多体量子态的可分性和纠缠度量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子纠缠不但是量子力学区别于经典力学的重要特征之一,也是量子信息理论的重要组成部分。许多量子信息处理任务如量子隐形传态、量子稠密编码、量子密钥分发等,都需要量子纠缠,因此量子纠缠是一种重要的物理资源,而量化纠缠成为量子信息理论研究中的一个重要的课题。
     近年来纠缠的量化虽然引起了广泛的关注,但是仅仅低维量子体系的纠缠量化得到了较好的解决,高维量子体系尤其是多体量子体系的纠缠量化仍旧是个悬而未解的问题。本论文主要研究了多体量子态的可分性以及纠缠度量。
     论文共包括八章,其中我们的主要工作是第三章到第八章。第一章简单介绍了量子纠缠的研究的重要性,回顾了使量子纠缠得到广泛关注的EPR佯谬以及Schr(?)dinger猫态,介绍了几个典型的量子信息处理任务说明量子纠缠作为一个重要物理资源在量子信息理论中的应用,简单阐述了当前纠缠量化的研究现状,最后给出了本博士论文的主要研究内容和章节安排。
     第二章给出了纠缠的基本概念,详细介绍了两体量子体系的可分性判据、纠缠度量的基本性质以及纠缠度量。
     第三章详细介绍了两体量子态的concurrence矢量方法.以两体量子体系为例,将后面对多体量子体系所提出的concurrence下界的推导方法从数学上给以较为严格的阐述,为后面的应用奠定理论基础。尤其引入了Kronecker积近似技术,可以方便地得到concurrence的下界不同程度的近似。在最低阶近似下,可以给出concurrence解析的下界。
     第四章利用concurrence作为纠缠度量来研究叠加态纠缠与被叠加态纠缠之间的关系。与Linden等人用约化密度矩阵的von Neumann熵作为纠缠度量相对比,利用concurrence作为纠缠度量可以给出叠加态纠缠的下界。
     第五章对三体量子纯态引入了一种直观的描述一张量描述。通过这种直观的描述给出了三体二维量子态以及高维量子态的完全可分性判据。考虑到三体二维量子体系的真正三体纠缠度量,进一步利用这种直观的描述,给出了三体高维量子体系真正三体纠缠的存在性判据。
     第六章简单介绍了几种多体纠缠度量。利用tilde内积研究三体2×2×n维量子体系的真正三体纠缠,给出了真正三体纠缠部分单调。通过将多体量子态进行不同的二分组,给出了多体自由纠缠度量,推广了多体量子体系的全局纠缠度量,证明了全局纠缠是一个纠缠单调。
     第七章给出了三体2×2×n维量子纯态三体纠缠部分单调的一个简单的表达。利用这个简单表达,研究了具有三自旋相互作用的自旋1/2模型以及XXZ自旋链模型的基态纠缠与量子相变的关系。另外也提出了用一组EPR对来实现一个qudit的远态制备方案。此方案中如果把实空间中的qudit看作一个多体量子态,适当考虑这个量子态的可分性可以使得这个远态制备方案可能不受输入态空间维数的限制。
     第八章根据不可区分光子的统计效应,利用线性光学器件来制备三个分别囚禁在不同光腔中的远距离原子的GHZ态、W态以及四原子空间中的一对qutrit的最大纠缠态。在Lamb-Dicke极限下,纠缠态的制备不需要光子的同时探测。
Quantum entanglement is not only one of the major characteristics that distinguishquantum from classical mechanics, but also an essential ingredient of quantum informationtheory. A lot of quantum information processing such as quantum teleportation, quantumdense coding, quantum key distribution and so on, can be achieved conditioned on quantumentanglement. Hence, quantum entanglement is an important physical resource and itsquantification becomes a vital subject of quantum information theory.
     In recent years, quantification of entanglement has attracted great attention. However,only the entanglement of low-dimensional quantum systems can be well quantified. Thequantification of entanglement of high-dimensional quantum systems, especially that ofmultipartite quantum systems, remains an open question.
     This dissertation is mainly focused on the separability and entanglement measure ofmultipartite quantum states. The dissertation includes eight chapters and our maincontributions are given in Chaps. 3 through 8. In Chap. 1, the importance of the investigationof quantum entanglement is first introduced. The EPR paradox and Schr(?)dinger cat throughwhich quantum entanglement has attracted much attention, are then reviewed. Several typicalquantum information protocols are also introduced in order to demonstrate that quantumentanglement is an important physical resource. The general situation of quantification ofentanglement is briefly described and the major research subjects and the organization of thedissertation are given at the end of this chapter.
     In Chap. 2, the concept of entanglement is introduced. The separability criteria ofbipartite quantum systems, the fundamental properties of entanglement measure andentanglement measure of bipartite quantum systems are described in detail.
     In Chap. 3, the concurrence vector for bipartite states is discussed in detail. Withbipartite systems as examples, the methods for deriving the lower bound of concurrence formultipartite quantum systems are rigorously given. These provide the theoretical backgroundfor the latter use. In particular, with Kronecker product approximation technique, the lowerbound of concurrence can be obtained up to various orders. To the lowest-order, an analyticlower bound of concurrence can be derived.
     In Chap. 4, concurrence is employed as an entanglement measure to study therelationship between the entanglement of the superposition state and that of the states being superposed. Compared with von Neumann entropy of reduced density matrix as anentanglement measure as employed by Linden et al., a lower bound of entanglement of thesuperposition state can be given with concurrence.
     In Chap. 5, an intuitionistic description—tensor description, is given to tripartitequantum pure states. On the basis of this description, full separability criteria are obtained fortripartite two-and higher-dimensional quantum systems. With the genuine tripartiteentanglement of tripartite quantum systems of qubits taken into consideration, the existencecriterion of genuine tripartite entanglement is also given for tripartite high-dimensionalquantum systems based on the intuitionistic description.
     In Chap. 6, several multipartite entanglement measures are introduced. By utilizing thetilde inner product, the genuine tripartite entanglement in 2×2×n-dimensional systems isstudied and the genuine tripartite entanglement semi-monotone is presented. Based on thedifferent bipartite grouping of a multipartite quantum state, free entanglement measure isobtained. Furthermore, the global entanglement is generalized and proved to be anentanglement monotone.
     In Chap. 7, a simple expression of the genuine tripartite entanglement semi-monotone for2×2×n-dimensional pure states is given. By making use of this simple expression, theconnection between the quantum phase transition and the entanglement of ground states of thespin-1/2XY model with three spin interactions and the XXZ model are considered. In addition, aprotocol is proposed in which a known qudit is remotely prepared onto a group of qubits byemploying a group of EPR pairs as quantum channels. In this protocol, if a qudit is consideredas a multipartite quantum state, it is possible that the protocol is not restricted by thedimension of input space with the separability of the multipartite state taken into account.
     In Chap. 8, based on the statistics of indistinguishable photons, schemes areproposed to use linear optical setups to prepare GHZ state and W state of three distant atomstrapped in different optical cavities. A scheme is also proposed to prepare a maximallyentangled state of two distant qutrits in the space spanned by four atoms. In the Lamb-Dickelimit, all the proposed schemes do not require the simultaneous detection of photons.
引文
[1] http: //www.physics.udel.edu/watson/scen103/intel.html.
    [2] 张永德.量子信息物理原理.北京:科学出版社,2006.
    [3] Shor P W. Proc. 35th Annual Symp. on Foundations of computer science. Los Alamitos: IEEE Computer Society Press, 1995.
    [4] Ekert A, Jozsa R. Quantum computation and Shor's factoring algorithm. Rev. Mod. Phys., 1996, 68 (3): 733-753.
    [5] Nielsen M A, Chuang I L. Quantum computation and quantum information. Cambridge: Cambridge Univ. Press, 2000.
    [6] Grover L K. Quantum mechamics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79 (): 325-328.
    [7] Kempe J. Approaches to quantum error correction. Progress in Mathematical Physics series. Birhaeuser, 2006, 85-123.
    [8] Brun T, Devetak I, Hsieh M H. Correcting quantum errors with entanglement. Science, 2006, 314: 436-439.
    [9] A. Steane, Quantum computing. Rep. Prog. Phys., 1998, 61: 117-173.
    [10] Knill E, Laflamme R., A Theory of quantum error-correcting codes, quant-ph/9604034.
    [11] Knill E, Laflamme R., Viola L. Theory of quantum error correction for general noise. Phys. Rev. Lett., 2000, 84 (11):2525-2528.
    [12] Gottesman D. Stabilizer codes and quantum error correction: (PhD thesis). California: Caltech, 1997.
    [13] Bouwmeester D, Ekert A, Zeilinger A. The physics of quantum information. Heidelberg: Springer, 2000.
    [14] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 1993, 70 (13): 1895-1899.
    [15] Bennett C H, Wiesner S J, Communication via 1-and 2-Particle Operators on Einstein-Podolsky-Rosen States. Phys. Rev. Lett., 1992, 69 (20): 2881-2884.
    [16] Bennett C H, Brassard C. Proceedings of the IEEE international conference on computers, systems, and signal processing. Bangalore, India (IEEE, New York, 1984).
    [17] Beige A, Englert B-G, Kurtsiefer C, et al. Secure communication with a publicly known key. Acta Phys. Pol. A, 2002, 101: 357.
    [18] Rauschenbeutel A, Nogues G, Osnaghi S, et al. Step-by-step engineered multiparticle entanglement. Science, 2000, 288(5473): 2024-2028.
    [19] DeVoe R G, Brewer R G. Observation of superradiant and subradiant spontaneous emission of two trapped ions. Phys. Rev. Left., 1996, 76(12): 2049-2052.
    [20] Riesch D, Abich K, Neuhanser W, et al. Raman cooling and heating of two trapped Ba~+ ions. Phys. Rev. A, 2002, 65(5): 053401(1-7).
    [21] Cirac I J, Zoller P. Quantum computations with cold trapped ions. Phys. Rev. Lett.,1991, 74(20): 4091-4094.
    [22] Gershefeld N, Chuang I L. Bulk spin-resonance quantum computation. Science, 1997, 275: 350-356.
    [23] Pu H, Meystre P. Creating macroscopic atomic Einstein-Podolsky-Rosen states from Bose- Einstein condensates. Phys. Rev. Lett., 2000, 85(19): 3987-3990.
    [24] Duan L M, Sorensen A, Cirac J I, et al. Squeezing and entanglement of atomic Beams. Phys. Rev. Lett., 2000, 85 (16):3991-3994.
    [25] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev., 1935, 47(10): 777-780.
    [26] Bohm N, Aharonv Y. Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev., 1957, 108(4): 1070-1076.
    [27] Bohr N. Can quantum mechanical description of physical reality be considered complete?. Phys. Rev., 1935, 48(8): 696-702.
    
    [28] Bell J S. On the Einstein Podolsky Rosen Paradox. Physics, 1964, 1(1): 195-200.
    [29] Aspect A, Grangier P, Roger G. Experimental Test of Realistic Local Theories via Bell ' s Theorem. Phys. Rev. Lett., 1981, 47(7): 460-463.
    [30] Tittel W, Brendel J, Gisin B, et al. Experimental demonstration of quantum correlations over more than 10 km. Phys. Rev. A, 1998, 57(5): 3229-3232.
    [31] Schrodinger E. gegenwrtige situation in der quantenme chanik. Naturwissenschaften, 1935, 23. Translation published in Proceedings of the American Philosophical Society, 1980, 124: 323-338.
    [32] Friedman J R, Patel V, Chan W, et al. Quantum superposition of distinct macroscopic states. Nature, 2000, 406: 43-46.
    [33] van der Wal C H, ter Haar A C J, Wilhelm F K, et al. Quantum superposition of macroscopic persistent-current states. Science, 290: 773-777.
    [34] Monroe C, Meekhof D M, King B E, et al. A Schrodinger cat superposition state of an atom. Science, 1996, 272: 1131-1136.
    [35] Yu Sixia, Sun Chang-pu. Canonical quantum teleportation. Phys. Rev. A, 2000, 61(2): 022310(1-4).
    [36] Zhou Jindong, Hou Guang, Zhang Yongde. Teleportation scheme of S-level quantum pure states by two-level Einstein-Podolsky-Rosen states. Phys. Rev. A, 2001, 64(1): 012301(1-4).
    [37] Gordon G. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A, 2005, 71(3): 032303(1-5).
    [38] Bennett C. Quantum cryptography using any two nonnorthogonal states, Phys. Rev. Lett., 1992, 68(21): 3121-3124.
    [39]Preskill J. Lecture notes for physics 229: Quantum information and computation. California Institute of Technology, 1998.
    
    [40] Bostrom Kim, Felbinger Timo. Deterministic secure direct communication using entanglement. Phys. Rev. Lett., 2002, 89(18): 187902(1-4).
    [41] Peres A. Separability criterion for density matrices. Phys. Rev. Lett., 1996, 77(8): 1413- 1415.
    [42] Wootters W K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 1998, 80(10): 2245-2248.
    [43] Vidal G, Werner R F. Computable measure of entanglement. Phys. Rev. A, 2002, 65(3): 032314(1-11).
    [44] Hill S, Wootters W K. Entanglement of a pair of quantum bits. Phys. Rev. Lett.,1997, 78(26): 5022-5025.
    [45] Terhal B M, Vollbrecht K G H. Entanglement of formation for isotropic states. Phys. Rev. Lett., 2000, 85(12): 2625-2628.
    [46] Fei Shao-Ming, Jost Jurgen, Li-Jost Xianqing, et al. Entanglement of formation for a class of quantum states. Phys. Letts. A, 2003, 310: 333-338.
    [47] Vollbrecht K G H, Werner R F. Entanglement measures under symmetry. Phys. Rev. A, 2001, 64(6): 062307(1-15).
    [48]Dur W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314(1-12).
    [49]Miyake Akimasa, Verstraete Frank. Multipartite entanglement in 2 x 2 x n quantum systems. Phys. Rev. A, 2004, 69(1): 012101(1-9).
    
    [50] Miyake Akimasa. Classification of multipartite entangled states by multidimensional determinants. Phys. Rev. A, 2003, 67(1): 012108(1-10).
    [51] Linden Noah, Popescu Sandu, Smolin John A. Entanglement of superpositions. Phys. Rev. Lett., 2006, 97(10): 100502(1-4).
    [52] Mintert Florian, Buchleitner Andreas. Concurrence of quasipure quantum states. Phys. Rev. A, 2005, 72(7): 012336(1-4).
    [53] Coffman Valerie, Kundu Joydip, Wootters W K. Distributed entanglement. Phys. Rev. A, 2000, 61(5): 052306(1-5).
    [54] Zeng Bei, Zhang Peng. Remote-state preparation in higher dimension and the parallelizable manifold S~(n-1). Phys. Rev. A, 2002, 65(2): 022316(1-4).
    
    [55] Myhr Geir Ove. Measures of entanglement in quantum mechanics: (Master's thesis). Trond- heim, Norwegian University of Science and Technology, 2004.
    [56] Clauser J F, Home M A, Shimony A, et al. Proposed experiment to test Local hidden-variable theories. Phys. Rev. Lett., 1969, 23(15): 880-884.
    [57] Braunstein Samuel L, Mann A, Revzen M. Maximal violation of Bell inequalities for mixed states. Phys. Rev. Lett., 1992, 68(22): 3259-3261.
    [58] Pan Jianwei. Quantum teleportation and multi-photon entanglement: (PhD thesis). Vienna, University of Vienna, 1998.
    [59] Pan J W, Bouwmeester D, Daniell M, et al. Experimental test of quantum nonlocality in three-photon Greenberger-Home-Zeilinger entanglement. Nature, 2000, 403: 515-518.
    [60] Horodecki P. Separability criterion and inseparable mixed states with positive partial transposition. Phys. Letts. A, 1997, 232: 333-339.
    [61] Horodecki M, Horodecki P, Horodecki R. Separability of mixed states: necessary and sufficient conditions. Phys. Letts. A, 1996, 223: 1-8.
    [62] Horodecki P, Horodecki R. Distillation and bound entanglement. Quantum Information and Computation, 2001, 1(1): 45-75.
    [63] Werner R F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hiddenvariable model. Phys. Rev. A, 1989, 40(8): 4277-4281.
    [64] Horodecki M, Horodecki P. Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A., 1999, 59(6): 4206-4216.
    [65] Horodecki P, Lewensteinl M, Vidal G, et al. Operational criterion and constructive checks for the separability of low-rank density matrices. Phys. Rev. A, 2000, 62(3): 032310(1-10).
    [66] Cerf N J, Adami C, Gingrich R M. Reduction criterion for separability. Phys. Rev. A, 1999, 60(2): 898-909.
    [67] Horodecki R, Horodecki M. Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A, 1996, 54(3): 1838-1843.
    [68] Wu S, Chen X M, Zhang Y D. A necessary and sufficient criterion for multipartite separable states. Phys. Lefts. A, 2000, 275: 244-249.
    [69] 张永德,吴盛俊,候广等.量子信息论——物理原理和某些进展.武汉:华中师范大学出版社,2002.
    [70] Chen K, Wu L A. A matrix realignment method for recognizing entanglement. Quantum Information and Computation, 2003, 3: 193-202.
    [71] Rudolph O. Further results on the cross norm criterion for separability, quant-ph/0202121.
    [72] Rudolph O. Some properties of the computable cross-norm criterion for separability. Phys. Rev. A, 2003, 76(3): 032312(1-6).
    [73] 陈景良,陈向晖.特殊矩阵.北京:清华大学出版社,2001.
    [74] Everett H. Relative State Formulation of Quantum Mechanics. Rev. Mod. Phys., 1957, 29(3): 454-462.
    [75] Cavalcanti D, Brandao F G S L, Terra Cunha M O. Are all maximally entangled states pure? Phys. Rev. A, 2005, 72(10): 040303(R)(1-4).
    [76] Kraus K. States effects and operations. Berlin: Springer, 1983.
    [77] Bennett C H, DiVincenzo D P, Fuchs A, et al. Quantum nonlocality without entanglement. Phys. Rev. A, 1999, 59(2): 1070-1091.
    
    [78] Vedral V, Plenio M. Entanglement measures and purification procedures. Phys. Rev. A, 1998, 57(3): 1619-1633.
    
    [79] Rains E M. Bound on distillable entanglement. Phys. Rev. A, 1999, 60(1): 179-184.
    
    [80] Donald M J, Horodecki M, Rudolph O. The uniqueness theorem for entanglement measures. J. Math. Phys., 2002, 43(9): 4252-4272.
    
    [81] Vidal G. Entanglement monotones. Journal of Modern Optics, 2000, 47(2/3): 355-376.
    
    [82] Plenio Martin B, Virmani Shashank. An introduction to entanglement measures. Quantum Information and Computation, 2007, 7(1): 1-51.
    
    [83] Horodecki M. Entanglement measures. Quantum Information and Computation, 2001, 1(1): 3-26.
    
    [84] Mintert Florian, Carvalhoa Andre R R, Kus Marek, et al. Measures and dynamics of entan- gled states. Physics Reports, 2005, 415: 207 + 259.
    
    [85] Vedral V, Plenio M B, Rippin M A, et al. Quantifying entanglement. Phys. Rev. Letts., 1997, 78(12): 2275-2279.
    
    [86] Eisert J, Audenaert K, Plenio M B. Remarks on entanglement measures and non-local state distinguishability. J. Phys. A, 2003, 36(20): 5605-5615.
    
    [87] R. Josza. Fidelity for mixed quantum states. J. Mod. Opt., 1994, 41(12): 2315-2323.
    [88] Bennett C H , DiVincenzo D P, Smolin J, et al. Phys. Rev. A, 1996, 54(5): 3824-3851. (1997).
    [89] Rains E M. Erratum: Bound on distillable entanglement [Phys. Rev. A 60, 179 (1999)]. Phys. Rev. A, 2000, 63(1): 019902(1-1).
    [90] Uhlmann A. Optimizing entropy relative to a channel or a subalgebra. Open Sys. Inf. Dyn., 1998, 5: 209-227.
    
    [91] Phelps R R. Lectures on Choquet's Theorem. Van Nostrand-Renhold, 1966.
    
    [92] Uhlmann Armin. Fidelity and concurrence of conjugated states. Phys. Rev. A, 2000, 62(3): 032307(1-9)
    [93] Audenaert K, Verstraete F, Moor B D. Variational characterizations of separability and entanglement of formation. Phys. Rev. A, 2001, 64(5): 052304(1-13).
    [94] Wootters W K. Entanglement of formation and concurrence. Quantum Information and Computation, 2001, 1(1): 27-44.
    [95] Rungta P, Buiek V, Caves C M, et al. Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A, 2001, 64(4): 042315(1-13).
    [96] Badziag Piotr, Deuar Piotr, Horodecki M, et al. Concurrence in arbitrary dimensions. J. Mod. Opt., 2002, 49(8): 1289-1297.
    [97] Mintert Florian, Ku Marek, Buchleitner A. Concurrence of Mixed Bipartite Quantum States in Arbitrary Dimensions. Phys. Rev. Lett., 2004, 92: 167902(1-4).
    [98] Mintert Florian, Marek Kus, Buchleitner A. Concurrence of Mixed Multipartite Quantum States. Phys. Rev. Lett., 2005, 95: 260502(1-4).
    [99] Audenaert K, Verstraete Frank, De Bie Tijl, et al. Negativity and concurrence of mixed 2×2 states. quant-ph/0012074.
    [100] Verstraete Frank, Audenaert K, Dehaene Jeroen, et al. A comparison of the entanglement measures negativity and concurrence. J. Phys. A, 2001, 34: 10327-10332.
    [101] Christandl M, Winter A. "Squashed Entanglement" - An Additive Entanglement Measure. J. Math. Phys., 2004, 45(3): 829-840.
    [102] Lewenstein M, Sanpera A. Separability and Entanglement of Composite Quantum Systems. Phys. Rev. Lett. 1998, 80(11): 2261-2264.
    
    [103] Wellens Thomas, Kus Marek. Separable approximation for mixed states of composite quan- tum systems. Phys. Rev. A, 2001, 64(5): 052302(1-10).
    
    [104] Eisert Jens, Briegel Hans J. Schmidt measure as a tool for quantifying multiparticle entan glement. Phys. Rev. A, 2001, 64(2): 022306(1-4).
    [105] Verstraete F, Popp M, Cirac J I. Entanglement versus Correlations in Spin Systems. Phys. Rev. Lett., 2004, 92: 027901(1-4).
    [106] Popp M,Verstraete F, Martin-Delgado A, et al. Localizable entanglement. Phys. Rev. A, 2005, 71: 042306(1-18).
    [107] DiVincenzo D P, Fuchs C A, Mabuchi H, et al. Entanglement of Assistance. quant- ph/9803033.
    [108] Nielsen M A, Kempe J. Separable States Are More Disordered Globally than Locally. Phys. Rev. Lett., 2001, 86(22): 5184-5187.
    
    [109] Wu S, Anandan J. Some aspects of separability. Phys. Letts. A, 2002, 297: 4-8.
    [110] Vidal G, Tarrach R. Robustness of entanglement. Phys. Rev. A, 1999, 59(1): 141-155.
    [111] Barnum H, Linden N. Monotones and invariants for multi-particle quantum states. J. Phys. A: Math. Gen., 2001, 34: 6787-6805.
    [112] Akhtarshenas S J. Concurrence vectors in arbitrary multipartite quantum systems. J. Phys. A: Math. Gen., 2005, 38: 6777-6784.
    [113] Thompson R C. Singular values and diagonal elements of complex symmetric matrices. Linear Algebr. Appl., 1979, 26: 65-106.
    [114] Osborne Tobias J. Entanglement measure for rank-2 mixed states. Phys. Rev. A, 2005, 72(8): 022309(1-4).
    [115] Van Loan C F, Pitsianis N P. Approximation with Kronecker products. Linear algebra fro large scale and real time applications. edited by M. S. Moonen and G H. Golub (Kluwer, Dordrecht, 1993), 293-314.
    [116] Van Loan C F. The ubiquitous Kronecker product. Journal of Computational and Applied Mathematics, 2000, 123:85-100.
    [117] Horn R A, Johnson C R. Matrix analysis. New York: Cambridge University, 1991.
    
    [118] Golub G H, Van Loan C F. Matrix Computations, 3rd Edition. Baltimore, MD: Johns Hopkins University Press, Baltimore, 1996.
    
    [119] Chen Kai, Albeverio Sergio, Fei Shao Ming. Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett.. 2005, 95: 040504(1-4).
    [120] Chen Kai, Albeverio Sergio, Fei Shao Ming. Entanglement of formation of bipartite quantum states. Phys. Rev. Lett., 2005, 95: 210501(1-4).
    [121] Gao X H, Fei S M, Wu K. Lower bounds of concurrence for tripartite quantum systems. Phys. Rev. A, 2006, 74(11): 050303(R)(1-4).
    [122] Bennett C H, Bernstein H J, Popescu S, et al. Concentrating partial entanglement by local operations. Phys. Rev. A, 1996, 53(4): 2046-2052.
    [123] Dux W, Cirac J I. Tarrach R. Separability and distillability of multiparticle quantum systems. Phys. Rev. Lett., 1999, 83(17): 3562-3565.
    [124] Bennett C H, DiVincenzo D P, Mor Tal, et al. Unextendible product bases and bound entanglement. Phys. Rev. Lett., 1999, 82(26): 5385-5388.
    [125] Fan Heng. A note on separability criteria for multipartite state. quant-ph/0210168.
    [126] Zeilinger A, Home M A, Greenberger D M. NASA Conf. Publ. No. 3135. National Aeronautics and Space Administration, Code NTT, Washington, DC, 1997.
    [127] GREENBERGGER D M, ZEILINGER A, ZEILINGER A. Bell's theorem without inequalities. Am. J. Phys., 1990, 58: 1131-1143.
    [128] Greenberger D M, Horne M, Zeilinger A. In Bell ' s theorem, quantum theory, and conceptions of the universe. Dordrecht: Kluwer, 1989.
    [129] Wei Tzu-Chieh, Goldbart P M. Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A, 2003, 68(4): 042307(1-12).
    [130] Partovi M Hossein. Universal measure of entanglement. Phys. Rev. Lett., 2004, 92: 077904(1-4).
    [131] Wei T, Ericsson M, Goldbart P, et al. Connections between relative entropy of entanglement and geometric measure of entanglement. Quantum Information and Computation, 2004, 4(4): 252-272.
    [132] Werner R F, Holevo A S. Counterexample to an additivity conjecture for output purity of quantum channels. J. Math. Phys., 2002, 43: 4353-4357.
    [133] Meyer D A, Wallach N R. Global entanglement in multiparticle systems. J. Math. Phys., 2002, 43: 4273-4278.
    [134] Osterloh Andreas, Siewert Jens. Constructing N-qubit entanglement monotones from anti-linear operators. Phys. Rev. A, 2005, 72(7): 012337(1-4).
    [135] Horodecki M, Horodecki P, Horodecki R. Mixed-state entanglement and distillation: Is there a " bound " entanglement in nature? Phys. Rev. Lett., 1998, 80(24): 5239-5242.
    [136] Braunstein S L, Caves C M, Jozsa R, et al. Separability of very noisy mixed states and implications for NMR Quantum Computing. Phys. Rev. Lett., 1999, 83(5): 1054-1057.
    [137] Osborne Tobias J, Verstraete Frank. General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett., 2006, 96(7): 220503(1-4).
    [138] Acin A, Bruβ D, Lewenstein M, et al. Classification of mixed three-qubit states. Phys. Rev. Lett., 2001, 87(4): 040401(1-4).
    [139] Osborne T J, Nielsen M A. Entanglement in a simple quantum phase transition. Phys. Rev. A, 2002, 66(3): 032110(1-14).
    [140] Wang X. Entanglement in the quantum Heisenberg XY model. Phys. Rev. A, 2001, 64(1): 012313(1-7).
    [141] Gu S J, Lin H Q, Li Y Q. Entanglement, quantum phase transition, and scaling in the XXZ chain. Phys. Rev. A, 2003, 68(4): 042330(1-4).
    [142] Gu S J, Tian G S, Lin H Q. Ground-state entanglement in the XXZ model. Phys. Rev. A, 2005, 71(5): 052322(1-5).
    [143] Yang M F. Reexamination of entanglement and the quantum phase transition. Phys. Rev. A, 2005, 71(3): 030302(R)(1-4).
    [144] Vidal G, Palacios G, Mosseri R. Entanglement in a second-order quantum phase transition. Phys. Rev. A, 2004, 69(2): 022107(1-4).
    [145] Wang X, Zanardi P. Quantum entanglement and Bell inequalities in heisenberg spin chains. Phys. Lett. A, 2002, 301: 1-6;
    [146] Wang X. Thermal and ground-state entanglement in Heisenberg XX qubit rings. Phys. Rev. A, 2002, 66(3): 034302(1-4).
    [147] Wu L A, Sarandy M S, Lidar D A. Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett., 2004, 93(11): 250404(1-4).
    [148] Gu S J, Deng S S, Li Y Q, et al. Entanglement and Quantum Phase Transition in the Extended Hubbard Model. Phys. Rev. Lett., 93(8): 086402(1-4).
    
    [149] O'Connor K M, Wootters W K. Entangled rings. Phys. Rev. A, 2001, 63(5): 052302(1-9).
    [150] Syljuasen O F. Entanglement and spontaneous symmetry breaking in quantum spin models. Phys. Rev. A, 2003, 68(6): 060301(R)(1-4). (2003).
    
    [151] Gu S J, Li H, Li Y Q, et al. Entanglement of the Heisenberg chain with the next-nearest- neighbor interaction. Phys. Rev. A, 2004, 70(11): 052302(1-5).
    [152] Lou P, Wu W C, Chang M C. Quantum phase transition in spin-1/2 XX Heisenberg chain with three-spin interaction. Phys. Rev. B, 2004, 70(8): 064405(1-7).
    [153] Latorre J I, Rico E, Vidal G. Ground state entanglement in quantum spin chains. Quantum Information and Computation, 2004, 4(1): 48-92.
    [154] Yang C N, Yang C P. One-dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe's hypothesis for ground state in a finite system. Phys. Rev., 1966, 150(1): 321-327.
    [155] Yang C N, Yang C P. One-dimensional chain of anisotropic spin-spin interactions. II. Properties of the ground-state energy per lattice site for an infinite system. Phys. Rev., 1966, 150(1): 327-339.
    [156] Takahashi M, Kato G, Shiroishi M. Next nearest-neighbor correlation functions of the spin- 1/2 XXZ chain at massive region. J. Phys. Soc. Jpn., 2004, 73: 245-253.
    [157] Kato G, Shiroishi M, Takahashi M, et al. Sakai, Next nearest-neighbor correlation functions of the spin-1/2 XXZ chain at critical region. J. Phys. A: Math. Gen., 2003, 36: L337-L344.
    [158] Ye M Y, Zhang Y S, Guo G C. Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A, 2004, 69(2): 022310(1-4).
    [159] Bennett C H, DiVincenzo D P, Shor P W, et al. Remote State Preparation. Phys. Rev. Lett., 2001, 87(7): 077902(1-4).
    [160] Agrawal P, Parashar P, Pati A K. Exact remote state preparation for multiparties. quant- ph/0304006.
    [161] Berry D W, Sanders B C. Optimal remote state preparation. Phys. Rev. Lett., 2003, 90(5): 057901(1-4).
    [162] Pati A K. Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A, 2001, 63(1):014302(1-3).
    [163] Peng X, Zhu X, Fang X, et al. Experimental implementation of remote state preparation by nuclear nagnetic resonance. Phys. Lett. A, 2003, 306: 271-276.
    [164] Peng X, Zhu X, Liu M, et al. Nuclear magnetic resonance implemenations of remote Sstate preparation of arbitary longitudinal qubit and remote state measurement of a qubit. quant- ph/0208079.
    [165] Lo H K. Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity. Phys. Rev. A, 2000, 62(1): 012313(1- 7).
    [166] Leung D W, Shor P. Oblivious remote state preparation. Phys. Rev. Lett., 2003, 90(12): 127905(1-4).
    [167] Hagley E, Maitre X, Nogues G, et al. Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys. Rev. Lett., 1997, 79(1): 1-5.
    [168] Tuchette Q A, Wood C S, King B E, et al. Phys. Rev. Lett., Deterministic Entanglement of Two Trapped Ions. 1998, 81(17): 3631-3634.
    [169] Eichmann U, Bergquist J C, Bollinger J J, et al. Young ' s interference experiment with light scattered from two atoms. Phys. Rev. Letts., 1993, 70(16): 2359-2362.
    [170] Cabrillo C, Cirac J I, Garcia-Fernandez P, et al. Creation of entangled states of distant atoms by interference. Phys. Rev. A, 1998, 59(2): 1025-1033.
    [171] Browne D E, Plenio M B, Huelga S F. Robust creation of entanglement between ions in spatially separate cavities. Phys. Rev. Lett., 2003, 91(6): 067901(1-4).
    [172] Zou Xu Bo, Pahlke K, Mathis W. Generation of an entangled four-photon W state. Phys. Rev. A, 2002, 66(4): 044302(1-3).
    [173] Zou Xu Bo, Pahlke K, Mathis W. Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay. Phys. Rev. A, 2003, 68(2): 024302(1-4).
    [174] Zou Xu Bo, Pahlke K, Mathis W. Quantum entanglement of four distant atoms trapped in different optical cavities. Phys. Rev. A, 2004, 69(5), 052314(1-7).
    [175] Fidio C Di, Vogel W. W-type entanglement of distant atoms: conditional preparation. J. Opt. B: Quantum Semiclass. Opt., 2003, 5: 105-108.
    
    [176] Duan L M, Kimble H J. Efficient engineering of multiatom entanglement through single- photon detections. Phys. Rev. Lett.. 2003, 90(25): 253601(1-4).
    [177] Feng X L, Zhang Z M, Li X D, et al. Entangling distant atoms by interference of polarized photons. Phys. Rev. Lett., 2003, 90(21): 217902(1-4).
    [178] Karlsson A, Bourennaneand M. Quantum teleportation using three-particle entanglement. Phys. Rev. A, 1998, 58(6): 4394-4400.
    [179] Shi B S, Tomita A. Teleportation of an unknown state by W state. Phys. Lett. A, 2002, 296: 161-164.
    [180] Cleve R, Gottesman D, Loand H K. How to share a quantum secret. Phys. Rev. Lett., 1999, 83(3): 648-651.
    [181] Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys. Rev. A, 1999, 59(3): 1829-1834.
    [182] Kempe J. Multiparticle entanglement and its applications to cryptography. Phys. Rev. A, 1999, 60(2): 910-916.
    [183] Gorbachev V N, Trubilko A I, Rodichkina A A. Can the states of the W-class be suitable for teleportation. Phys. Lett. A, 2004,314: 267-271.
    [184] Buzek V, Hillery M. Quantum copying: Beyond the no-cloning theorem. Phys. Rev. A, 1996, 54(3): 1844-1852.
    [185] Buzek V, Vedral V, Plenio M B, et al. Broadcasting of entanglement via local copying. Phys. Rev. A, 1997, 55(5):3327-3332.
    [186] Gisin N, Massar S. Optimal quantum cloning machines. Phys. Rev. Lett., 1997, 79(11): 2153-2156.
    [187] Bruβ D, DiVincenzo D P, Ekert A, et al. Optimal universal and state-dependent quantum cloning. Phys. Rev. A, 1998, 57(4): 2368-2378.
    [188] Yamamoto T, Tamaki K, Koashi M, et al. Polarization-entangled W state using parametric down-conversion. Phys. Rev. A, 2002, 66(6): 064301(1-4).
    [189] Bechmarm-Pasquinucci H, Peres A. Quantum cryptography with 3-state systems. Phys. Rev. Lett., 2000, 85(15): 3313-3316.
    [190] Bruβ D, Macchiavello C. Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett., 2002, 88(12): 127901(1-4).
    [191] Cerf N J, Bourennane M, Karrlson A, et al. Security of quantum key distribution using d-Level systems. Phys. Rev. Lett.. 2002, 88(12), 127902(1-4).
    [192] Gour Gilad. Faithful teleportation with partially entangled states. Phys. Rev. A, 2004, 70(10): 042301(1-5).
    [193] Zou X B, Mathis W. One-step implementation of maximally entangled states of many three-level atoms in microwave cavity QED. Phys. Rev. A. 2004, 70(9): 035802(1-5).
    [194] Jin G S, Li S S, Feng S L, et al. Generation of a supersinglet of three three-level atoms in cavity QED. Phys. Rev. A, 2005, 71(3): 034307(1-3).
    [195] Biswas Asoka, Agarwal G S. Preparation of W, GHZ, and two-qutrit states using bimodal cavities. J. Mod. Opt., 2004, 51: 1627-1636.
    [196] Thew R T, Acin A, Zbinden H, et al. Experimental realization of entangled qutrits for quantum communication. quant-ph/0307122.
    [197] Plenio M B, Knight P L. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys., 1998, 70(1): 101-144.
    [198] Hofmann H F, Takeuchi S. Quantum filter for nonlocal polarization properties of photonic qubits. Phys. Rev. Lett., 2002, 88: 147901(1-4).
    [199] Lange W, Kimble H J. Dynamic generation of maximally entangled photon multiplets by adiabatic passage. Phys. Rev. A, 2000, 61(6): 063817(1-20).
    [200] Hong J, Lee H W. Quasideterministic generation of entangled Atoms in a cavity. Phys. Rev. Lett., 2002, 89(23): 237901(1-4).
    
    [201] Eibl M, Kiesel N, Bourennane M, et al. Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett., 2004, 92(2): 077901(1-4).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700