用于生物成像的多功能纳米材料的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物成像技术无论是在基础生物学研究领域,还是在涉及到人们日常医疗的实际应用领域都具有重要意义。但无论哪种成像技术,其发展的客观要求就是与其对应的成像材料的不断进步。一方面,成像技术在临床医疗诊断方面的应用对所需的成像材料提出了客观要求,即具有高灵敏性、高生物相容性、高的空间分辨率以及低毒性等等;另一方面,新型成像材料的不断发展又推动了既有成像技术的前进以及新型成像技术的诞生及演化。
     荧光成像技术是众多生物成像技术当中的一个重要组成部分。其通常所用的成像材料包括稀土荧光材料,金属纳米簇材料以及最近发展起来的碳量子点。但是无论哪一种荧光成像材料的发展都不够完善,存在着包括生物毒性高、生物相容性不好、功能单一以及制备方法困难等诸多缺点。
     为了提高上述荧光材料的生物相容性、我们在实验中引入了生物聚合物:壳聚糖。第一部分中,我们发展了一种简单的一步法制备chitosan/NaGdF_4:Eu~(3+)纳米复合物的合成方法。由于Eu~(3+)的掺杂以及纳米粒子中所带有的Gd(III),所制备的纳米复合物具有很好的荧光性质以及顺磁性质。同时,我们研究了所制备的chitosan/NaGdF_4:Eu~(3+)纳米复合物的细胞毒性,并最终将其应用于成骨细胞的荧光成像。第二部分中,我们采用不良溶剂辅助静电络合法分别制备了具有荧光性质的壳聚糖-银纳米簇复合纳米微球以及具有荧光和磁性性质的壳聚糖-Eu~(3+),Gd~(3+)复合纳米微球。实验结果显示,复合纳米微球保留了银纳米簇以及Eu~(3+)的良好荧光性质以及Gd~(3+)的超顺磁性。实验中所得到的几种纳米复合物微球的尺寸约为100nm且尺寸分布均匀。实验发现,纳米复合物的荧光性质强烈的依赖于反应条件,包括反应温度以及反应物的添加量等等。壳聚糖的引入使得纳米复合物在水中具有很好的分散性以及生物相容性。最后,我们研究了所制备的纳米复合物的细胞毒性,并最终将其应用于成骨细胞以及人舌鳞癌细胞的荧光成像。第三部分中,我们首先应用稀土元素作为掺杂离子,采用高温注射法,成功合成了一系列铕掺杂比例不同的单分散硒化镉纳米晶。我们通过改变稀土掺杂比例及反应条件,体系发光可从黄绿光区到红光区再到蓝紫光区的转变,由此实现了对同一纳米晶合成体系在全部可见光区范围内的荧光调控。另外,我们以壳聚糖和聚乙二醇为起始原料,采用微波热解法来制备了具有荧光性质的碳量子点。荧光光谱显示所制备的样品具有很好的荧光性质,我们通过细胞毒性试验证明了所制备荧光碳量子点的生物安全性,在400μg/mL的高浓度下,细胞培养48h后,仍具有90%以上的存活率。并最终将其应用于海拉细胞的荧光成像。
Noninvasive imaging and minimally invasive in-vivo bioimaging techniquesare valuable tools in the arsenal of clinical diagnostics. Many types of bioimaging areavailable, spanning from techniques that enable whole-organism anatomical imaging(e.g., magnetic resonance imaging, MRI) to others that provide specific molecularimaging (e.g., optical fluorescence) at subcellular resolution. Such tools are expectedto be pivotal for advancing early-stage cancer diagnosis, guided stem cell therapies,drug delivery, pathogen detection, gene therapy, image-guided surgery, and cancerstaging, in addition to many other clinically relevant procedures, diagnostics, andtherapies.
     No matter which bioimaging technique, its continuous development reliesgreatly on the improvement of corresponding contrast agents. On the one hand, thepractical application in clinical diagnostics requires the contrast agents to be of highsensitivity, biocompatibility, non-toxicity and can show images with high spacialresolution. On the other hand, the preparation of novel contrast agents is not onlyhelpful to the advancement of currently existed bioimaging techniques, but also theemergency and evolution of new techniques.
     Currently, any single imaging technique has its own advantages anddisadvantages, whereas novel multifunctional contrast agents can joint differenttechniques together to achieve much better performance. In that case, one can obtain awealth of very useful information in single-dose rather than many tediouslyprocedures, which not only saves time but also palliate the patient's suffering. As aresult, the preparation and modification of contrast agents are of great significance.
     Optical fluorescence imaging is one critical component of modern bioimagingtechniques. Contrast agents used in this technique include rare earth materials, metalclusters, carbon dots and so on. But these contrast agents have the disadvantages suchas high toxicity, low biocompatibility and functional singleness.
     To improve the biocompatibility of contrast agent, chitosan (a kind ofbio-maromolecule) is introduced in the preparation system. The as-prepared chitosan-fluorescent hybrid contrast agents have low toxicity and much improvedbiocompatibility. On the other hand, chitosan can be used as a cost-effective moleculeprecursor to fabricate contrast agent such as carbon dots. In the end, magneticmaterials can be added to obtain multifunctional contrast agents.
     In chapter2, we reported a novel and mild method for one-step synthesis ofchitosan/NaGdF_4:Eu~(3+)nanocomposites. The luminescent Eu~(3+)ions and magneticresonance imaging (MRI) contrast agent Gd~(3+)ions were incorporated to thesebiocompatible nanocomposites. The resultant nanocomposites exhibited strongfluorescence and attractive magnetic features. The nanocomposites also have purehexagonal phase with uniform size of about65nm. FT-IR spectra revealed that thesenanocomposites were successfully coated by hydrophilic chitosan, whose aminegroups conferred the nanocomposites excellent dispensability in aqueous solution.Besides, the MTT assay and laser confocal microscopy images have confirmed thegood biocompatibility of the nanocomposites. These results indicated that theas-prepared nanocomposites could be used as an excellent targeted imaging agent inbiological fields.
     In chapter3, a facile approach to prepare Ag cluster-encapsulated chitosanhybrid nanospheres and Eu~(3+), Gd~(3+)-encapsulated chitosan hybrid nanospheres isdeveloped by utilizing ethanol-aided counterion complexation in aqueous solution.The obtained hybrid nanospheres have not only the loading space provided by thechitosan spherical matrix for loading multiply materials but also unique fluorescentproperties provided by the encapsulated Ag clusters and Eu~(3+), even more attractivemagnetic features from Gd~(3+). Besides, these hybrid nanospheres possess goodbiocompatibility and optical stability in physiological environment. It is demonstratedthat hybrid nanospheres can be internalized by MC3T3cells and Cal-27cells, andhence act as labeling agent in cell imaging by optical microscopy.
     In chapter4, high quality CdSe/EuxSey hybrid nanocrystals were preparedthrough two methods. The photoluminescence of hybrid nanocrystals was tunablefrom blue to deep red by varying the different amount of rare earth in quantum dots(QDs) as well as the synthesis method. The resultant hybrid nanocrystals weremonodisperse of which sizewas controllable from2.55nmto5.86nm. Furthermore, ithas been proved that the hybrid nanocrystals were of cubic crystal structure with thehost of CdSe QDs. And the lanthanide ions were incorporated into the CdSe crystallattice successfully. Finally we have developed a general and simple microwave synthesis method to produce photoluminescent carbon dots with chitosan as acost-effective molecule precursor. Through TEM, XPS, XRD and FT-IR, wecharacterized the size、crystal structure and chemical composition of as-preparedcarbon dots. The as-prepared carbon dots present very good fluorescence property. Itis found that fluorescent emission peaks of samples shifted to longer wavelengthswith increasing excitation wavelength. Besides, the photoluminescence intensity ofthe carbon dots synthesized here is pH dependent, its intensity increases as theenvironmental pH decrease in the range of4-9, and this change is reversible. Thisphenomenon indicates the as-prepared carbon dots can be used as pH sensors. In theend the MTT assay confirmed the good biocompatibility and low toxicity of theas-prepared carbon dots.
引文
[1] Tallury P, Payton K, Santra S―Silica-based multimodal/multifunctionalnanoparticles for bioimaging and biosensing applications‖[J] Nanomed.2008,3:579–592.
    [2] Massoud TF, Gambhir SS―Molecular imaging in living subjects: seeingfundamental biological processes in a new light‖[J] Genes. Dev.2003,17:545–580.
    [3] Debbage P, Jaschke W―Molecular imaging with nanoparticles: giant roles fordwarf actors‖[J] Histochem Cell Biol.2008,130:845–875.
    [4] Ntziachristos V―Going deeper than microscopy: the optical imaging frontier inbiology‖[J] Nat. Methods2010,7(8):603–614.
    [5] Alt no lu E, Adair JH―Near infrared imaging with nanoparticles‖[J] WileyInterdiscip Rev: Nanomed Nanobiotechnol2010,2(5):461–477.
    [6] He X, Wang K, Cheng Z―In vivo near-infrared fluorescence imaging of cancerwith nanoparticle-based probes‖[J] Wiley Interdiscip Rev: NanomedNanobiotechnol2(4):349–366.
    [7] So MK, Xu C, Loening AM, Gambhir SS, Rao J―Selfilluminating quantum dotconjugates for in-vivo imaging‖[J] Nat. Biotechnol.2006,22:339–343.
    [8] Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA,Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV―Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping‖[J] Nat. Biotechnol.2004,22(1):93–97.
    [9] Yu X-F, Chen L-D, Li M, Xie M-Y, Zhou L, Li Y, Wang Q-Q―Highly efficientfluorescence of NdF3/SiO2core/shell nanoparticles and the applications for invivo NIR detection‖[J] Adv Mater2008,20:4118–4123.
    [10] Hilderbrand SA, Shao F, Salthouse C, Mahmood U, Weissleder R―Upconvertingluminescent nanomaterials: application to in vivo bioimaging‖[J] Chem.Commun.2009,28:4188–4190.
    [11] Chatterjee DK, Rufaihah AJ, Zhang Y―Upconversion fluorescence imaging ofcells and small animals using lanthanide doped nanocrystals‖[J] Biomaterials2008,29:937–943.
    [12] Wang L, Zhang Y, Zhu Y―One-pot synthesis and strong near-infraredupconversion luminescence of poly(acrylic acid)-functionalized YF3:Yb3+/Er3+nanocrystals‖[J] Nano Res.2010,3:317–325.
    [13] Venkatachalam N, Okumura Y, Soga K, Fukuda R, Tsuji T―Bioimaging of M1cells using ceramic nanophosphors: synthesis and toxicity assay of Y2O3nanoparticles‖[J] J. Phys. Conf. Ser.2009,191:012002.
    [14] Bachmann PK, Hummel H, Jüstel T, Merikhi J, Ronda CR, Weiler V―Near-infrared luminescent nanomaterials for invivo optical imaging‖[J] J.Nanophotonics2008,2:021920.
    [15] Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H―Aroute to brightly fluorescent carbon nanotubes for near-infrared imaging in mice‖[J] Nat. Nanotechnol.2009,4:773–780.
    [16] Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ,Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM,Xie S-Y―Quantum-sized carbon dots for bright and colorful photoluminescence‖[J] J. Am. Chem. Soc.2006,128:7756–7757.
    [17] Yang ST, Wang X, Wang HF, Lu FS, Luo PJG, Cao L, Meziani MJ, Liu JH, LiuYF, Chen M, Huang YP, Sun YP―Carbon dots as nontoxic andhigh-performance fluorescence imaging agents‖[J] J. Phys. Chem. C2009,113:18110–18114.
    [18] Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, VecaLM, Murray D, Xie S-Y, Sun Y-P―Carbon dots for multiphoton bioimaging‖[J]J. Am. Chem. Soc.2007,129:11318–11319.
    [19] Yang S-T, Cao L, Luo PG, Lu F, Wang X, Wang H, Meziani MJ, Liu Y, Qi G,Sun Y-P―Carbon dots for optical imaging in vivo‖[J] J. Am. Chem. Soc.2009,131:11308–11309.
    [20] Barnard AS―Diamond standard in diagnostics: nanodiamond biolabels maketheir mark‖[J] Analyst2009,134:1751–1764.
    [21] Alt no lu E, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, Adair JH―Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles forinvivo imaging of human breast cancer‖[J] ACS Nano2008,2:2075–2084.
    [22] Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ―Biodegradable luminescent porous silicon nanoparticles for in vivoapplications‖[J] Nat. Mater.2009,8:331–336.
    [23] Kircher MF, Weissleder R, Josephson L―A dual fluorochrome probe for imagingproteases‖[J] Bioconjug Chem.2004,15:242.
    [24] Rao J, Dragulescu-Andrasi A, Yao H―Fluorescence imaging in vivo: recentadvances‖[J] Curr. Opin. Biotechnol.2007,18:17–25.
    [25] Deliolanis NC, Dunham J, Wurdinger T, Figueiredo J-L, Tannous BA,Ntziachristos V―In-vivo imaging of murine tumors using complete-angleprojection fluorescence molecular tomography‖[J] J. Biomed. Opt.2009,14:030509.
    [26] Garofalakis A, Zacharakis G, Meyer H, Economou EN, Mamalaki C,Papamatheakis J, Kioussis D, Ntziachristos V, Ripoll J―Three-dimensionalin-vivo imaging of green fluorescent protein-expressing T cells in mice withnoncontact fluorescence molecular tomography‖[J] Mol. Imaging2007,6:96–107.
    [27] Martin A, Aguirre J, Sarasa-Renedo A, Tsoukatou D, Garofalakis A, Meyer H,Mamalaki C, Ripoll J, Planas AM―Imaging changes in lymphoid organs in vivoafter brain ischemia with three-dimensional fluorescence molecular tomographyin transgenic mice expressing green fluorescent protein in T lymphocytes‖[J]Mol. Imaging2008,7:157–167.
    [28] Khullar O, Frangioni JV, Grinstaff M, Colson YL―Imageguided sentinel lymphnode mapping and nanotechnology-based nodal treatment in lung cancer usinginvisible near-infrared fluorescent light‖[J] Seminars Thorac. Cardiovasc. Surg.2009,21:309–315.
    [29] Ravizzini G, Turkbey B, Barrett T, Kobayashi H, Choyke PL‖Nanoparticles insentinel lymph node mapping‖[J] Wiley Interdiscip. Rev: NanomedNanobiotechnol2009,1:610–623.
    [30] Na HB, Hyeon T―Nanostructured t1MRI contrast agents‖[J] J. Mater. Chem.2009,19:6267–6273.
    [31] Na HB, Song IC, Hyeon T‖Inorganic nanoparticles for MRI contrast agents‖[J]Adv. Mater.2009,21:2133–2148.
    [32] Corot C, Robert P, Idee JM, Port M―Recent advances in iron oxide nanocrystaltechnology for medical imaging‖[J] Adv. Drug. Delivery. Rev.2006,58:1471–1504.
    [33] Semelka RC, Helmberger TKG―Contrast agents for MR imaging of the liverRadiology2001,218:27–38.
    [34] Jaffer FA, Libby P, Weissleder R―Molecular and cellular imaging ofatherosclerosis-emerging applications‖[J] J. Am. Coll. Cardiol.2006,47:1328–1338.
    [35] Sosnovik DE, Nahrendorf M, Weissleder R―Magnetic nanoparticles for MRimaging: agents, techniques and cardiovascular applications‖Basic Res. Cardiol.2008,103:122–130.
    [36] Weissleder R, Pittet MJ―Imaging in the era of molecular oncology‖[J] Nature2008,452:580–589.
    [37] Jaffer FA, Libby P, Weissleder R―Molecular imaging of cardiovascular disease.‖[J] Circulation2007,116:1052–1061.
    [38] Lu AH, Salabas EL, Schuth F Magnetic nanoparticles: synthesis, protection,functionalization, and application. Angew. Chem. Int. Ed.2007,46(8):1222–1244.
    [39] Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SMPositive contrast magnetic resonance imaging of cells labeled with magneticnanoparticles. Magn. Reson. Med.2005,53(5):999–1005.
    [40] Suzuki Y, Cunningham CH, Noguchi KI, Chen IY, Weissman IL, Yeung AC,Robbins RC, Yang PC In vivo serial evaluation of superparamagnetic iron-oxidelabeled stem cells by off-resonance positive contrast. Magn. Reson. Med.2008,60(6):1269–1275.
    [41] Senpan A, Caruthers SD, Rhee I, Mauro NA, Pan DPJ, Hu G, Scott MJ, FuhrhopRW, Gaffney PJ, Wickline SA, Lanzat GM Conquering the dark side: colloidaliron oxide nanoparticles. ACS Nano2009,3(12):3917–3926.
    [42] Alric C, Taleb J, Le Duc G, Mandon C, Billotey C, Le Meur-Herland A,Brochard T, Vocanson F, Janier M, Perriat P, Roux S, Tillement O Gadoliniumchelate coated gold nanoparticles as contrast agents for both x-ray computedtomography and magnetic resonance imaging. J. Am. Chem. Soc.2008,130(18):5908–5915.
    [43] Terreno E, Castelli DD, Viale A, Aime S Challenges for molecular magneticresonance imaging. Chem. Rev.2010,110(5):3019–3042.
    [44] Manus L M, Mastarone D J, Waters E A, Zhang X Q, Schultz-Sikma EA,MacRenaris K W, Ho D, Meade T J Gd(III)-nanodiamond conjugates forMRI contrast enhancement. Nano Lett.2010,10(2):484–489.
    [45] Taylor K M L, Kim J S, Rieter W J, An H, Lin W L, Lin W B Mesoporoussilica nanospheres as highly efficient MRI contrast agents. J. Am. Chem. Soc.2008,130(7):2154–2155.
    [46] Shin J M, Anisur R M, Ko M K, Im G H, Lee J H, Lee I S Hollow manganeseoxide nanoparticles as multifunctional agents for magnetic resonance imagingand drug delivery. Angew. Chem. Int. Ed.2009,48(2):321–324.
    [47] K. E. deKraffi, Z. Xie, G. Cao, S. Tran, L. Ma, O. Z. Zhou, W. Lin. IodinatedNanoscale Coordination Polymers as Potential Contrast Agents for ComputedTomography. Angew. Chem. Int. Ed.2009,48,9901.
    [48] D. Pan, T. A. Williams, A. Sen Pan, J. S. Allen, M. J. Seott, P. J. Gafflley,. A.Wiekline, Detecting Vascular Biosignatures with a Colloidal, Radio-OpaquePolymeric Nanoparticle. J. Am. Chem. Soc.2009,131,15522.
    [49] F. Hyafil, J. Cornily, J. E. Feig, R. Gordon, E. Vueie, V Amirbekian, E. A. Fisher,Nat. Med.2007,13,636.
    [50] O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewiez, R. Weissleder, Nat. Mater.2006,5,18.
    [51] R. PoPovtzer, A. Agrawal, N. A. Kotov, A. PoPovtzer, J. Balter, T. E. Carey, R.KoPelman, Targeted Gold Nanoparticles Enable Molecular CT Imaging ofCancer. Nano Lett.2008,8,4593.
    [52] D. Kim, Y. YJeong, S. Jon, A Drug-Loaded Aptamer Gold NanoparticleBioconjugate for Combined CT Imaging and Therapy of Prostate Cancer. ACSNano2010,4,3689.
    [53] H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, G. Zhang, Biomazerials2011,32,2979.
    [54] M. H. Oh, N. Lee, H. Kim, S. P. Park, Y. Piao, J. Lee, S. W Jun,W K.Moon.S. H.Choi, T. Hyeon, J. Am.Chem.Soc.2011,133,5508.
    [55] M. N. Wernick, J. N. Aarsvold,1sted. Elsevie, San Diego, CA,2004.
    [56] Z. Liu, W. B. Cai, L. N. He, N. Nakayama, K. Chen, X. M. Sun, Nat.Nanolecchol2007,2,47.
    [57] W. Wu. R. Li, X. Bian, Z. Zhu, D. Ding, X. Lin, Z. Jia, X. Jiang, Y Hu,Covalently Combining Carbon Nanotubes with Anticancer Agent: Preparationand Antitumor Activity. ACS Nano2009,3,2740.
    [58] M. Jauregui Osoro, P. A. Williamson, A. Glaria, K. Sunassee, P. CharoenPhun,M A. Green. G. E. D. Mullen, P. J. Blower, Dalton Trans.2011,40,6226.
    [59] B. R. Jarrett, B. Gustafsson, D. L. Kukis, A. Y Louie, Bioconjugate Chem.2008,1496.
    [60] S. Empedocles, M. Bawendi, Spectroscopy of Single CdSe Nanocrystallites. Acc.Chem. Res.1999,32,389.
    [61] A. R. Clapp, I. L. Medintz, H. Mattoussi, Chem. Phys. Chem.2006,7,47.
    [62] C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization ofnearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductornanocrystallites. J. Am. Chem. Soc.1993,115,8706.
    [63] Z. Y. Tang, N. A. Kotov, M. Giersig, Science2002,297,237.
    [64] M. A. El-Sayed, Small Is Different: Shape-, Size-, and Composition-DependentProperties of Some Colloidal Semiconductor Nanocrystals. Acc. Chem. Res.2004,37,326.
    [65] S. Kumar, T. Nann, Shape Control of II–VI Semiconductor Nanomaterials. Small2006,2,316.
    [66] V. Salgueirin o-Maceira, M. A. Correa-Duarte, Increasing the Complexity ofMagnetic Core/Shell Structured Nanocomposites for Biological Applications.Adv. Mater.2007,19,4131.
    [67] A. L. Rogach, D. V. Talapin, E. V. Shevchenko, A. Kornowski, M. Haase, H.Weller, Organization of Matter on Different Size Scales: MonodisperseNanocrystals and Their Superstructures. Adv. Funct. Mater.2002,12,653.
    [68] N. A. Kotov, MRS Bull.2001,26,992.
    [69] M. Y. Han, X. H. Gao, J. Z. Su, S. M. Nie, Nat. Biotechnol.2001,19,631.
    [70] H. Weller, Colloidal Semiconductor Q-Particles: Chemistry in the TransitionRegion Between Solid State and Molecules. Angew. Chem. Int. Ed. Engl.1993,32,41.
    [71] R. Shenhar, V. M. Rotello, Nanoparticles: Scaffolds and Building Blocks. Acc.Chem. Res.2003,36,549.
    [72] H. Zhang, E. W. Edwards, D. Y. Wang, H. M hwald, Phys. Chem. Chem. Phys.2006,8,3288.
    [73] H. Zhang, Z. C. Cui, Y. Wang, K. Zhang, X. L. Ji, C. L. Lu, B. Yang, M. Y. Gao,From Water-Soluble CdTe Nanocrystals to Fluorescent Nanocrystal–PolymerTransparent Composites Using Polymerizable Surfactants. Adv. Mater.2003,15,777.
    [74] J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, K. F. Jensen, Full ColorEmission from II–VI Semiconductor Quantum Dot–Polymer Composites. Adv.Mater.2000,12,1102.
    [75] H. Zhang, Y. Tang, J. H. Zhang, M. J. Li, X. Yao, X. Li, B. Yang, Soft Matter2009,5,4113.
    [76] R. S. Kane, R. E. Cohen, R. Silbey, Semiconductor Nanocluster Growth withinPolymer Films. Langmuir1999,15,39.
    [77] L. Meli, P. F. Green, Aggregation and Coarsening of Ligand-Stabilized GoldNanoparticles in Poly(methyl methacrylate) Thin Films. ACS Nano2008,2,1305.
    [78] F. W. Starr, T. B. Schr der, S. C. Glotzer, Phys. Rev. E2001,64,021802.
    [79] Y. Lin, A. B ker, J. B. He, K. Sill, H. Q. Xiang, C. Abetz, X. F. Li, J. Wang, T.Emrick, S. Long, Q. Wang, A. Balazs, T. P. Russell, Nature2005,434,55.
    [80] R. B. Thompson, V. V. Ginzburg, M. W. Matsen, A. C. Balazs, Science2001,292,2469.
    [81] H. W. Duan, M. Kuang, D. Y. Wang, D. G. Kurth, H. M hwald, ColloidallyStable Amphibious Nanocrystals Derived from Poly{[2-(dimethylamino)ethyl]Methacrylate} Capping. Angew. Chem. Int. Ed.2005,44,1717.
    [82] J. N. Chai, J. M. Buriak, Using Cylindrical Domains of Block Copolymers ToSelf-Assemble and Align Metallic Nanowires. ACS Nano2008,2,489.
    [83] W. L. Leong, P. S. Lee, A. Lohani, Y. M. Lam, T. P. Chen, S. Zhang, A.Dodabalapur, S. G. Mhaisalkar, Non-Volatile Organic Memory ApplicationsEnabled by In Situ Synthesis of Gold Nanoparticles in a Self-Assembled BlockCopolymer. Adv. Mater.2008,20,2325.
    [84] J. Shan, M. Nuopponen, H. Jiang, T. Viitala, E. Kauppinen, K. Kontturi, H.Tenhu, Macromolecules2005,38,2918.
    [85] T. R. Hui, D. Y. Chen, M. Jiang, Macromolecules2005,38,5834.
    [86] H. Wang, Y. L. An, N. Huang, R. J. Ma, J. B. Li, L. Q. Shi, Macromol. RapidCommun.2008,29,1410.
    [87] M. Y. Gao, Y. Yang, B. Yang, F. L. Bian, J. C. Shen, J. Chem. Soc, Chem.Commun.1994,2779.
    [88] R.Guo, L.Zhang, Z.Zhu, X.Jiang, Direct Facile Approach to the Fabrication ofChitosan Gold Hybrid Nanospheres. Langmuir2008,24,3459.
    [89] R. Guo, R. Li, X. Li, L. Zhang, X. Jiang, B. Liu, Dual-Functional Alginic AcidHybrid Nanospheres for Cell Imaging and Drug Delivery. Small2009,5,709.
    [90] W. Sheng, S. Kim, J. Lee, S-K. Kim, K. Jensen,M G Bawendi, In-SituEncapsulation of Quantum Dots into Polymer Microspheres. Langmuir2006,22,3782.
    [91] Z. L. Liu, J. Magn. Magn. Mater.2006,302,529.
    [92] R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, B. Liu, Multifunctional Nanocarriersfor Cell Imaging, Drug Delivery, and Near-IR Photothermal Therapy. Langmuir2010.26,5428.
    [93] K. Sill, T. Emrick, Nitroxide-Mediated Radical Polymerization from CdSeNanoparticles. Chem. Mater.2004,16,1240.
    [94] H. Skaff, M. F. Ilker, E. B. Coughlin, T. Emrick, Preparation of CadmiumSelenide Polyolefin Composites from Functional Phosphine Oxides andRuthenium-Based Metathesis. J. Am. Chem. Soc.2002,124,5729.
    [95] W. Z. Guo, J. J. Li, Y. A. Wang, X. G. Peng, Luminescent CdSe/CdS Core/ShellNanocrystals in Dendron Boxes: Superior Chemical, Photochemical andThermal Stability. J. Am. Chem. Soc.2003,125,3901.
    [96] Y. Lin, H. Skaff, A. B ker, A. D. Dinsmore, T. Emrick, T. P. Russell, UltrathinCross-Linked Nanoparticle Membranes. J. Am. Chem. Soc.2003,125,12690.
    [97] D. X. Li, Y. Cui, K. W. Wang, Q. He, X. H. Yan, J. B. Li, ThermosensitiveNanostructures Comprising Gold Nanoparticles Grafted with Block Copolymers.Adv. Funct. Mater.2007,17,3134.
    [98] S. Takae, Y. Akiyama, H. Otsuka, T. Nakamura, Y. Nagasaki, K. Kataoka,Biomacromolecules2005,6,818.
    [99] X-. S. Wang, T. E. Dykstra, M. R. Salvador, I. Manners, G. D. Scholes, M. A.Winnik, Surface Passivation of Luminescent Colloidal Quantum Dots withPoly(Dimethylaminoethyl methacrylate) through a Ligand Exchange Process. J.Am. Chem. Soc.2004,126,7784.
    [100] H. Duali, S. Nie, Cell-Penetrating Quantum Dots Based on Multivalent andEndosome-Disrupting Surface Coatings. J. Am. Soc. Chem.2007,129,3333.
    [101] Y.Gong,M.Gao,D.Wang,H.Mohwald, Chem. Mater.200517,2648.
    [102] M.Han,X.Gao.J.Z.Su.S.Nie, Nat. Biotech,2001,19,631.
    [103] X. Gao,Y. Cui, L. W. K. Chung, S. Nie, Nat. Biotechnol,2004,22,969
    [104] Muzzarelli RAA. Natural chelating polymers; alginic acid, chitin, and chitosan.New York: Pergamon Press Oxford;1973254pp.
    [105] Hoppe-Seiler F. Chitin and chitosan. Ber Dtsch Chem Ges1994;27:3329–31.
    [106] Agrawal P, Strijkers GJ, Nicolay K. Chitosan-based systems for molecularimaging. Adv Drug Deliv Rev2009;62:42–58.
    [107] Roberts GAF. Structure of chitin and chitosan. In: Roberts GAF, editor. Chitinchemistry. Houndmills: Macmillan;1992. p.1–53.
    [108] Rha CK, Rodriguez-Sanchez D, Kienzle-Sterzer C. Novel applications ofchitosan. In: Colwell RR, Pariser ER, Sinskey AJ, editors. Biotechnology ofmarine polysaccharides. Washington: Hemisphere;1984. p.284–311.
    [109] Struszcyk H, Wawro D, Niektaszewicz A. Biodegradability of chitosan fibers.In: Brine C, Sandford PA, Zikkakis JP, editors. Advances in chitin and chitosan.London: Elsevier;1992. p.580–5.
    [110] Lee CM, Jeong HJ, Kim SL, Kim EM, Kim DW, Lim ST, Jang KY, Jeong YY,Nah JW, Sohn MH. SPION-loaded chitosan-linoleic acid nanoparticles to targethepatocytes. Int J Pharm2009;371:163–9.
    [111] Hein S, Wang K, Stevens WF, Kjems J. Chitosan composites for biomedicalapplications: status, challenges and perspectives. Mater Sci Technol2008;24:1053–61.
    [112] Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ. Molecularinteractions in collagen and chitosan blends. Biomaterials2004;25:795–801.
    [113] Kweon DK, Song SB, Park YY. Preparation of water-soluble chitosan/heparincomplex and its application as wound healing accelerator. Biomaterials2003;24:1595–601.
    [114] Koping-Hoggard M, Tubulekas I, Guan H, Edwards K, Nilsson M, Varum KM,Artursson P. Chitosan as a nonviral gene delivery system. Structure-propertyrelationships and characteristics compared with polyethylenimine in vitro andafter lung administration in vivo. Gene Ther2001;8:1108–21.
    [115] Mi FL, Shyu SS, Peng CK, Wu YB, Sung HW, Wang PS, Huang CC.Fabrication of chondroitin sulfate-chitosan composite artificial extracellularmatrix for stabilization of fibroblast growth factor. J Biomed Mater Res A2006;76:1–15.
    [116] F. Zhang, G. B. Braun, Y. Shi, Y. Zhang, X. Sun, N. O. Reich, D. Zhao and G.Stucky, Fabrication of Ag@SiO2@Y2O3:Er Nanostructures for Bioimaging:Tuning of the Upconversion Fluorescence with Silver Nanoparticles. J. Am.Chem. Soc.132,2850(2010).
    [117] F. Erogbogbo, K. Yong, R. Hu, W. Law, H. Ding, C. Chang, P. N. Prasad andM. T. Swihart, Biocompatible Magnetofluorescent Probes: Luminescent SiliconQuantum Dots Coupled with Superparamagnetic Iron(III) Oxide. ACS Nano4,5131(2010).
    [118] L. Xiong, T. Yang, Y. Yang, C. Xu and F. Li, Biomaterials31,7078(2010).
    [119] C. X. Wang, Y. Wang, L. Xu, X. D. Shi, X. W. Li, X. W. Xu, H. C. Sun, B.Yang and Q. Lin, A Galvanic Replacement Route to Prepare StronglyFluorescent and Highly Stable Gold Nanodots for Cellular Imaging. Small9,413(2013).
    [120] C. X. Wang, Y. Wang, L. Xu, D. Zhang, M. X. Liu, X. W. Li, H. C. Sun, Q. Linand B. Yang, Facile Aqueous-Phase Synthesis of Biocompatible andFluorescent Ag2S Nanoclusters for Bioimaging: Tunable Photoluminescencefrom Red to Near Infrared. Small8,3137(2012).
    [121] M. Zhang, M. Yu, F. Li, Y. M. Zhu, M. Li, Y. Gao, L. Li, Z. Liu, J. Zhang, D.Zhang, Q. T. Yi and C. Huang, A Highly Selective Fluorescence Turn-onSensor for Cysteine/Homocysteine and Its Application in Bioimaging. J. Am.Chem. Soc.129,10322(2007).
    [122] G. Seisenberger, M. U. Ried, T. Endre, H. Buning, M. Hallek and C. Br uchle,Science294,1929(2001).
    [123] W. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Cao, S. Wang, S. S. Gambhirand X. Chen, Peptide-Labeled Near-Infrared Quantum Dots for Imaging TumorVasculature in Living Subjects. Nano Lett.6,669(2006).
    [124] X. Li, S. Gai, C. Li, D. Wang, N. Niu, F. He and P. Yang, Inorg. Chem.51,3963(2012).
    [125] Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li and F. Li, Sub-10nm HexagonalLanthanide-Doped NaLuF4Upconversion Nanocrystals for SensitiveBioimaging in Vivo. J. Am. Chem. Soc.133,17122(2011).
    [126] Q. Dou and Y. Zhang, Tuning of the Structure and Emission Spectra ofUpconversion Nanocrystals by Alkali Ion Doping. Langmuir27,13236(2011).
    [127] B. K. Gupta, T. N. Vithayathil, Y. Lee, S. Koshy, A. L. Reddy, A. Saha, V.Shanker, V. N. Singh, B. A. Kaipparettu, A. A. Martíand P. M. Ajayan, HighlyLuminescent–Paramagnetic Nanophosphor Probes for In Vitro High-ContrastImaging of Human Breast Cancer Cells. Small8,3028(2012)
    [128] W. Deng, D. Jin, K. D. Tomsia, J. Yuan and E. M. Goldys, Europium Chelate(BHHCT-Eu3+) and Its Metal Nanostructure Enhanced Luminescence Appliedto Bioassays and Time-Gated Bioimaging. Langmuir26,10036(2010).
    [129] Y. C. Liu, P. P. Yang, W. Wang, H. Dong and J. Lin, Cryst. Eng. Commun.12,3717(2010).
    [130] G. F. Wang, Q. Peng and Y. D. Li, Lanthanide-Doped Nanocrystals: Synthesis,Optical-Magnetic Properties, and Applications. Acc. Chem. Res.44,322(2011).
    [131] Z. Y. Hou, C. X. Li, P. Ma, G. Li, Z. Cheng, C. Peng, D. Yang, P. P. Yang andJ. Lin, Electrospinning Preparation and Drug-Delivery Properties of anUp-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica FiberNanocomposite. Adv. Funct. Mater.21,2356(2011).
    [132] Z. L. Wang, Z. W. Quan, P. Y. Jia, C. K. Lin, Y. Luo, Y. Chen, J. Fang, W.Zhou, C. J. O'Connor and J. Lin, A Facile Synthesis and PhotoluminescentProperties of Redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3(Core/Shell) Nanoparticles. Chem. Mater.18,2030(2006).
    [133] G. Chen, T. Y. Ohulchanskyy, S. Liu, W. C. Law, F. Wu, M. T. Swihart and H.Agren, Core/Shell NaGdF4:Nd3+/NaGdF4Nanocrystals with EfficientNear-Infrared to Near-Infrared Downconversion Photoluminescence forBioimaging Applications. ACS Nano6,2969(2012).
    [134] G. Ren, S. Zeng and J. Hao, J. Phys. Chem. C115,20141(2011).
    [135] J. Shen, L.-D. Sun and C.-H. Yan, Dalton Trans.5687(2008).
    [136] F. Wang, X. Fan, M. Wang and Y. Zhang, Multicolour PEI/NaGdF4:Ce3+,Ln3+nanocrystals by single-wavelength excitation. Nanotechnology18,025701(2007).
    [137] F. You, Y. Wang and J. Lin, J. Alloys Comp.343,151(2002).
    [138] Q. Zhang, K. Song, J. Zhao, X. Kong, Y. Sun, X. Liu, Y. Zhang, Q. Zeng and H.Zhang, J. Colloid Interface Sci.336,171(2009).
    [139] J. H. Parka, G. Saravanakumara, K. Kimb and I. C. Kwon, Adv. Drug Deliv.Rev.62,28(2010).
    [140] Y. Chen, B. Siddalingappa, P. H. H. Chan and H. A. E. Benson, Pept. Sci.90,663(2008).
    [141] Z. Lu, Z. Zhu, X. Zheng, Y. Qiao, J. Guo and C. Li, Biocompatiblefluorescence-enhanced ZrO2–CdTe quantum dot nanocomposite for in vitrocell imaging. Nanotechnology22,155604(2011).
    [142] W. Wu, J. Shen, P. Banerjee and S. Zhou, Biomaterials31,8371(2010).
    [143] F. Wang, Y. Zhang, X. Fan and M. Wang, One-pot synthesis ofchitosan/LaF3:Eu3+nanocrystals for bio-applications. Nanotechnology17,1527(2006).
    [144] P. Ptacek, H. Sch fer, K. K€ompe and M. Haase, Crystal Phase Control ofLuminescing α-NaGdF4:Eu3+and β-NaGdF4:Eu3+Nanocrystals. Adv. Funct.Mater.17,3843(2007).
    [145] M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Strek and L. Kepiński, J. Phys.Chem. Solids66,1008(2005).
    [146] Y. N. Jiang, X. D. Yang, C. Ma, C. X. Wang, H. Li, F. X. Dong, X. M. Zhai, K.Yu, Q. Lin and B. Yang, Photoluminescent Smart Hydrogels with Reversibleand Linear Thermoresponses. Small6,2673(2010).
    [147] D. Pi, F. Wang, X. Fan, M. Wang and Y. Zhang, Spectrochim. Acta A Mol.Biomol. Spectrosc.61,2455(2005).
    [148] Z. Li, Y. Zhang, B. Shuter and N. M. Idris, Hybrid Lanthanide Nanoparticleswith Paramagnetic Shell Coated on Upconversion Fluorescent Nanocrystals.Langmuir25,12015(2009).
    [149] Hu, Y.; Chen, Q.; Ding, Y.; Li, R.; Jiang, X.; Liu, B. Adv. Mater.2009,21,1–5.
    [150] Guo, J.; Wang, C.; Mao, W.; Yang, W.; Liu, C.; Chen, J. Facile one-potpreparation and functionalization of luminescent chitosan-poly(methacrylic acid)microspheres based on polymer–monomer pairs. Nanotechnology2008,19,315605–315612.
    [151] Guo, R.; Zhang, L.; Qian, H.; Li, R.; Jiang, X.; Liu, B. MultifunctionalNanocarriers for Cell Imaging, Drug Delivery, and Near-IR PhotothermalTherapy. Langmuir2010,26(8),5428–5434.
    [152] Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi,F.; Zink, J. I. Multifunctional Inorganic Nanoparticles for Imaging, Targeting,and Drug Delivery. ACS Nano2008,2(5),889–896.
    [153] Chen, H.; Wu, X.; Duan, H.; Wang, Y. A.; Wang, L.; Zhang, M.; Mao, H.Biocompatible Polysiloxane-Containing Diblock Copolymer PEO-b-PγMPS forCoating Magnetic Nanoparticles. ACS Appl. Mater. Interfaces2009,1(10),2134–2140.
    [154] Al-Jamal, W. T.; Al-Jamal, K. T.; Tian, B.; Lacerde, L.; Bomans, P. H.;Frederik, P. M.; Kostarelos, K. Lipid Quantum Dot Bilayer Vesicles EnhanceTumor Cell Uptake and Retention in Vitro and in Vivo. ACS Nano2008,2(3),408–418.
    [155] Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. Nat. Biotechnol.2004,22(8),969–976.
    [156] Goto, Y.; Matsuno, R.; Konno, T.; Takai, M.; Ishihara, K. Biomacromolecules2008,9,3252–3257.
    [157] Tan, W. B.; Huang, N.; Zhang, Y. J. Colloid Interface Sci.2007,310,464–470.
    [158] Slevan, S. T.; Patra, P. K.; Ang, C. Y.; Ying, J. Y. Synthesis of Silica-CoatedSemiconductor and Magnetic Quantum Dots and Their Use in the Imaging ofLive Cells. Angew. Chem.,Int. Ed.2007,46,2448–2452.
    [159] Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat. Mater.2005,4,435–446.
    [160] Biju, V.; Itoh, T.; Anas, A.; Sujith, A.; Ishikawa, M. Anal. Bioanal. Chem.2008,391,2469–2495.
    [161] Gao, X. L.; Chen, J.; Chen, J. Y.; Wu, B. X.; Chen, H. Z.; Jiang, X. G.Bioconjugate Chem.2008,19,2189–2195.
    [162] Bhang, S. H.; Won, N.; Lee, T.; Jin, H.; Nam, J.; Park, J.; Chung, H.; Park, H.;Sung, Y.; Hahn, S. K.; Kim, B.; Kim, S. Hyaluronic Acid Quantum DotConjugates for In Vivo Lymphatic Vessel Imaging. ACS Nano2009,3(6),1389–1398.
    [163] Guo, Y.; Shi, D.; Cho, H.; Dong, Z.; Kulkarni, A.; Pauletti, G. M.; Wang, W.;Lian, J.; Liu, W.; Ren, L.; Zhang, Q.; Liu, G. In vivo Imaging and Drug Storageby Quantum-Dot-Conjugated Carbon Nanotubes. Adv. Funct. Mater.2008,18,2489–2497.
    [164] Kairdolf, B. A.; Mancini, M. C.; Smith, A. M.; Nie, S. Minimizing NonspecificCellular Binding of Quantum Dots with Hydroxyl-Derivatized Surface Coatings.Anal. Chem.2008,80,3029–3034.
    [165] Kim, S.; Lim, Y. T.; Soltesz, E. G.; Grand, A. M. D.; Lee, J.; Nakayama, A.;Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.;Bawendi, M. G.; Frangioni, J. V. Nat. Biotechnol.2004,22(1),93–97.
    [166] Sill, K.; Emrick, T. Nitroxide-Mediated Radical Polymerization from CdSeNanoparticles. Chem. Mater.2004,16(7),1240–1243.
    [167] Mao, H.; Roy, K.; Troung-Le, V.; Janes, K.; August, T.; Leong, K. J.Controlled Release2001,70,399–421.
    [168] Wang, C.; Wang, L.; Yang, W. J. Colloid Interface Sci.2009,333,749–756.
    [169] Sandros, M. G.; Behrendt, M.; Maysinger, D.; Tabrizian, M.InGaP@ZnS-Enriched Chitosan Nanoparticles: A Versatile Fluorescent Probefor Deep-Tissue Imaging. Adv. Funct. Mater.2007,17,3724–3730.
    [170] G. Schmid, Large clusters and colloids. Metals in the embryonic state. Chem.Rev.,1992,92,1709.
    [171] J. Zheng, P. R. Nicovich and R. M. Dickson, Annu. Rev. Phys. Chem.,2007,58,409.
    [172] A. C. Templeton, M. P. Wuelfing and R. W. Murray, Monolayer-ProtectedCluster Molecules. Acc. Chem. Res.,2000,33,27.
    [173] W. Lesniak, A. U. Bielinska, K. Sun, K. W. Janczak, X. Y. Shi, J. R. Baker andL. P. Balogh, Silver/Dendrimer Nanocomposites as Biomarkers: Fabrication,Characterization, in Vitro Toxicity, and Intracellular Detection. Nano Lett.,2005,5,2123.
    [174] W.W. Guo, J. P. Yuan and E. K. Wang, Chem. Commun.,2009,3395.
    [175] T. Vosch, Y. Antoku, J. C. Hsiang, C. I. Richards, J. I. Gonzalez and R. M.Dickson, Proc. Natl. Acad. Sci. U. S. A.,2007,104,12616.
    [176] H. X. Xu and K. S. Suslick, Water-Soluble Fluorescent Silver Nanoclusters.Adv. Mater.,2010,22,1078.
    [177] H. X. Xu and K. S. Suslick, Sonochemical Synthesis of Highly Fluorescent AgNanoclusters.ACS Nano,2010,4,3209.
    [178] E. G. Gwinn, P. R. O’Neill, A. J. Guerrero, D. Bouwmeester and D. K.Fygenson, Sequence-Dependent Fluorescence of DNA-Hosted SilverNanoclusters. Adv. Mater.,2008,20,279.
    [179] J. G. Zhang, S. Q. Xu and E. P. Kumacheva, Photogeneration of FluorescentSilver Nanoclusters in Polymer Microgels. Adv. Mater.,2005,17,2336.
    [180] A. P. Alivisatos, W. W. Gu and C. Larabell, Annu. Rev. Biomed. Eng.,2005,7,55–76.
    [181] J. H. Gao and B. Xu, Nano Today,2009,4,37–51
    [182] M. Bottini, F. Cerignoli, D. M. Mills, F. D’Annibale, M. Leone, N. Rosato, A.Magrini, M. Pellecchia, A. Bergamaschi and T. Mustelin, Luminescent SilicaNanobeads: Characterization and Evaluation as Efficient CytoplasmaticTransporters for T-Lymphocytes. J. Am. Chem. Soc.,2007,129,7814–7823.
    [183] Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, et al.Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am.Chem. Soc.2006;128:7756–7.
    [184] Li H, He X, Kang Z, Huang H, Liu Y, Liu J, et al. Water-Soluble FluorescentCarbon Quantum Dots and Photocatalyst Design. Angew. Chem. Inter. Ed.2010;49:4430–4.
    [185] Zong J, Zhu Y, Yang X, Shen J, Li C. Synthesis of photoluminescentcarbogenic dots using mesoporous silica spheres as nanoreactors, ChemicalCommunications. Chem. Comm.2011;47:764–6.
    [186] Liu H, Ye T,Mao C. Fluorescent Carbon Nanoparticles Derived fromCandleSoot. Angew. Chem. Inter. Ed.2007;46:6473–5.
    [187] Baker SN, Baker GA. Luminescent Carbon Nanodots: Emergent Nanolights.Angew. Chem. Inter. Ed.2010;49:6726–44.
    [188] Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, et al. ElectrophoreticAnalysis and Purification of Fluorescent Single-Walled Carbon NanotubeFragments. J. Am. Chem. Soc.2004;126:12736–7.
    [189] Zhao Q-L, Zhang Z-L, Huang B-H, Peng J, Zhang M, Pang D-W. Facilepreparation of low cytotoxicity fluorescent carbon nanocrystals byelectrooxidation of graphite. Chem. Comm.2008;5116.
    [190] Zhou J, Booker C, Li R, Zhou X, Sham T-K, Sun X, et al. An ElectrochemicalAvenue to Blue Luminescent Nanocrystals from Multiwalled CarbonNanotubes (MWCNTs). J. Am. Chem. Soc.2007;129:744–5.
    [191] Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, GiannelisEP. Photoluminescent Carbogenic Dots. Chem. Mater.2008;20:4539–41.
    [192] Mochalin VN, Gogotsi Y. Wet Chemistry Route to Hydrophobic BlueFluorescent Nanodiamond. J. Am. Chem. Soc.2009;131:4594–5.
    [193] Tian L, Ghosh D, Chen W, Pradhan S, Chang X, Chen S. Nanosized CarbonParticles From Natural Gas Soot. Chem. Mater.2009;21:2803–9.
    [194] Qiao Z-A., Wang Y, Gao Y, Li H, Dai T, Liu Y, et al. Commercially activatedcarbon as the source for producing multicolor photoluminescent carbon dots bychemical oxidation. Chem. Comm.2010;46:8812.
    [195] Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, et al.Nanographene oxide for cellular imaging and drug delivery. Nano Research2008;1:203–12.
    [196] Zhao L, Baccile N, Gross S, Zhang Y, Wei W, Sun Y, et al. Sustainablenitrogen-doped carbonaceous materials from biomass derivatives. Carbon2010;48:3778–87.
    [197] Liu C, Zhang P, Tian F, Li W, Li F, Liu W. One-step synthesis of surfacepassivated carbon nanodots by microwave assisted pyrolysis for enhancedmulticolor photoluminescence and bioimaging. J. Mater. Chem.2011;21:13163.
    [198] Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X. Microwave synthesis offluorescent carbon nanoparticles with electrochemiluminescence properties.Chem. Comm.2009;5118.
    [199] Yang YH, Cui JH, Zheng MT, Hu CF, Tan SZ, Xiao Y, et al. One-stepsynthesis of amino-functionalized fluorescent carbon nanoparticles byhydrothermal carbonization of chitosan. Chem. Comm.2012;48:380–2.
    [200] Tian L, Song Y, Chang X, Chen S. Hydrothermally enhancedphotoluminescence of carbon nanoparticles. Scripta Materialia2010;62:883–6.
    [201] H. Liu, T. Ye, C. Mao―Fluorescent Carbon Nanoparticles Derived from CandleSoot‖[J] Angew. Chem. Int. Ed.2007,46,6473–6475.
    [202] Q. Zhao, Z. Zhang, B. Huang, J. Peng, M. Zhang, D. Pang―Facile preparationof low cytotoxicity fluorescent carbon nanocrystals by electrooxidation ofgraphite‖[J] Chem. Commun.,2008,5116-5118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700