.
    [26] Hata H, Kubo S, Kobayashi Y, et al. Intercalation of well-dispersed gold nanoparticles intolayered oxide nanosheets through intercalation of a polyamine. J Am Chem Soc,2007,129(11):3064-3065.
    [27] Xu Z, Gao C. In situ polymerization approach to graphene-reinforced nylon-6composites.Macromolecules,2010,43(16):6716-6723.
    [28] Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treatedgraphene oxide nanoplatelets. Carbon,2006,44(15):3342-3347.
    [29] Nethravathi C, Rajamathi M. Delamination, colloidal dispersion and reassembly of alkylamineintercalated graphite oxide in alcohols. Carbon,2006,44(13):2635-2641.
    [30] Matsuo Y, Matsumoto Y, Fukutsuka T, et al. Reaction between dibutyltin oxide and graphiteoxide. Carbon,2006,44(14):3134-3135.
    [31] Matsuo Y, Tabata T, Fukunaga T, et al. Preparation and characterization of silylated graphiteoxide. Carbon,2005,43(14):2875-2882.
    [32] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbonfilms. Science,2004,306(5696):666-669.
    [33] Geim A K, Novsoselov K S. The rise of graphene. Nat Mater,2007,6:183-191.
    [34] Partoens B, Peeters F M. From graphene to graphite: electronic structure around the K point.Phys Rev B,2006,74(7):075404(1-11).
    [35] Wintterlin J, Bocquet M L. Grphene on metal surfaces. Surf Sci,2009,603:1841-1852.
    [36] Srivastava S K, Shukla A K, Vankar V, et al. Growth, structure and field emissioncharacteristics of petal like carbon nano-structured thin films. Thin Solid Films,2005,492(122):124-130.
    [37] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layergraphene. Nano Lett,2008,8:902-907.
    [38] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength ofmonolayer graphene. Science,2008,321:385-388.
    [39] Kane C L. Materials science: erasing electron mass. Nature,2005,438:168-169.
    [40] Heersche H B, Jarillo-Herrero P, Ostinga J B, et al. Bipolar supercurrent in graphene. Nature,2007,446:56-59.
    [41] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparencyof graphene. Science,2008,320:1308-1308.
    [42] Li Z Q, Henriksen E A, Jiang Z, et al. Dirac charge dynamics in graphene by infraredspectroscopy. Nat Phys,2008,4:532-535.
    [43] Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Lett,2008,8:3498-3502.
    [44] Nomura K, Macdonald A H. Quantum Hall ferromagnetism in graphene. Phys Rev Lett,2006,96:256602(1-4).
    [45] Qaiumzadeh A, Arbchi N, Asgari R. Quasiparticle properties of graphene in the presence ofdisorder. Solid State Comm,2008,147:172-177.
    [46] Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of quantum hall effect andberry’s phase in graphene. Nature,2005,438:201-204.
    [47] Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum hall effect in graphene.Science,2007,315:1379.
    [48] Chen S, Zhu J W, Wu X D, et al. Graphene oxide-MnO2nanocomposites for supercapacitors.Acs Nano,2010,4:2822-2830.
    [49] Yan J, Wei T, Shao B, et al. Preparation of a graphene nanosheet/polyaniline composite withhigh specific capacitance. Carbon,2010,48:487-493.
    [50] Lin Y M, Dimitrakopoulos C, Jenkins K A, et al.100-GHz Transistors from wafer-scaleepitaxial graphene. Science,2010,327:662-662.
    [51] Cohen-Karni T, Qing Q, Li Q, et al. Graphene and nanowire transistors for cellular interfacesand electrical recording. Nano Lett,2010,10:1098-1102.
    [52] Shan C, Yang H, Song J, et al. Direct electrochemistry of glucoseoxidase and biosensing forglucose based on graphene. Anal Chem,2009,81:2378-2382.
    [53] Shan C, Yang H, Han D, et al. Water-soluble graphene covalently functionalized bybiocompatible poly-l-lysine. Langmuir,2009,25:12030-12033.
    [54] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed ongraphene. Nat Mater,2007,6:652-655.
    [55] Sreeprasad T S, Maliyekkal S M, Lisha K P, et al. Reduced graphene oxide–metal/metal oxidecomposites: Facile synthesis and application in water purification. J Hazard Mater,2011,186:921-931.
    [56] Zhang N, Qiu H, Si Y, Wang W, et al. Fabrication of highly porous biodegradable monolithsstrengthened by graphene oxide and their adsorption of metal ions. Carbon,2011,49:827-837.
    [57] Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared graphene: a new3-D networknanostructure for enhanced hydrogen storage. Nano Lett,2008,8:3166-3170.
    [58] Srinivas G, Zhu Y, Piner R, et al. Synthesis of graphene-like nanosheets and their hydrogenadsorption capacity. Carbon,2010,48:630-635.
    [59] Li X M, Zhu H W, Wang K L, et al. Graphene-on-silicon schottky junction solar cells. AdvMater,2010,22:2743-2748.
    [60] Li C Y, Li Z, Zhu H W, et al. Graphene nano-"patches" on a carbon nanotube network forhighly transparent/conductive thin film applications. J Phy Chem C,2010,114:14008-14012.
    [61] Liu A Y, Cohen M L. Prediction of new low compressibility solids. Science,1989,245(4920):841-842.
    [62] Cohen M L. Calculation of bulk moduli of diamond and zinc-blende solids. Phys Rev B,1985,32(12):7988.
    [63] Teter D M, Hemley R J. Low-compressibility carbon nitrides. Science,1996,271(5245):53-55.
    [64] Liu A Y, Wentzcovitch R M. Stability of Carbon Nitride Solids. Phys Rev B,1994,50(14):10362-10365.
    [65] Wang Y, Wang X C, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneousorganocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry.Angew Chem Int Edit,2012,51:68-89.
    [66] Thomas A, Fischer A, Goettmann F, et al. Graphitic carbon nitride materials variation ofstructure and morphology and their use as metal-free catalysts. J Mater Chem,2008,18:4893-4908.
    [67] Li C, Yang X, Yang B, et al. Synthesis and characterization of nitrogen-rich graphitic carbonnitride. Mater Chem Phys,2007,103(2-3):427-432.
    [68] Niu C, Lu Y Z, Lieber C M. Experimental realization of the covalent solid carbon nitride.Science,1993,261:334-337.
    [69]李超,曹传宝,朱鹤孙.电化学沉积法制备类石墨相氮化碳.材料通报,2003,48(9):905-908.
    [70] Nesting D C, Badding J V. High-pressure synthesis of sp2-bonded carbon nitrides. Chem Mater,1996,8(7):1535-1539.
    [71] Han H X, Feldman B J. Structural and optical properties of amorphous carbon nitride. SolidState Comm,1988,65(9):921-923.
    [72] Jürgens B, Irran E, Senker J, et al. Melem (2,5,8-triamino-tri-s-triazine), an importantintermediate during condensation of melamine rings to graphitic carbon nitride: synthesis,structure determination by X-ray powder diffractometry, solid-state NMR, and theoreticalstudies. J Am Chem Soc,2003,125(34):10288-10300.
    [73] Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogenproduction from water under visible light. Nat Mater,2009,8(1):76-80.
    [74] Maeda K, Wang X C, Nishihara Y, et al. Photocatalytic activities of graphitic carbon nitridepowder for water reduction and oxidation under visible light. J Phys Chem C,2009,113(12):4940-4947.
    [75] Takanabe K, Kamata K, Wang X C, et al. Photocatalytic hydrogen evolution on dye-sensitizedmesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Phys Chem ChemPhys,2010,12(40):13020-13025.
    [76] Wang X C, Maeda K, Chen X, et al. Polymer semiconductors for artificial photosynthesis:hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc,2009,131(5):1680-1681.
    [77] Ding Z, Chen X, Antonietti M, et al. Synthesis of transition metal-modified carbon nitridepolymers for selective hydrocarbon oxidation. Chemsuschem,2011,4(2):274-281.
    [78] Di Y, Wang X C, Thomas A, et al. Making metal carbon nitride heterojunctions for improvedphotocatalytic hydrogen evolution with visible light. Chemcatchem,2010,2(7):834-838.
    [79] Zhang J, Sun J, Maeda K, et al. Sulfur-mediated synthesis of carbon nitride: band-gapengineering and improved funciton for photocatalysis. Energ Environ Sci,2011,4(3):675-678.
    [80] Yan S C, Lv S B, Li Z S, et al. Organic-inorganic composite photocatalyst of g-C3N4andTaON with improved visible light photocatalytic activities. Dalton T,2010,39(6):1488-1491.
    [81] Goettmann F, Fischer A, Antonietti M, et al. Metal-free catalysis of sustainable friedel-craftsreactions: direct activation of benzene by carbon nitrides to avoid the use of metal chloridesand halogenated compounds. Chem Comm,2006(43):4530-4532.
    [82] Goettmann F, Thomas A, Antonietti M. Metal-free activation of CO2by mesoporous graphiticcarbon nitride. Angew Chem Int Edit,2007,46(15):2717-2720.
    [83] Chen X, Zhang J, Fu X, et al. Fe-g-C3N4-catalyzed oxidation of benzene to phenol usinghydrogen peroxide and visible light. J Am Chem Soc,2009,131(33):11658-11659.
    [84] Yan S C, Li Z S, Zou Z G. Photodegradation of rhodamine B and methyl orange overboron-doped g-C3N4under visiblelight irradiation. Langmuir,2010,26(6):3894-3901.
    [85] Ansari M I, Malik A. Biosorption of nickel and cadmium by metal resistant bacterial isolatesfrom agricultural soil irrigated with industrial wastewater. Bioresource Technol,2007,98:3149-3153.
    [86] Friberg L, Nordberg G F, Vouk B. Handbook on the toxicology of metals. Amsterdam:Elsevier,1979.
    [87] Calderon J, Navarro M E, Jimenez-Capdeville M E, et al. Exposure to arsenic and lead andneuropsychological development in Mexican children. Environ Res,2001,85:69-76.
    [88] Mohan D, Singh K P. Single-and multi-component adsorption of cadmium and zinc usingactivated carbon derived from bagasse: an agricultural waste. Water Res,2002,36:2304-2318.
    [89] Yang S T, Chang Y L, Wang H F,et al. Folding/aggregation of graphene oxide and itsapplication in Cu2+removal. J Colloid Interf Sci,2010,351(1):122-127.
    [90] Huang Z H, Zheng X Y, Lv W, et al. Adsorption of lead(II) ions from aqueous solution onlow-temperature exfoliated graphene nanosheets. Langmuir,2011,27(12):7558-7562.
    [91] Deng X J, Lv L L, Li H W, et al. The adsorption properties of Pb(II) and Cd(II) onfunctionalized graphene prepared by electrolysis method. J Hazard Mater,2010,183:923-930.
    [92] Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced graphene oxidecomposites for arsenic removal. ACS Nano,2010,4:3979-3986.
    [93] Zhang K, Dwivedi V, Chi C Y, et al. Graphene oxide/ferric hydroxide composites for efficientarsenate removal from drinking water. J Hazard Mater,2010,182:162-168.
    [94]李家珍.染料、染色工业废水处理.北京:化学工业出版社,1997:74.
    [95] Leenaerts O, Partoens B, Peeter F M. Adsorption of H2O, NH3, CO, NO2and NO ongraphene: a first-principles study. Phys Rev B,2008,77(12):125416(1-6).
    [96] Petit C, Bandosz T J. Graphite oxide/polyoxometalate nanocomposites as adsorbents ofammonia. J Phys Chem C,2009,113(9):3800-3809.
    [97] Romero H E, Joshi A K, Gupta H R, et al. Adsorption of ammonia on graphene.Nanotechnology,2009,20(24):245501(1-8).
    [98] Wuest J D, Rochefort A. Strong adsorption of aminotriazines on graphene. Chem Comm,2010,46(17):2923-2925.
    [99] Wu T, Cai X, Tan S, et al. Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid,1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chem Eng J,2011,173:144-149.
    [100] Liu T H, Li Y H, Du Q J, et al. Adsorption of methylene blue from aqueous solution bygraphene. Colloid Surface B,2012,90:197-203.
    [101] Fan L L, Luo C N, Li X J, et al. Fabrication of novel magnetic chitosan grafted with grapheneoxide to enhance adsorption properties for methyl blue. J Hazard Mater,2012,215-216:272-279.
    [102] Zhang W J, Zhou C J, Zhou W C, et al. Fast and considerable adsorption of methylene bluedye onto graphene oxide. Bull Environ Contam Toxicol,2011,87:86-90.
    [103] Sun L, Yu H W, Fugetsu B. Graphene oxide adsorption enhanced by in situ reduction withsodium hydrosulfite to remove acridine orange from aqueous solution. J Hazard Mater,2012,203-204:101-110.
    [104] Ai L H, Zhang C Y, Chen Z L. Removal of methylene blue from aqueous solution by asolvothermal-synthesized graphene/magnetite composite. J Hazard Mater,2011,192:1515-1524.
    [105] Guo J, Wang R Y, Tjiu W W, et al. Synthesis of Fe nanoparticles@graphene composites forenvironmental applications. J Hazard Mater,2012,225-226:63-73.
    [106] Liao G Z, Chen S, Quan X, et al. Graphene oxide modified g-C3N4hybrid with enhancedphotocatalytic capability under visible light irradiation. J Mater Chem,2012,22:2721-2726.
    [107] Yue B, Li Q Y, Iwai H, et al. Hydrogen production using zinc-doped carbon nitride catalystirradiated with visible light. Sci Technol Adv Mater,2011,12:034401.
    [108] Meng Y L, Shen J, Chen D, et al. Photodegradation performance of methylene blue aqueoussolution on Ag/g-C3N4catalyst. Rare Metals,2011,30:276-279.
    [109] Wang Y, Zhang J S, Wang X C, et al. Boron-and fluorine-containing mesoporous carbonnitride polymers: metal-free catalysts for cyclohexane oxidation. Angew Chem Int Edit,2010,49:3356-3359.
    [110] Zhang Y J, Mori T, Ye J H, et al. Phosphorus-doped carbon nitride solid: enhanced electricalconductivity and photocurrent generation. J Am Chem Soc,2010,132:6294-6295.
    [111] Liu G, Niu P, Sun C H, et al. Unique electronic structure induced high photoreactivity ofsulfur-doped graphitic C3N4. J Am Chem Soc,2010,132:11642-11648.
    [112] Niu P, Zhang L L, Liu G, et al. Graphene-like carbon nitride nanosheets for improvedphotocatalytic activities. Adv Funct Mater,2012,22:4763-4770.
    [113] Ho Y S, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss flat.Water Res,2000,34:735-742.
    [114] Zhao G X, Li J X, Wang X K. Kinetic and thermodynamic study of1-naphthol adsorptionfrom aqueous solution to sulfonated graphene nanosheets. Chem Eng J,2011,173:185-190.
    [115] Blanchard G, Maunaye M, Martin G. Removal of heavy-metals from waters by means ofnatural zeolites. Water Res,1984,18:1501-1507.
    [116] Langmuir I. The constitution and fundamental properties of solids and liquids Part I Solids. JAm Chem Soc,1916,38:2221-2295.
    [117] Freundlich H. Concerning adsorption in solutions. J Phys Electrochem,1906,57:385-470.
    [118] Hameed B H. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste.J Hazard Mater,2008,154:204-212.
    [119] Terzian R, Serpone N, Minero C, et al. Photocatalyzed mineralization of cresols in aqueousmedia with irradiated Titania. J Catal,1991,128(2):352-365.
    [120] Snyder S A, Westerhoff P, Yoon Y, et al. Pharmaceuticals, personal care products, andendocrine disruptors in water: Implications for the water industry. Environ Sci Technol,2003,20:449-469.
    [121] Chang H S, Choo K H, Lee B, et al. The methods of identification, analysis, and removal ofendocrine disrupting compounds (EDCs) in water. J Hazard Mater,2009,172:1-12.
    [122] Kang J H, Kondo F, Katayama Y. Human exposure to bisphenol A. Toxicology,2006,226:79-89.
    [123] Staples C A, Dorn P B, Klecka G M, et al. A review of the environmental fate, effects, andexposures of bisphenol A. Chemosphere,1998,36:2149-2173.
    [124] Staples C A, Dorn P B, Klecka G M, et al. Bisphenol A concentrations in receiving watersnear US manufacturing and processing facilities. Chemosphere,2000,40:521-525.
    [125] Belfroid A, van Velzen M, van der Horst B, et al. Occurrence of bisphenol A in surface waterand uptake in fish: evaluation of field measurements. Chemosphere,2002,49:97-103.
    [126] Pan B, Lin D H, Mashayekhi H, et al. Adsorption and hysteresis of bisphenol A and17alpha-ethinyl estradiol on carbon nanomaterials. Environ Sci Technol,2009,43:5480-5485.
    [127] Liu G F, Ma J, Li X C, et al. Adsorption of bisphenol A from aqueous solution onto activatedcarbons with different modification treatments. J Hazard Mater,2009,164:1275-1280.
    [128] Dong Y, Wu D Y, Chen X C, et al. Adsorption of bisphenol A from water bysurfactant-modified zeolite. J Colloid Interf Sci,2010,348:585-590.
    [129] Kim Y H, Lee B, Choo K H, et al. Selective adsorption of bisphenol A by organic-inorganichybrid mesoporous silicas. Micropor Mesopor Mat,2011,138:184-190.
    [130] El-Naas M H, Al-Muhtaseb S A, Makhlouf S. Biodegradation of phenol by pseudomonasputida immobilized in polyvinyl alcohol (PVA) gel. J Hazard Mater,2009,164:720-725.
    [131] Wang R, Ren D, Xia S, et al. Photocatalytic degradation of bisphenol A (BPA) usingimmobilized TiO2and UV illumination in a horizontal circulating bed photocatalytic reactor(HCBPR). J Hazard Mater,2009,169:926-932.
    [132] Bautista-Toledo I, Ferro-Garcia M A, Rivera-Utrilla J, et al. Bisphenol A removal from waterby activated carbon. Effects of carbon characteristics and solution chemistry. Environ SciTechnol,2005,39:6246-6250.
    [133] Pan B, Xing B S. Competitive and complementary adsorption of bisphenol A and17alpha-ethinyl estradiol on carbon nanomaterials. J Agr Food Chem,2010,58:8338-8343.
    [134] Kuo C Y. Comparison with as-grown and microwave modified carbon nanotubes to removalaqueous bisphenol A. Desalination,2009,249:976-982.
    [135] Xu J, Wang L, Zhu Y F. Decontamination of bisphenol A from aqueous solution by grapheneadsorption. Langmuir,2012,28:8418-8425.
    [136] Yuan W H, Li B Q, Li L. Superior graphene for hydrogen adsorption prepared by theimproved liquid oxidation-reduction method. Acta Phys-Chim Sin,2011,27:2244-2250.
    [137] Nakanishi A, Tamai M, Kawasaki N, et al. Adsorption characteristics of bisphenol A ontocarbonaceous materials produced from wood chips as organic waste. J Colloid Interf Sci,2002,252:393-396.
    [138] Asada T, Oikawa K, Kawata K, et al. Study of removal effect of bisphenol A andbeta-estradiol by porous carbon. J Health Sci,2004,50:588-593.
    [139] Furhacker M, Scharf S, Weber H. Bisphenol A: emissions from point sources. Chemosphere,2000,41:751-756.
    [140] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide. Chem Soc Rev,2010,39:228-240.
    [141] Zhang N N, Qiu H X, Si Y M, et al. Fabrication of highly porous biodegradable monolithsstrengthened by graphene oxide and their adsorption of metal ions. Carbon,2011,49:827-837.
    [142] Gao Y, Li Y, Zhang L, et al. Adsorption and removal of tetracycline antibiotics from aqueoussolution by graphene oxide. J Colloid Interf Sci,2012,368:540-546.
    [143] Fan X B, Peng W C, Li Y, et al. Deoxygenation of exfoliated graphite oxide under alkalineconditions: A green route to graphene preparation. Adv Mater,2008,20:4490-4493.
    [144] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas solidsystems with special reference to the determination of surfac-area and porosity. Pure ApplChem,1985,57:603-619.
    [145] Everett D H. Basic principles of colloid science. London: The Royal Society of Chemistry,1988.
    [146] Ersoz A, Denizli A, Sener I, et al. Removal of phenolic compounds withnitrophenol-imprinted polymer based on pi-pi and hydrogen-bonding interactions. Sep PurifTechnol,2004,38:173-179.
    [147] Coughlin R W, Ezra F S. Role of surface acidity in the adsorption of organic pollutants on thesurface of carbon. Environ Sci Technol,1968,2:291-297.
    [148] Ternes T A, Stumpf M, Mueller J, et al. Behavior and occurrence of estrogens in municipalsewage treatment plants-I. Investigations in Germany, Canada and Brazil. Sci Total Environ,1999,225:81-90.
    [149] Furhacker M, Scharf S, Weber H. Bisphenol A: emissions from point sources. Chemosphere,2000,41:751-756.
    [150] Lee H B, Peart T E. Bisphenol A contamination in Canadian municipal and industrialwastewater and sludge samples. Water Qual Res J Can,2000,35:283-298.
    [151] Zhang Y, Causserand C, Aimar P, et al. Removal of bisphenol A by a nanofiltrationmembrane in view of drinking water production. Water Res,2006,40:3793-3799.
    [152] Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets.Nature,2007,446:60-63.
    [153] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strengthof monolayer graphene. Science,2008,321:385-388.
    [154] Latil S, Henrard L. Charge carriers in few-layer graphene films. Phys Rev Lett,2006,97:036803.
    [155] Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitizedsolar cells. Nano Lett,2008,8:323-327.
    [156] Ang P K, Chen W, Wee A T, et al. Solution-gated epitaxial graphene as pH sensor. J AmChem Soc,2008,130:14392-14393.
    [157] Li Y, Zhang P, Du Q, et al. Adsorption of fluoride from aqueous solution by graphene. JColloid Interf Sci,2011,363:348-354.
    [158] Ramesha G K, Kumara A V, Muralidhara H B, et al. Graphene and graphene oxide aseffective adsorbents toward anionic and cationic dyes. J Colloid Interf Sci,2011,361:270-277.
    [159] Zhu J, Wei S, Gu H, et al. One-pot synthesis of magnetic graphene nanocomposites decoratedwith core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol,2012,46:977-985.
    [160] Cai X, Tan S, Lin M, et al. Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targetingcapability. Langmuir,2011,27:7828-7835.
    [161] Jin X, Balasubramanian V V, Selvan S T, et al. Highly ordered mesoporous carbon nitridenanoparticles with high nitrogen content: A metal-free basic catalyst. Angew Chem Int Edit,2009,48:7884-7887.
    [162] Lee E Z, Jun Y S, Hong W H, et al. Cubic mesoporous graphitic carbon(IV) nitride: Anall-in-one chemosensor for selective optical sensing of metal ions. Angew Chem Int Edit,2010,49:9706-9710.
    [163] Zhang J S, Zhang G G, Chen X F, et al. Co-monomer control of carbon nitridesemiconductors to optimize hydrogen evolution with visible light. Angew Chem Int Edit,2012,51:3183-3187.
    [164] Schnick W. Carbon(IV) nitride C3N4-a new material harder than diamond. Angew Chem IntEdit,1993,32:1580-1581.
    [165] Cui Y J, Ding Z X, Fu X Z, et al. Construction of conjugated carbon nitride nanoarchitecturesin solution at low temperatures for photoredox catalysis. Angew Chem Int Edit,2012,51:11814-11818.
    [166] Liang J, Zheng Y, Chen J, et al. Facile oxygen reduction on a three-dimensionally orderedmacroporous graphitic C3N4/carbon composite electrocatalyst. Angew Chem Int Edit,2012,51:3892-3896.
    [167] Su F Z, Mathew S C, Mohlmann L, et al. Aerobic oxidative coupling of amines by carbonnitride photocatalysis with visible light. Angew Chem Int Edit,2011,50:657-660.
    [168] Zhang J S, Zhang M W, Sun R Q, et al. A facile band alignment of polymeric carbon nitridesemiconductors to construct isotype heterojunctions. Angew Chem Int Edit,2012,51:10145-10149.
    [169] Zeng Z Y, Yin Z Y, Huang X, et al. Single-layer semiconducting nanosheets: High-yieldpreparation and device fabrication. Angew Chem Int Edit,2011,50:11093-11097.
    [170] Brugger T, Ma H F, Iannuzzi M, et al. Nanotexture switching of single-layer hexagonal boronnitride on rhodium by intercalation of hydrogen atoms. Angew Chem Int Edit,2010,49:6120-6124.
    [171] Eda G, Fujita T, Yamaguchi H, et al. Coherent atomic and electronic heterostructures ofsingle-layer MoS2. Acs Nano,2012,6:7311-7317.
    [172] Helveg S, Lauritsen J V, Laegsgaard E, et al. Atomic-scale structure of single-layer MoS2nanoclusters. Phys Rev Lett,2000,84:951-954.
    [173] Feng J, Peng L, Wu C, et al. Giant moisture responsiveness of VS2ultrathin nanosheets fornovel touchless positioning interface. Adv Mater,2012,24:1969-1974.
    [174] Coleman J N, Lotya M, ONeill A, et al. Two-dimensional nanosheets produced by liquidexfoliation of layered materials. Science,331:568-571.
    [175] Seo J-w, Jun Y-w, Park S-w, et al. Two-dimensional nanosheet crystals. Angew Chem Int Edit,2007,119:8984-8987.
    [176] Lotsch B V, Doblinger M, Sehnert J, et al. Unmasking melon by a complementary approachemploying electron diffraction, solid state NMR spectroscopy, and theoretical calculationstructural characterization of a carbon nitride polymer. Chem-Eur J,2007,13:4969-4980.
    [177] Zhang X, Xie X, Wang H, et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4nanosheets for bioimaging. J Am Chem Soc,2013,135:18-21.
    [178] Lin Z, Wang X. Nanostructure engineering and doping of conjugated carbon nitridesemiconductors for hydrogen photosynthesis. Angew Chem Int Edit,2013,52:1735-1738.
    [179] Min Y, Moon G D, Kim B S, et al. Quick, controlled synthesis of ultrathin Bi2Se3nanodiscsand nanosheets. J Am Chem Soc,2012,134:2872-2875.
    [180] Zhang G G, Zhang J S, Zhang M W, et al. Polycondensation of thiourea into carbon nitridesemiconductors as visible light photocatalysts. J Mater Chem,2012,22:8083-8091.
    [181] Endo T, Kobayashi T, Sato T, et al. High pressure synthesis and electrical properties ofBaTiO3-xFx. J Mater Sci,1990,25(1):619-623.
    [182]’Kim H G, Borse P H, Choi W, et al. Photocatalytic nanodiodes for visible-light photocatalysis.Angew Chem Int Edit,2005,44(29):4585-4589.
    [183] Zhang H, Lv X, Li Y, et al. P25-graphene composite as a high performance photocatalyst.ACS Nano,2009,4(1):380-386.
    [184] Li J, Zheng L, Li L, et al. Fabrication of TiO2/Ti electrode by laser-assisted anodic oxidationand its application on photoelectrocatalytic degradation of methylene blue. J Hazard Mater,2007,139(1):72-78.
    [185] Hong S J, Lee S, Jang J S, et al. Heterojunction BiVO4/WO3electrodes for enhancedphotoactivity of water oxidation. Energ Environ Sci,2011,4:1781-1787.
    [186] Carraway E R, Hoffman A J, Hoffmann M R. Photocatalytic oxidation of organic acids onquantum-sized semiconductor colloids. Environ Sci Technol,1994,28(5):786-793.
    [187] Lee H, Choi W. Photocatalytic oxidation of arsenite in TiO2suspension: kinetics andmechanisms. Environ Sci Technol,2002,36(17):3872-3878.
    [188] Zhou J, Deng C, Si S, et al. Study on the effect of EDTA on the photocatalytic reduction ofmercury onto nanocrystalline titania using quartz crystal microbalance and differential pulsevoltammetry. Electrochim Acta,2011,56(5):2062-2067.
    [189] Ishibashi K, Fujishima A, Watanabe T, et al. Quantum yields of active oxidative speciesformed on TiO2photocatalyst. J Photoch Photobio A,2000,134(1-2):139-142.
    [190] Goettmann F, Fischer A, Antonietti M, et al. Chemical synthesis of mesoporous carbonnitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reactionof benzene. Angew Chem Int Edit,2006,45:4467-4471.
    [191] Chen X F, Jun Y S, Takanabe K, et al. Ordered mesoporous SBA-15type graphitic carbonnitride: A semiconductor host structure for photocatalytic hydrogen evolution with visiblelight. Chem Mater,2009,21:4093-4095.
    [192] Vinu A, Ariga K, Mori T, et al. Preparation and characterization of well-ordered hexagonalmesoporous carbon nitride. Adv Mater,2005,17:1648-1652.
    [193] Cui Y J, Zhang J S, Zhang G G, et al. Synthesis of bulk and nanoporous carbon nitridepolymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J Mater Chem,2011,21:13032-13039.
    [194] Groenewolt M, Antonietti M. Synthesis of g-C3N4nanoparticles in mesoporous silica hostmatrices. Adv Mater,2005,17:1789-1792.
    [195] Hwang S, Lee S, Yu J S. Template-directed synthesis of highly ordered nanoporous graphiticcarbon nitride through polymerization of cyanamide. Appl Surf Sci,2007,253:5656-5659.
    [196] Vinu A, Srinivasu P, Sawant D P, et al. Three-dimensional cage type mesoporous CN-Basedhybrid material with very high surface area and pore volume. Chem Mater,2007,19:4367-4372.
    [197] Vinu A. Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable porediameter, surface area and nitrogen content. Adv Funct Mater,2008,18:816-827.
    [198] Rauf M A, Meetani M A, Khaleel A, et al. Photocatalytic degradation of methylene blueusing a mixed catalyst and product analysis by LC/MS. Chem Eng J,2010,157:373-378.
    [199] Azevedo E B, Neto F R D, Dezotti M. TiO2-photocatalyzed degradation of phenol in salinemedia: lumped kinetics, intermediates, and acute toxicity. Appl Catal B-Environ,2004,54:165-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700