脑功能网络的成组独立成分分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁共振成像技术是脑科学研究中最为有效的手段之一,它可以直观的展示大脑结构和功能的相关测量。神经图像分析技术则能从原始图像中提取出揭示大脑结构和功能特性的有效信息,为探索大脑的奥秘奠定基础。
     本论文以功能磁共振图像数据的多变量分析方法(独立成分分析)为研究重点,作为对比,将单变量方法(统计参数映射)也应用到了图像数据的处理中。由于数据处理对象是磁共振图像数据,因此,首先对磁共振成像技术的相关知识进行简要介绍;接着介绍了主成分分析和独立成分分析的理论知识,为成组独立成分分析方法的提出做铺垫;将成组独立成分分析方法应用到功能磁共振图像数据中,成功提取出了多个脑功能网络,并对每个功能网络进行了分析,然后将统计参数映射也应用到图像数据的分析中,对提取出的激活脑区进行了解析,并对这两种不同的方法进行了总结和对比;最后将功能磁共振图像数据进行平均化处理,然后再分别利用统计参数映射、时间独立成分分析和空间独立成分分析对图像数据进行分析,从激活脑区的结果来看,对磁共振图像数据进行平均化是合理而有效的,并对平均化处理之后的三种方法进行了总结和对比。
As one of the most effective instruments for brain research, magnetic resonance imaging technique can provide visible measures of the structure and function of brain. Neuroimage analysis technique can extract effective information that represents the characteristic of the brain structure and function, which helps us to make further exploration.
     This thesis focuses on the multivariate analysis method (independent component analysis) of functional magnetic resonance image, in contrast with which the univariate (statistical parametric mapping) method is also used in processing the image data. Firstly, magnetic resonance imaging technique, principal component analysis (PCA) and independent component analysis (ICA) etc. are introduced. Secondly, group independent component analysis is used to extract the brain function networks from the magnetic resonance images. Each brain function network is analyzed. Besides, statistical parametric mapping (SPM) is used to analyze the activated brain regions. The two different methods are compared. Finally, the functional magnetic resonance images after averaging are analyzed by SPM, temporal independent component analysis and spatial independent component analysis. The three methods are compared and analyzed. Experimental results also show the efficiency of averaging the magnetic resonance images.
引文
[1] Murre, J.M.J. and Sturdy, D.P.F., The connectivity of the brain: multi-level quantitative analysis. Biol. Cybernet., 73:529-545, 1995.
    [2]唐孝威,王卫东,包尚联等.脑功能成像,合肥:中国科学技术大学出版社,1999.
    [3] S Ogawa, T M Lee. Magn Reson Med, 16:9-18, 1990.
    [4] R Turner et al. J Magn Reson Med, 1:159-166, 1991.
    [5] S Ogawa et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping using MRI. Proc Natl Acad Sci USA, 89:5951-5955, 1992.
    [6] P A Bandettini et al. Time course EPI of human brain function during task activation. Magn Reson Med, 25:390-397, 1992.
    [7] Blamire, A.M., Ogawa, S., and Ugurbin, K., Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc. Natl. Acad. Sci. USA, 89:11069-11073, 1992.
    [8] Aguirre, G., Zarahn, E., and D’Esposito, M., The variability of human, BOLD hemodynamic responses. NeuroImage, 8: 360-359, 1998.
    [9] Dale, A.M. and Buckner, R.L., Selective averaging of rapidly presented individual trials using fMRI. Hum. Brain Mapp., 5: 329-340, 1997.
    [10] Glover, G.H., Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage, 9: 416-429, 1999.
    [11] Friston, K.J., Jezzard, P., and Turner, R., Analysis of functional MRI time-series. Hum. Brain Mapp., 1: 153-171, 1994.
    [12] Bandettini, P.A., Jesmanowicz, A., Wong, E.C., et al., Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med., 30:161-173, 1993.
    [13]胡德文,周宗潭等.第13章:神经图象处理(认知神经科学教程,罗跃嘉主编).北京:北京大学出版社, 2005.
    [14] Backfrieder, W., Quantification of intensity variations in functional MR images using rotated principal components. Phys. Med. Bio., 41:1425-1438, 1996.
    [15] Stone, J.V., Blind source separation using temporal predictability. Neural Comput., 13: 1559-1574, 2001.
    [16] McKeown, M.J., Jung, T.P., Makeig, S., et al., Spatially independent activity patterns in functional MRI data during the stroop color-naming task. Proc. Natl. Acad. Sci. USA, 95:803-810,1998.
    [17] Balslv, D., Nielsen, F.A., Frutiger, S.A., et al., Cluster analysis of activity-time series in motor learning. Hum. Brain Mapp., 15:135-145, 2002.
    [18] Dewen Hu, Lirong Yan, Yadong Liu, et al., Unified SPM-ICA for fMRI analysis. NeuroImage, 25: 746-755, 2005.
    [19]海韦里恩等著,周宗潭,董国华,胡德文等译.独立成分分析,北京:电子工业出版社,2007.
    [20] R. R. Coifman and D. L. Donoho. Translation-invariant de-noising. Technical report, Department of Statistics, Stanford University, Stanford, California, 1995.
    [21] M. McKeown, S. Makeig, S. Brown, et al., Blind separation of functional magneticresonance imaging (fMRI) data. Human Brain Mapping,6(5-6): 368-372, 1998.
    [22] B. B. Biswal and J. L. Ulmer. Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. J. of Computer Assisted Tomography, 23(2): 265-271, 1999.
    [23]颜莉蓉.脑功能磁共振数据时空分析方法研究.长沙:国防科学技术大学自动控制系,2006.
    [24] Calhoun, V. D., Adali, T., Pearlson, G. D., et al., Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum. Brain Mapp., 13: 43-53, 2001.
    [25] V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J. Pekar. A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14: 140-151, 2001.
    [26]吴义根,李可. SPM软件包数据处理原理简介.中国医学影像技术, 20(11): 1003-3289, 2004.
    [27] Nakamura Y, Katakura N. Generation of masticatory rhythm in the brainstem. Neurosci Res, 23(1): 1-19, 1995.
    [28] Momose I, Nishikawa J, Watanabe T, et al. Effect of mastication on regional cerebral blood flow in humans examined by positron-emission tomography with 15O-labelled water and magnetic resonance imaging. Arch Oral Biol, 42(1): 57-61, 1997.
    [29] Kubota K, Momose T, Abe A, et al. Nuclear medical PET-study in the causal relationship between mastication and brain function in human evolutionary and developmental processes. Ann Anat, 185(6): 565-569, 2003.
    [30] Onozuka M, Fujita M, Watanabe K, et al. Mapping brain region activity during chewing: A functional magnetic resonance imaging study. J Dent Res, 81(11): 743-746, 2002.
    [31]岳珍珠,黄立,周晓林.口香糖咀嚼的脑机制.心理科学,29(5): 1153-1156, 2006.
    [32] Onozuka M, Fujita M, Watanabe K, et al. Ages-related changes in brain regional activity during chewing: A functional magnetic resonance imaging study. J Dent Res, 82(8): 657-660, 2003.
    [33] Nakata M. Masticatory function and its effects on general health. Int Dent J, 48(6): 540-548, 1998.
    [34] Blakemore and Frith. The Learning Brain. Blackwell Publishing. ISBN 1-4051-2401-6, 2005.
    [35] Dewen Hu, Hui Shen and Zongtan Zhou. Functional asymmetry in the cerebellum: A brief review. The Cerebellum, 7: 304-313, 2008.
    [36] Nasir H. Naqvi, David Rudrauf, Hanna Damasio, Antoine Bechara. Damage to the Insula Disrupts Addiction to Cigarette Smoking. Science, 315(5811):531-4, 2007.
    [37] Tanne-Gariepy J, Boussaoud D, Rouiller EM. Projections of the claustrum to the primary motor, premotor, and prefrontal cortices in the macaque monkey. Journal of Comparative Neurology, 454: 140-57, 2002.
    [38] Fernandex-Miranda JC, Rhoton AL Jr, Kakizawa Y, Choi C, Alvarez-Linera J. The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical sthdy. Journal of Neurosurgery, 108(4):764-74, 2008.
    [39] DeLong MR, Alexander GE, Georgopoulos AP, Crutcher MD, et al. Role of basal ganglia in limb movements. Human Neurobiology, 2(4): 235-44, 1984.
    [40] Alexander GE, Crutcher MD. Preparation for movement: neural representations of intended direction in three motor areas of the monkey. Journal of Neurophysiology, 64(1):133-50, 1990.
    [41] Delong MR, Georgopoulos AP, Crutcher MD, Mitchell SJ, Richardson RT, Alexander GE. Functional organization of the basal ganglia: contributions of single-cell recording studies. Ciba Found Symp, 107: 64-82, 1984.
    [42] Marchand WR, Lee JN, Thatcher JW, Hsu EW, Rashkin E, Suchy Y, Chelune G, Starr J, Barbera SS. Putamen coactivation during motor task execution. Neuroreport, 19(9): 957-960, 2008.
    [43] Jones Edward G. The Thalamus. Cambridge Uni. Press, 2007.
    [44] Joseph R. Clinical Neuroscience. Academic Press, New York. 2001.
    [45] Allman JM, Hakeem A, Erwin JM and Nimchinsky E. The anterior cingulate cortex: the evolution of an interface between emotion and cognition. Ann N Y Acad Sci, 935: 107-17, 2001.
    [46] Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 4(6): 215-222, 2000.
    [47] Posner MI, DiGirolamo GJ. Executive attention: Conflict, target detection, and cognitive control. Cambridge, Mass: MIT Press, 1998.
    [48] Nieuwenhuis S, Ridderinkhor KR, Blorn J, Band GP and Kok A. Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task. Psychophysiology, 38(5): 752-60, 2001.
    [49] Lane RD, Reiman EM, Axelrod B, Yun LS, Holmes A, Schwartz GE. Evidence of an interaction between emotion and attention in the anterior cingulate cortex. Neuroscience, 10(4): 525-35, 1998.
    [50] Steriade, M and Llinas, R. The functional states of the thalamus and the associated neuronal interplay. Physiological Reviews, 68: 699-742, 1998.
    [51] V. S. Ramachandran. A Brief Tour of Human Consciousness. Pi Press, pp. 60-82, 2004.
    [52] Kimberg, D. Y. , Farah, M. J. A unified account of cognitive impairments following frontal lobe damage: the role of working memory in complex, organized behavior. J. Exp. Psychol. Gen, 122(4): 411-28, 2004.
    [53] Goldberg I, Harel M, Malach R. When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron, 50(2): 329-39, 2006.
    [54] Timothy J. Vickery and Yuhong V. Jiang. Inferior parietal lobule supports decision making under uncertainty in humans. Cerebral Cortex, 19: 916-925, 2009.
    [55] Takada T, Miyamoto T. A fronto-parietal network for chewing of gum: a study on human participants with functional magnetic resonance imaging. Neuroscience, 360: 137-140, 2004.
    [56] Andrew Scholey, Crystal Haskell, Bernadette Robertson, David Kennedy, Anthea Milne, Mark Wetherell. Chewing gum alleviates negative mood and reduces cortisol during acute laboratory psychological stress. Physiology and Behavior, 97: 304-312, 2009.
    [57] Crick FC, Koch C. What is the function of the claustrum? Philosophical Transactions of the Royal Society B-Biological Sciences, 360: 1271-9, 2005.
    [58] Levitin, D. J. and Menon, V. Musical structure is processed in“language”areas of the brain: A possible role for Brodmann Area 47 in temporal coherence. NeuroImage, 20: 242-252, 2003.
    [59] Michael D. Greicius, Ben Krasnow, Allan L. Reiss and Vinod Menon. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. PNAS, 100(1):253-258, 2003.
    [60] Michael D. Greicius, Ben Krasnow, Allan L. Reiss and Vinod Menon. A network analysis of the default mode hypothesis. PNAS, 98(2): 676-682, 2001.
    [61] Peter Fransson. How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 2: 55-65, 2006.
    [62] Morcom, A. M., Fletcher, P. C., Does the brain have a baseline? Why we should be resisting a rest. NeuroImage, 37: 1073-1082, 2007.
    [63] Friston, K. J., Holmes, A. P., Poline, J. B., et al., Analysis of fMRI time-series revisited. NeuroImage, 2: 45-53, 1995.
    [64] Friston, K. J., Holmes, A. P., Worsley, K., et al., Statistical parametric maps in functional imaging: A general linear approach. Hum. Brain Mapp., 2: 189-210, 1995.
    [65]周青,方马荣,张敏鸣.咀嚼时局部脑活动的功能性核磁共振成像.中国临床解剖学杂志,19(2):144-146, 2001.
    [66] Wilkinson L, Scholey A, Wesnes K. Chewing gum selectively improves aspects of memory in healthy volunteers. Appetite, 38(3): 235-236, 2002.
    [67] Tucha O, Mecklinger L, Maier k, Hammer M, Lange K W. Chewing gum differentially affects aspects of attention. Appetite, 42: 327-329, 2004.
    [68] Hirano Y, Obata T, Kashikura K, et al. Effects of chewing in working memory processing. Neurosci Lett, 436(2): 189-192, 2008.
    [69] Vince D. Calhoun, Jingyu Liu and Tulay Adali. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage, 45:s163-s172, 2009.
    [70] Vincent van de ven, Fabrizio Esposito and Ingrid K. Christoffels. Neural network of speech monitoring overlaps with overt speech production and comprehension networks: A sequential spatial and temporal ICA study. NeuroImage, 47(4): 1982-1991, 2009.
    [71] Ying Guo and Giuseppe Pagnoni. A unified framework for group independent component analysis for multi-subject fMRI data. NeuroImage, 42: 1078-1093, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700