基于特征点的抗几何攻击的图像盲水印技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,人们不但可以通过互联网和CD-ROM方便快捷地获得多媒体信息,还可以得到与原始数据完全相同的复制品,由此引发的盗版问题和版权纷争已成为日益严重的社会问题。
     数字水印技术作为解决这类问题的一种潜在的有效技术,正受到国内外学者的广泛关注。由于图像信息在多媒体信息中的广泛性和重要地位,以及其研究过程所具有的代表性,因此这里主要以数字图像水印为研究对象。
     数字水印作为版权保护的手段,必然会受到各种形式的攻击,因此用于版权保护的数字水印应该具有鲁棒性。然而在抗几何攻击方面,目前仍然没有令人十分满意的水印方案面世,尤其在盲水印应用中。在目前已经提出的抗几何攻击的盲水印方案中,第二代水印,即基于图像内容的局部水印方案,有望能解决鲁棒盲水印中的抗几何攻击难题。基于内容的局部水印方案的基本思想是:利用图像中稳定的特征点标识水印嵌入的位置,并在与每个特征点对应的局部区域中独立地嵌入水印,从而当只有部分图像时,仍能通过这些特征点来定位和检测水印,因而可有效地抵抗裁剪攻击。基于局部内容的局部水印(也称为基于特征的局部水印),按逻辑可划分为三个模块:特征点的检测、用于水印嵌入和水印检测的局部区域的构造和各个局部区域的水印的嵌入和检测。整个水印系统的鲁棒性与特征点的鲁棒性、基于特征点构造的局部区域的稳定性以及局部区域上的水印算法的鲁棒性密切相关,缺一不可。因此,分别针对这三个功能模块展开深入研究。
     目前已有的基于特征的水印算法都是直接将模式识别领域中的特征用来同步水印。但是由于水印应用和模式识别领域的需求不一致,模式识别领域中的特征并不一定适用于水印应用。因此,提出了一种基于圆盘平均亮度适用于水印应用的旋转缩放不变特征(Disk Based Rotation and Scale Invariant Feature,简称为DRSIF)的提取算法。对于图像上的每一点,以该点为圆心构造一个内环半径呈等比数列变化、且内外环半径比固定的同心圆环序列,计算各个圆环的内外环的绝对平均亮度差,并将内外环的绝对平均亮度差的最大值(且为极大值)作为该点的响应值,将内外环的绝对平均亮度差取得最大值(且为极大值)、且最靠近圆心的圆环的内环半径作为该点的特征半径。检测图像上响应值取得局部极值的点以作为DRSIF点。从理论角度分析DRSIF提取算法的时间复杂度,从实验角度验证DRSIF点的鲁棒性,并与模式识别领域中最具代表性的两种尺度不变特征点进行比较。实验表明,DRSIF点对于水印应用中的常见攻击具有鲁棒性,因此适用于水印应用中。
     特征点对于几何的协变性并不能保证剖分得到的局部区域也具有几何协变性。基于特征点构造的局部区域的几何协变性还依赖于具体的剖分方式,即局部区域的构造方式。分别详细阐述了如何基于DRSIF点来构造局部水印嵌入区域和检测区域。基于原始图象上的DRSIF点构造出圆形区域,并从中选择熵值比较大、鲁棒的、且互不交叠的区域作为水印嵌入区域。基于待检测图象上的DRSIF点构造出圆形区域,并从中选择熵值比较大的区域作为候选水印检测区域。嵌入的水印以及图像所遭受的失真都可能使得图像的内容发生轻微的变化,因此待测图像上水印嵌入区域的构造过程很难准确再现。提出了分区策略来提高水印检测过程中水印嵌入区域的命中率,以加快检测到嵌有水印区域的速度。通过实验验证了基于DRSIF点构造的水印嵌入区域的鲁棒性和水印检测区域构造过程中分区策略的有效性。
     在前面的研究基础上,提出了两套完整的基于DRSIF点的局部水印方案:1)基于DRSIF点的空域局部水印方案;2)基于DRSIF点和不变域的局部水印方案。第一个方案中,利用区域的矩计算水印嵌入区域的特征角度来反映图像的旋转角度,以使得区域具有旋转不变性。第二个方案将水印重复地嵌入到各个水印嵌入区域的旋转缩放(简称RS)不变域中,通过将几何不变域与局部水印思想相结合,互补长短,不仅可以抵抗全局RST攻击,还可以抵抗裁剪等局部几何攻击。通过实验验证了这两套方案的鲁棒性。且与同类算法相比,提出的两套方案的性能优于同类算法。提出的两套局部水印方案相比,变换域局部水印方案的鲁棒性比空域局部水印方案略差,这是由于前者对于特征点的精确再现要求比后者高得多。另外,前者的水印嵌入容量比后者小得多。因此,必须要权衡鲁棒性和水印容量,结合具体的应用需求,选取适当的局部水印嵌入和检测算法。
Nowadays, through Internet and CD-ROM, the digital copies with the same quality as original data can be got much more easily and quickly. But the consequential problems such as copyright piracy, illegal use and copyright dissension have increasingly become a serious social issue.
     As a potential effective solution to the aforementioned problems, digital watermarking technology has received extensive attention. Because of the universality and important role of the digital image in the multimedia data, and it representative research process, the digital image watermarking is mainly taken as the research object.
     As a means of copyright protection, the digital watermarking will suffer various attacks, thus the watermarking for copyright protection should have the robustness. However, the robustness of the existing watermarking schemes against the geometrical attacks is still not enough, especially in the blind watermarking applications. The second generation watermarking, namely the content-based localized watermarking scheme, is promising to resist to the geometrical attacks. The basic idea of the content-based localized watermarking scheme is that, the robust feature point of the image is used to locate the watermark embedding and the watermark is independently embedded into the corresponding patch to each feature point so that the watermark can still be located and detected by the feature points of the part image, and thus can resist to the cropping attacks effectively. The content-based localized watermarking, also called the feature-based localized watermarking can logically divided into three parts: the detection of feature points, the construction of the elementary patches used to embed and detect the watermark, and the watermarking algorithm of elementary patches. The robustness of the whole watermarking scheme depends on the robustness of the feature points, the robustness of the constructed patches based on the feature point, and the robustness of the watermarking algorithm of the patch.
     Most of the current existing feature-based watermarking algorithms directly use the feature from the pattern recognition fields to synchronize the watermark. However, the requirements in the watermarking applications and the pattern recognition fields are not identical and the feature used for the pattern recognition fields is not necessarily suit for the watermarking applications. Thus, based on the mean luminance of the disk, a rotation and scale invariant feature (shortly named DRSIF)extraction algorithm used for the watermarking applications is proposed.
     For each point of the image, centered at which, firstly a series of concentric rings are generated and the absolute difference between the mean luminance of the inner ring and the mean luminance of the outer ring is computed for each ring when the inner radiuses of the rings come from a discrete geometric progression and the ratio of the outer radius to the inner radius of each ring is fixed, then the maximum of absolute mean luminance difference sequence is taken as the response value of the observed point, and the inner radius of the ring which attains the maximum of absolute mean luminance difference sequence is taken as the characteristic radius of the observed point. Finally the points whose response value attains the local maximum are selected as DRSIF points. In comparison to the two traditional scale invariant feature points, the time complexity of the DRSIF extractor is analyzed and the robustness of the DRSIF pints are verified. The experimental results show that the DRSIF points are robust against common attacks in the watermarking applications and are suit for the watermarking applications.
     The feature points are utilized to divide the image into the elementary patches used to embed and detect the watermark before the watermark is embedded and detected. However, the geometrical invariability of the feature points can not necessarily ensure that the constructed patches have the same geometrical invariability. The geometrical invariability of the patch also depends on the specific division, namely the way to construct the patch. How to construct the circular patches used to embed and detect the watermark is respectively elaborated. A partitioning strategy is proposed to improve the hit ratio of the embedding patches during the watermarking detection so that the speed to find the watermarked patch is greatly increased. Through experiments, the robustness of the elementary patch used to embed the watermark is verified and the proposed partitioning strategy during the watermarking detection is proved to be effective.
     Based on the aforementioned research achievements, two complete DRSIF-based localized watermarking schemes are proposed: one is DRSIF-based localized watermarking scheme in the spatial domain, and the other is localized watermarking scheme based on DRSIF points and invariant domain. In the former scheme, the moment of the patch is used to compute the characteristic angle of the embedding patch, which can reflect the rotation distortions suffered by the image, so that the rotation invariant of the patch is attained. In the latter scheme, the watermark is independently embedded into the rotation and scale (shortly named RS)invariant domain of the embedding patch. By combining the RS invariant domain with the idea of the localized watermarking, the watermark can resist to not only the whole geometrical attacks, but also the cropping attacks and such local geometrical attacks. Through experiments, the two watermarking schemes are proved to be robust. In comparison to the other algorithms, the performances of the proposed schemes perform better. The proposed two localized watermarking schemes are further compared. The robustness of the localized watermarking scheme based on DRSIF points and invariant domain is better than the other scheme because the latter requires more accurate repeatability of the feature points. In addition, the watermark volume of the localized watermarking scheme based on DRSIF points is less than the other. Thus, In the concrete application, the watermark embedding algorithms and detection algorithms are carefully selected by considering the requirement of the robustness and the watermark volume.
引文
[1] Abbate J. The Electrical Century: Inventing the Web. in: Proceeding of the IEEE, 1999, 87(11): 1999-2002
    [2]张春田,苏育挺,管晓康.多媒体数字水印技术.通信学报, 2000, 21(9): 46-52
    [3]孙圣和,陆哲民.数字水印处理技术.电子学报, 2000, 28(8): 85-90
    [4]黄继武,谭铁牛.图像隐形水印综述.自动化学报, 2000, 26(5): 645-655
    [5]邹潇湘,彭聪,李锦涛.视频水印技术研究.工程图学学报, 2002, (3): 129-139
    [6] Cox I.J., M.L. Miller, and J.A. Bloom.数字水印.黄.译.王颖.北京:电子工业出版社, 2003: 7-17
    [7]余艳玮,卢正鼎.一种基于线性神经网络的半易损水印技术.计算机工程与科学, 2006, 28(10): 61-65
    [8] Yanwei Yu Zhengding Lu, Hefei Ling, and Fuhao Zou. No-Reference Perceptual Quality Assessment of JPEG Images Using General Regression Neural Network. in: Proc. of the Third International Symposium on Neural Networks (ISNN 2006), LNCS 3972, 2006: 638-645
    [9] I. Pitas. . Lausanne, Switzerland. A Method for Signature Casting on Digital Images. in: IEEE International Conference on Image Processing, 1996, 1(3): 215-218
    [10] Wu Min, Liu Bede. Watermarking for image authentication. in: Proceedings of the 1998 International Conference on Image Processing (ICIP'98), Chicago, IL, USA, 1998, 2: 437-441
    [11] G.W. Chen B and Wornell. Quantization index modulation:A class of provably good methods for digital watermarking and information embedding. IEEE Trans.on Information Theory, May,2001, 47(4): 1423-1443
    [12] Chen Brian, Wornell Gregory W. Quantization index modulation methods for digital watermarking and information embedding of multimedia. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 2001, 27(1-2): 7-33
    [13] F Yeung M M and Mintzer. An invisible watermarking technique for image verification. in: In:Proc.of 1997 IEEE Int.Conf.on Image Processing,(ICIP’97), Santa Barbara,CA,, 1997, 2: 680-683
    [14] M Wu. Joint security and robustness enhancement for quantization based data embedding. IEEE Trans.on Circuits and Systems for Video Technology, Aug,2003, 13(8): 831-841
    [15] Nikolaidis A., S. Tsekeridou, A. Tefas, Et Al. A survey on watermarking application scenarios and related attacks. in: IEEE International Conference on Image Processing (ICIP'2001), Thessaloniki, 2001, 3: 991-994
    [16]刘振华,尹萍.信息隐藏技术及其应用.北京:科学出版社, 2002
    [17]汪小帆,戴跃伟,茅耀斌.信息隐藏技术—方法及应用.北京:机械工业出版社, 2001
    [18]孙圣和,陆哲明.数字水印处理技术.电子学报, 2000, 28(8): 85-90
    [19]陈明奇,钮心忻,杨义先.数字水印的研究进展和应用.通信学报, 2001, 22(5): 71-79
    [20]易开祥,石教英,孙鑫.数字水印技术研究进展.中国图像图形学报, 201, 6(2): 112-117
    [21]钮心忻,杨义先.基于小波变换的数字水印隐藏与检测算法.计算机学报, 2000, 23(1): 21-27
    [22]刘宇新,李衍达.基于重叠正交变换的自适应图像水印.电子学报, 2001, 29(10): 1368-1372
    [23]刘瑞祯,谭铁牛.水印能量估计的一般性框架.计算机学报, 2001, 24(3): 242-246
    [24] "http://www.axu.cn/ ".
    [25] Cox I.J., J. Kilian, F.T. Leighton, Et Al. . Secure spread spectrum watermarking for multimedia. Princeton, NJ, USA: NEC Research Institute, 1995
    [26] Cox I.J., J. Kilian, F.T. Leighton, Et Al. Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing, 1997, 6(12): 1673-1687
    [27] Voyatzis G., Pitas I. Chaotic watermarks for embedding in the spatial digital image domain. in: Proceedings of IEEE Conference on Image Processing (ICIP'98), Chicago, IL, USA, 1998, 2: 432-436
    [28] Kim Won-Gyum, Lee Chan-Woo, Lee Won Don. A watermarking scheme for both spatial and frequency domain to extract the seal image without the original image. in:Proceedings of Fifth International Symposium on Signal Processing and its Applications, Brisbane, Qld., Australia, 1999, 1: 293-296
    [29] Lancini R., Mapelli F., Tubaro S.A robust video watermarking technique in the spatial domain. Proceedings Vipromcom-2002. 2002,251-256
    [30] Cheung W.N. Digital image watermarking in spatial and transform domains. in: 2000 TENCON Proceedings-Intelligent Systems and Technologies for the New Millennium, Kuala Lumpur, Malaysia, 2000, 3: 374-8
    [31] Sebe F., Domingo-Ferrer J., Herrera J.Spatial-domain image watermarking robust against compression, filtering, cropping, and scaling. Information Security, Proceedings. SPRINGER-VERLAG BERLIN,2001,1975:44-53
    [32] Tefas A., Pitas I. Robust spatial image watermarking using progressive detection. in: IEEE Interntional Conference on Acoustics, Speech, and Signal Processing, Salt Lake, UT, 2001, 3: 1973-1976
    [33] Queluz Maria Paula. Spatial watermark for image content authentication. Journal of Electronic Imaging, 2002, 11(2): 275-285
    [34] George Mercy, Chouinard Jean-Yves, Georganas Nicolas. Digital watermarking of images and video using direct sequence spread spectrum techniques. in: IEEE Canadian Conference on Electrical and Computer Engineering, Edmonton, Alberta, Can, 1999, 1: 116-121
    [35] Song H. S., Cho N. I., Kim J. Robust watermarking of 3D mesh models. in: Proceedings of the IEEE Workshop on Multimedia Signal Processing, 2002, 332-335
    [36] Hernandez Juan R., Amado Martin, Perez-Gonzalez Fernando. DCT-domain watermarking techniques for still images: detector performance analysis and a new structure. IEEE Transactions on Image Processing, 2000, 9(1): 55-68
    [37] Chu Wai C. DCT-based image watermarking using subsampling. IEEE Transactions on Multimedia, 2003, 5(1): 34-38
    [38] Barni Mauro, Bartolini Franco, Piva Alessandro. Multichannel watermarking of color images. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(3): 142-156
    [39] Barni Mauro, Bartolini Franco, Cappellini Vito, et al. DCT-domain system for robust image watermarking. Signal Processing, 1998, 66(3): 357-372
    [40] Suhail Mohamed A., Obaidat Mohammad S. Digital watermarking-based DCT and JPEG model. IEEE Transactions on Instrumentation and Measurement, 2003, 52(5): 1640-1647
    [41] Kwon O. H., Kim Y. S., Park R. H. A variable block-size DCT-based watermarking method. IEEE Transactions on Consumer Electronics, 1999, 45(4): 1221-1229
    [42] Ng K.S., Cheng L.M., Cheng L.L., et al. Adaptive watermarking by using pixel position shifting technique. IEEE Transactions on Consumer Electronics, 1999, 45(4): 1057-1064
    [43] Tsekeridou S., Pitas I. Embedding self-similar watermarks in the wavelet domain. in: IEEE Interntional Conference on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, 2000, 4: 1967-1970
    [44] Xia Xiang-Gen, Boncelet Charles G., Arce Gonzalo R. Wavelet transform based watermark for digital images. Optics Express, 1998, 3(12): 497-511
    [45] Lumini A., Maio D. A wavelet-based image watermarking scheme. in: Proceedings International Conference on Information Technology: Coding and Computing (ITCC 2000), Las Vegas, NV, USA, 2000, 122-127
    [46] Chen Jie, Yao Hongxun, Gao Wen, et al. A robust watermarking method based on wavelet and Zernike transform. in: Proceeding of IEEE International Symposium on Cirquits and Systems, Vancouver, BC, Canada, 2004, 2: 173-176
    [47] Wang Y.-P., Chen M.-J., Cheng P.-Y. Robust image watermark with wavelet transform and spread spectrum techniques. in: 34th Asilomar Conference, Pacific Grove, CA, 2000, 2: 1846-1850
    [48] Hong I., Kim I., Han S.-S. A blind watermarking technique using wavelet transform. in: 2001 IEEE International Symposium on Industrial Electronics Proceedings (ISIE 2001), Pusan, 2001, 3: 1946-1950
    [49] Solachidis V., Nikolaidis N., Pitas I. Fourier descriptors watermarking of vector graphics images. in: International Conference on Image Processing (ICIP 2000), Vancouver, BC, 2000, 3: 9-12
    [50] Solachidis Vassilios, Pitas Ioannis. Watermarking polygonal lines using fourier descriptors. IEEE Computer Graphics and Applications, 2004, 24(3): 44-51
    [51] Niu X., Sun S. Robust video watermarking based on discrete fractional Fourier transform. Chinese Journal of Electronics, 2001, 10(4): 428-434
    [52] Hayes M. The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1982, 30(2): 140-154
    [53] Lee Young-Yoon, Jung Han-Seung, Lee Sang-Uk. Multi-bit video watermarking based on 3D DFT using perceptual models. in: Digital Watermarking. Second International Workshop, IWDW 2003 Revised Papers, Seoul, South Korea, 2004, 301-15
    [54] Deguillaume Frederic, Csurka Gabriela, O'ruanaidh Joseph, et al. Robust 3D DFT video watermarking. in: Proceedings of SPIE - Security and Watermarking of Multimedia Contents, San Jose, CA, USA, 1999, 3657: 113-124
    [55] Deguillaume F., Csurka G., O'ruanaidh J., et al.Robust 3D DFT video watermarking. Security and Watermarking of Multimedia Contents. 1999,3657:113-124
    [56] Lin C.-Y., Wu M., Bloom J.A., et al. Rotation, scale, and translation resilient watermarking for images. IEEE Transactions on Image Processing, 2001, 10(5): 767-782
    [57] O Ruanaidh Joseph J.K., Pun Thierry. Rotation, scale and translation invariant spread spectrum digital image watermarking. Signal Processing, 1998, 66(3): 303-317
    [58] O'ruanaidh Joseph J.K., Pun Thierry. Rotation, scale and translation invariant digital image watermarking. in: Proceedings of the 1997 International Conference on Image Processing. Part 1 (of 3), Oct 26-29 1997, Santa Barbara, CA, USA, 1997, 1: 536-539
    [59] Falkowski B.J., Lim Lip-San. Image watermarking using Hadamard transforms. Electronics Letters, 2000, 36(3): 211-213
    [60] Ho Anthony T.S., Shen Jun, Tan Soon Hie. A robust digital image-in-image watermarking algorithm using the fast Hadamard transform. in: Proceedings of SPIE - Mathematics of Data/Image Coding, Compression, and Encryption V, with Applications, Seattle, WA, United States, 2002, 4793: 76-85
    [61] Ho Anthony T.S., Shen Jun, Chow Andrew K.K., et al. Robust digital image-in-image watermarking algorithm using the fast Hadamard transform. in: Proceedings of IEEE International Symposium on Circuits and Systems, Bangkok, Thailand, 2003, 3: 826-829
    [62] Tang Weili, Aoki Yoshinao. Watermarking method based on Fresnel diffraction. in: Proceedings of the International Conference on Signal Processing Proceedings (ICSP '98), Beijing, China, 1998, 2: 951-953
    [63] Kang Seok, Aoki Yoshinao. Digital image watermarking by Fresnel transform and its robustness. in: IEEE International Conference on Image Processing (ICIP'99), Kobe, Jpn, 1999, 2: 221-225
    [64] Kang Seok, Aoki Yoshinao. Image data embedding system for watermarking using Fresnel transform. in: Proceedings of the International Conference on Multimedia Computing and Systems (ICMCS'99), Florence, Italy, 1999, 1: 885-889
    [65] Kang Seok, Aoki Yoshinao. A data embedding technique for image watermarking using Fresnel Transform. Journal of KISS: Computing Practices, 2003, 9(1): 70-76
    [66] Kim K. T., Choi J. H., Kim J. W., et al.Multiple image watermarking using 3D fresnel holograms with off-axis. Proceedings of SPIE- Biometric Technology for Human Identification. 2004,5404:573-584
    [67] Fotopoulos V., Krommydas S., Skodras A.N. Gabor transform domain watermarking. in: IEEE International Conference on Image Processing (ICIP'2001), Thessaloniki, 2001, 2: 510-513
    [68] Shim Hiuk Jae, Jeon Byeungwoo. Rotation, scaling, and translation robust image watermarking using Gabor kernels. in: Proceedings of the SPIE - Security and Watermarking of Multimedia Contents IV, San Jose, CA, USA, 2002, 4675: 563-571
    [69] Dafas P., Stathaki T. Digital image watermarking using block-based Karhunen-Loeve transform. in: Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, Rome, Italy, 2003, 2: 1072-1075
    [70] Barni Mauro, Bartolini Franco, De Rosa Alessia, et al. Color image watermarking in the Karhunen-Loeve transform domain. Journal of Electronic Imaging, 2002, 11(1): 87-95
    [71] Cho Gang Seok, Koh Sung Shik, Chung Hoon, et al. An image watermarking using fractal parameters. in: SICE 2003 Annual Conference, Fukui, Japan, 2003, 3: 3013-16
    [72] Ni Rongrong, Ruan Qiuqi. Robust digital watermarking based on fractal dimension in color images. in: Proceedings of International Conference on Signal Processing (ICSP'2002), Beijing, China, 2002, vol.1: 808-12
    [73] Li C. H., Wang S. S. Digital watermarking based on fractal image coding. Journal of the Chinese Institute of Engineers, 2000, 23(6): 759-766
    [74] Roche S., Dugelay J.-L. Image watermarking based on the fractal transform: a draft demonstration. in: IEEE Second Workshop on Multimedia Signal Processing, Redondo Beach, CA, USA, 1998, 358-63
    [75] Bas Patrick, Chassery Jean-Marc, Davoine Franck. Using the fractal code to watermark images. in: Proceedings of IEEE International Conference on Image Processing (ICIP'98), Chicago, IL, USA, 1998, 1: 469-473
    [76] Lu Z. M., Xing W., Xu D. G., et al. Digital image watermarking method based on vector quantization with labeled codewords. IEICE Transactions on Information and Systems, 2003, E86D(12): 2786-2789
    [77] Lu Z. M., Liu C. H., Xu D. G., et al. Semi-fragile image watermarking method based on index constrained vector quantisation. Electronics Letters, 2003, 39(1): 35-36
    [78] Lu Z. M., Liu C. H., Sun S. G. Digital image watermarking technique based on block truncation coding with vector quantization. Chinese Journal of Electronics, 2002, 11(2): 152-157
    [79] Lu Z.M., Sun S.H. Digital image watermarking technique based on vector quantization. Electronics Letters, 2000, 36(4): 303-305
    [80] Xin Yongqing, Liao Simon, Pawlak Miroslaw. A multibit geometrically robust image watermark based on Zernike moments. in: Proceedings of the 17th International Conference on Pattern Recognition(ICPR'2004), Cambridge, United Kingdom, 2004, 4: 861-864
    [81] Xin Yongqing, Liao Simon, Pawlak Miroslaw. Geometrically robust image watermarking via Pseudo-Zernike moments. in: Canadian Conference on Electrical and Computer Engineering, Niagara Falls, Canada, 2004, 2: 0939-0942
    [82] Kim Hyung Shin, Lee Heung-Kyu. Invariant Image Watermark Using Zernike Moments. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(8): 766-775
    [83] Farzam M., Shirani S.A robust multimedia watermarking technique using Zernike transform. 2001 IEEE Fourth Workshop on Multimedia Signal Processing. 2001,529-534
    [84] Khotanzad Alireza, Hong Yaw Hua. Invariant image recognition by Zernikemoments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5): 489-497
    [85] Lin Shinfeng D., Chen Chin-Feng. Robust DCT-based watermarking for copyright protection. IEEE Transactions on Consumer Electronics, 2000, 46(3): 415-421
    [86] Hel-or H.Z., Yitzhaki Y., Hel-or Y. Geometric hashing techniques for watermarking. in: IEEE International Conference on Image Processing (ICIP'2001), Thessaloniki, 2001, 2: 498-501
    [87] Duan F.Y., King I., Chan L.W., et al. Intra-block algorithm for digital watermarking. in: Proceedings of The Fourteenth International Conference on Pattern Recognition, Brisbane, Qld., Australia, 1998, 2: 1589-91
    [88] Chung Y. Y., Wong M. T.Implementation of digital watermarking system. International Conference on Consumer Elecronics (ICCE 2003). 2003,214-215
    [89]牛夏牧陆哲明,孙圣和.彩色数字水印嵌入技术.电子学报, 2000, 28(9): 10-12
    [90] Hsu Chiou-Ting, Wu Ja-Ling. Hidden digital watermarks in images. IEEE Transactions on Image Processing, 1999, 8(1): 58-68
    [91] Hsu Chiou-Ting, Wu Ja-Ling. DCT-based watermarking for video. IEEE Transactions on Consumer Electronics, 1998, 44(1): 206-216
    [92] Chen Ding-Yun, Ouhyoung Ming, Wu Ja-Ling. Shift-resisting public watermark system for protecting image processing software. IEEE Transactions on Consumer Electronics, 2000, 46(3): 404-414
    [93] Chen Ding-Yun, Huang Chun-Hsiang, Wu Ja-Ling, et al. Shift-resisting blind watermark system for panoramic images. in: International Conference on Consumer Electronics (ICCE'2000), Los Angeles, CA, USA, 2000, 8-9
    [94] Miyazaki Akio, Okamoto Akihiro. Analysis of watermarking systems in the frequency domain and its application to design of robust watermarking systems. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2002, E85-A(1): 117-124
    [95] Miyazaki A., Okamoto A. Analysis of watermarking systems in the frequency domain and its application to design of robust watermarking systems. in: 2001 IEEE Interntional Conference on Acoustics, Speech, and Signal Processing, Salt Lake, UT, 2001, 3: 1969-1972
    [96] Chen B., Wornell G.W. Quantization index modulation: A class of provably good methods for digital watermarking and information embedding. IEEE Transactions on Information Theory, 2001, 47(4): 1423-1443
    [97] Chen B., Wornell G.W. Preprocessed and postprocessed quantization index modulation methods for digital watermarking. in: Proceedings of the SPIE - Security and Watermarking of Multimedia Contents II, San Jose, CA, USA, 2000, 3971: 48-59
    [98] Chen B., Wornell G. W.Quantization index modulation: A class of provably good methods for digital watermarking and information embedding. 2000 Ieee International Symposium on Information Theory, Proceedings. 2000,46-46
    [99] Chen B., Wornell G.W. An information-theoretic approach to the design of robust digital watermarking systems. in: IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (ICASSP'99), Phoenix, AZ, USA, 1999, 4: 2061-4
    [100] Chen B., Wornell G.W. Digital watermarking and information embedding using dither modulation. in: 1998 IEEE Second Workshop on Multimedia Signal Processing, Redondo Beach, CA, USA, 1998, 273-8
    [101] Ozer I.B. ; Ramkumar, M. ; Akansu, A.N. A new method for detection of watermarks in geometrically distorted images. in: 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'00), Istanbul, Turkey, 2000, 4: 1963-1966
    [102] Brown Lisa Gottesfeld. A survey of image registration techniques. ACM Computing Surveys, 1992, 24(4): 325-376
    [103] Chao Kan Srinath, Mandyam D. Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments. Pattern Recognition, 2002, 35(1): 143-154
    [104] Zheng D Zhao J, Saddik a E. RST invariant digital image watermarking based on log-polar mapping and phase correlation. IEEE Transactions on Circuits and System for Video Technology, 2003, 13(8): 753-765
    [105] Kim B S Choi J G, Park K H. RST-resistant image watermarking using invariant centroid and reordered fourier-mellin transform. in: 2nd International Workshop on Digital Watermarking, Seoul,Korea, 2003, LNCS 2939: 370-381
    [106] Al-Shaykh O.K. And J.F. Doherty. Invariant image analysis based on radontransform and SVD. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1996, 43(2): 123-133
    [107] Simitopoulos D., D.E. Koutsonanos, and M. Gerassimos Strintzis. Robust Image Watermarking Based on Generalized Radon Transformations. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(8): 732-745
    [108] Simitopoulos D., D. Koutsonanos, and M.G. Strintzis. Image watermarking resistant to geometric attacks using generalized Radon transformations. in: in: Proceedings of 14th International Conference on Digital Signal Processing (DSP2002), Santorini, Greece, 2002, 1: 85-88
    [109] Alghoniemy M. And A.H. Tewfik. Geometric distortion correction through image normalization. in: in: 2000 IEEE International Conference on Multimedia and Expo (ICME'2000), New York, NY, 2000, 1291-1294
    [110] Dong P. And N.P. Galatsanos. Affine transformation resistant watermarking based on image normalization. in: in 2002 International Conference on Image Processing, Vol Iii, Proceeddings, 2002, 489-492
    [111] Alghoniemy Masoud, Tewfik Ahmed H. Geometric invariance in image watermarking. IEEE Transactions on Image Processing, 2004, 13(2): 145-153
    [112] Gaurav Sharma David J. Coumou. Watermark synchronization: perspectives and a new paradigm. in: Proc. 40 th Annual Conference on Information Sciences and Systems, Princeton, NJ, 2006, 1182-1187
    [113] Petitcolas Fabien A.P. Anderson, Ross J. Kuhn, Markus G. Attacks on copyright marking systems. in: in Proc. Workshop Information Hiding, Portland, OR, 1998, 15-17
    [114] Celik M. U., Saber E., Sharma G., et al. Analysis of feature-based geometry invariant watermarking. in: Proceedings of SPIE - The International Society for Optical Engineering, San Jose, CA, 2001, 4314: 261-268
    [115] Seo J. S., Yoo C. D. Localized image watermarking based on feature points of scale-space representation. Pattern Recognition, 2004, 37(7): 1365-75
    [116] Delannay D., Delaigle J.-F., Macq B., et al. Compensation of geometrical deformations for watermark extraction in the digital cinema application. in: Proceedings of SPIE - Security and Watermarking of Multimedia Contents III, San Jose, CA, 2001, 4314: 149-157
    [117] Voloshynovskiy S., F. Deguillaume, and T. Pun. Multibit digital watermarking robust against local nonlinear geometrical distortions. in: 2001 International Conference on Image Processing, 2001, Iii: 999-1002
    [118]凌贺飞,卢正鼎,邹复好.抗几何攻击的数字水印技术综述. 2006, 11):
    [119]刘九芬黄达人,黄继武.图像水印抗几何攻击研究综述.电子与信息学报, 2004, 26(9): 1495—1503
    [120] Zitova B. And J. Flusser. Image registration methods: A survey. Image and Vision Computing, 2003, 21(11): 977-1000
    [121] Goshtasby A. Registration of images with geometric distortions. IEEE Transactions on Geoscience and Remote Sensing, 1998, 26(1): 60-64
    [122] Braudaway G.W. And F. Mintzer. Automatic recovery of invisible image watermarks from geometrically distorted images. Journal of Electronic Imaging, 2000, 9(4): 477-483
    [123] Dong P., J.G. Brankov, N. Galatsanos, Et Al. Geometric robust watermarking based on a new mesh model correction approach. in: International Conference on Image Processing (ICIP'02), Rochester, NY, United States, 2002, 3: 493-496
    [124] Cheng H. A review of video registration methods for watermark detection in digital cinema applications. in: 2004 IEEE International Symposium on Circuits and Systems, Vancouver, BC, Canada, 2004, 5: 704-707
    [125] Averbuch A. And Y. Keller. FFT based image registration. in: Proceedings of International Conference on Acoustics, Speech and Signal Processing (CASSP'02), Orlando, FL, USA, 2002, 4: 3608-3611
    [126] Zhengjun L., Z. Haifa, Z. Banghe, Et Al. Fractional Fourier domain digital watermarking. Acta Photonica Sinica, 2003, 32(3): 332-335
    [127] Lichtenauer Jeroen, Setyawan Iwan, Kalker Ton, et al. Exhaustive Geometrical Search and the False Positive Watermark Detection Probability. in: Proceedings of SPIE - Security and Watermarking of Multimedia Contents V, Santa Clara, CA, USA, 2003, 5020: 203-214
    [128] Hartung Frank, Su Jonathan K., Girod Bernd. Spread spectrum watermarking: malicious attacks and counterattacks. in: Proceedings of SPIE - Security and Watermarking of Multimedia Contents, San Jose, CA, USA, 1999, 3657: 147-158
    [129] Baudry S., P. Nguyen, and H. Maitre. Estimation of geometric distortions in digital watermarking. in: Proceeding of IEEE International Conference on Image Processing (ICIP'02), Rochester, NY, United States, 2002, 2: 885-888
    [130] Fleet D J Heger D J. Embedding invisible information in color images. in: In Proc. IEEE Int. Conf.on Image Processing (ICIP-97), Santa Barbara, October 1997, 1: 532-535
    [131] Pereira S Ruanaidh J. Template based recovery of Fourier-based watermarks using log-polar and log-log maps. in: IEEE International Conference on Multimedia Computing and Systems, Florence, Italy, 1999, 1: 870-874
    [132] Pereira S Pun T. Robust Template Matching for Affine Resistant Image Watermarks. IEEE Trans on Image Processing, 2000, 9(6): 1123-1129
    [133]康显桂,黄继武林彦等.抗仿射变换的扩频图象水印算法.电子学报, 2004, 32(1): 8-12
    [134]Pereira S Pun T. Fast robust template matching for affine resistant image watermarks. in: In Proc.3rd Int. Information Hiding Workshop, Dresden, Germany, 1999, 207-218
    [135] Herrigel a Voloshynovskiy S, Rytsar Y. The watermark template attack. in: Proceedings of the SPIE Security. and Watermarking of Multimedia Contents III, San Jose, CA, USA, 2001, 4314: 394-405
    [136] D. Delannay B.M. Macq. Method for hiding synchronization marks in scale- and rotation-resilient watermarking schemes. in: in: Proceedings of SPIE Security and Watermarking of Multimedia Contents IV, 2002, 4675: 548-554
    [137] M. Kutter. Watermarking resisting to translation, rotation and scaling. in: Proc. SPIE Int. Symp.on Voice, Video, and Data Communication, November 1998, 3528: 423-431
    [138] Delannay D Macq B. Generalized 2-D cyclic patterns for secret watermark generation. in: ICIP 2000 IEEE Signal Processing Society International Conference on Image Processing, Vancouver,Canada, 2000: 72-79
    [139] Deguillaume F Voloshynovskiy S, Pun T. A method for the estimation and recovering from general affine transforms in digital watermarking applications. in: Proc of SPIE-Security and Watermarking of Multimedia Contents IV, San Jose, USA,2002, 4675: 313-322
    [140] O'ruanaidh Jjko, Pun T. Rotation, scale and translation invariant spread spectrum digital image watermarking. Signal Processing, 1998, 66(3): 303-317
    [141] Wu Min , Miller M.L., Bloom J.A., et al. A Rotation, scale, and translation resilient public watermark. in: Proceeding of IEEE International Conference on Acoustics,Speech, and Signal Processing (ICASSP'99), San Jose, CA, USA, 1999, 4: 2065-2068
    [142] Yanwei Yu Zhengding Lu, Hefei Ling. A Robust Blind Image Watermarking Scheme Based on Feature Points and RS-invariant Domain. in: Proc. of the Seventh International Conference on Signal Processing (ICSP'2006), 2006: 1270-1273
    [143] Solachidis V. And I. Pitas. . Circularly symmetric watermark embedding in 2-D DFT domain. IEEE Transactions on Image Processing, 2001, 10(11): 1741-1753
    [144] Kong X., R. Wang, and D. Yang. Robust watermarking detection against RST based on principal axis. in: in: Proceedings of the SPIE - Electronic Imaging and Multimedia Technology III, Shanghai, China, 2002, 4925: 390-397
    [145]石磊钟铭,洪帆.抵抗几何变换的基于量化的水印技术.计算机辅助设计与图形学学报, 2004, 16(6): 121-126
    [146] Loo P. And N. Kingsbury. Motion estimation based registration of geometrically distorted images for watermark recovery. in: in: Proceedings of the SPIE - Security and Watermarking of Multimedia Contents III, San Jose, CA, USA, 2001, 4314: 606-617
    [147] Loo P. And N. Kingsbury. Watermarking using complex wavelets with resistance to geometric distortion. in: in: Proceedings of 10th European Signal Processing Conference, Tampere, Finland, 2000, 3: 1677-1680
    [148] Wood J. Invariant pattern recognition: a review. Pattern Recognition, 1996, 29(1): 1-17
    [149] Hu Ming-Kuei. Visual pattern recognition by moment invariants. Information Theory, IEEE Transactions on, 1962, 8(2): 179-187
    [150] Flusser Jan, Suk Tomas. Pattern recognition by affine moment invariants. Pattern Recognition, 1993, 26(1): 167-174
    [151] Kutter M., Bhattacharjee S. K., Ebrahimi T. Towards second generationwatermarking schemes. in: IEEE International Conference on Image Processing, Kobe, Jpn, 1999, 1: 320-323
    [152] Ho Yu-Kuen, Wu Mei-Yi. Robust object-based watermarking scheme via shape self-similarity segmentation. Pattern Recognition Letters, 2004, 25(15): 1673-1680
    [153] Zhen Ji, Lai Jiang, Jing Jin, et al. An improved second generation digital image watermarking scheme. in: San Diego, CA, United States, 2004, 5208: 218-223
    [154] Bas Patrick, Chassery Jean-Marc, Macq Benoit. Geometrically invariant watermarking using feature points. IEEE Transactions on Image Processing, 2002, 11(9): 1014-1028
    [155] Tang Chih-Wei, Hang Hsuch-Ming. A feature-based robust digital image watermarking scheme. IEEE Transactions on Signal Processing, 2003, 51(4): 950-959
    [156] Nikolaidis Athanasios, Ioannis Pitas. Region-Based Image Watermarking. IEEE TRANSACTIONS ON IMAGE PROCESSING, NOVEMBER 2001, 10(11): 1726-1740
    [157] Ji Z., J.H. Zhang, and W.W. Xiao. A rotation scaling and cropping invariant second generation watermarking scheme based on Hough transform. Chinese Journal of Electronics, 2003, 12(1): 126-131
    [158] Ji Z., W.W. Xiao, J.H. Wang, Et Al. A rotation and scaling invariant second generation watermarking scheme. in: in 2002 Ieee Region 10 Conference on Computers, Communications, Control and Power Engineering, 2002, I-Iii: 921-924
    [159] Mikolajczyk K., Schmid C. An affine invariant interest point detector. in: Copenhagen, Denmark, 2002, 128-42
    [160] Lee Hae-Yeoun, Lee Choong-Hoon, Lee Heung-Kyu, et al. Feature-based image watermarking method using scale-invariant keypoints. in: Jeju Island, South Korea, 2005, 3768 NCS: 312-324
    [161] Lee Hae-Yeoun, Kim Jong-Tae, Lee Heung-Kyu, et al. Content-based synchronization using the local invariant feature for robust watermarking. in: Jeju Island, South Korea, 2005, 3325: 122-134
    [162] Lee Hae-Yeoun, Kim Hyungshin, Lee Heung-Kyu. Robust image watermarking using local invariant features. Optical Engineering, 2006, 45(3): 037002
    [163] Hae-Yeoun Lee, In Koo Kang, Heung-Kyu Lee, et al. Evaluation of featureextraction techniques for robust watermarking. in: Siena, Italy, 2005, 418-31
    [164] Hae-Yeoun Lee, Heung-Kyu Lee, Junseok Lee. Comparison of feature extraction techniques for watermark synchronization. in: Melbourne, Vic., Australia, 2005, 309-16
    [165] Seo Jin S., Yoo Chang D. Image watermarking based on invariant regions of scale-space representation. IEEE Transactions on Signal Processing, 2006, 54(4): 1537-1549
    [166]卢正鼎余艳玮,凌贺飞.尺度不变特征点在局部图像水印算法中的应用.计算机科学, 2008, 6
    [167] Lowe D. G. Object recognition from local scale-invariant features. in: Kerkyra, Greece, 1999, vol.2: 1150-7
    [168] Mikolajczyk K., Schmid C. Indexing based on scale invariant interest points. in: Vancouver, BC, Canada, 2001, vol.1: 525-31
    [169] Mikolajczyk K., Tuytelaars T., Schmid C., et al. A comparison of affine region detectors. International Journal of Computer Vision, 2005, 65(1-2): 43-72
    [170] Lowe D. G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110
    [171] "http://lear.inrialpes.fr/people/dorko/".
    [172] "http://www.cs.ubc.ca/-pcarbo/objrecls/index.html".
    [173] Voloshynovskiy S Herrigel a, Baumgaertner N, Pun T. . A Stochastic Approach to Content Adaptive Digital Image Watermark. in: Proc.of the 3rd International Workshop on Information Hiding, 1999, 1768: 211-236
    [174] Hernandez J R Gonzalez F P.[J]. Statistical Analysis of Watermarking Schemes for Copyright Protection of Images. in: Proc.of the IEEE, 1999, 7: 1142-1166
    [175] Piva a Barni M, Bartolini F, Cappellini V. Threshold selection for correlation-based watermarking detection. in: In: Proc COST 254 Workshop on Intelligent Communications, L' Aquila, Italy, 1998, 67-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700