高精度、大延时的光控真延时线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子对抗与雷达是一对矛与盾。雷达除对目标进行监控或跟踪,还要保护自己免受敌方的侦测或攻击,这使现代雷达变得愈加复杂,而相应的欺骗性干扰系统也越来越复杂。光真延时因其大信号带宽、抗电子干扰、传输损耗小、重量轻等优点,在电子对抗中有着明显的优势,而受到广泛的关注与深入的研究。论文面向电子欺骗的要求,对光子技术模拟移动目标的回波进行了探索性研究,取得如下的成果:
     1、理论上对射频载波的处理过程进行数学描述,并对真延时实现射频信号的多普勒频移进行定量分析和原理验证,揭示了真延时参数与射频信号的多普勒频移之间的定量关系,得出对射频信号进行时变真延时可以实现多普勒频移的结论,从而为利用光真延时模拟移动目标的回波提供了理论依据。
     2、提出了一种高精度、大延时量的光真延时方案。该方案为级联的两个部分,中间用基于四波混频的全光波长变换器连接:第一级是光开关选择光程的数字式步进延时,用来实现大延时;第二级是基于色散元件的延时,通过调节光波长变换器的泵浦波长来实现延时的准连续调节。
     3、论文利用高非线性光纤中的四波混频效应实现了全光波长变换。实验研究了在信号光存在副载波调制情况下各种因素对基于高非线性光纤四波混频效应波长变换的影响,为优化波长变换器进而提高光真延时线的传输性能提供了依据。实验结果表明,光波长变换对副载波的主要影响是:副载波线宽略有增加,从63.9599kHz增加到64.2490kHz;带内噪声功率密度变大,在距载波100kHz和500kHz处分别增加了5dB和20dB。
     4、对使用波长变换器的级联光真延时方案进行了研究。在使用15km单模光纤和色散量为51.1ps/nm的啁啾光纤光栅的级联延时实验中,单模光纤表现出的色散量为10.9ps/nm,小于不用波长变换器时的色散量(典型值255ps/nm)的1/20;实验光链路在1548nm处的总延时达到62.601209μs,且可通过调节光波长使链路的延时从0~509ps准连续可调。
In electronic warfare, electronic countermeasures to radar are like spears to shields. Radar has to be able not only to perform the functions of surveillance and tracking, but also to protect itself from potential hostile detection or attack, which makes modern radar become very complicated, and so does the corresponding deceptive jamming system. Superior to traditional electronic countermeasures, optical true-time delay (OTTD) has the advantages of extremely large signal bandwidth, immunity to electromagnetic interference, low transmission loss and light weight. So far, OTTD has attracted much attention and been extensively studied. According to the requirements of electronic deception, this thesis makes an exploratory study on simulating the echo of a moving target by means of photonic technologies. The outline of the thesis is as follows:
     1) In theory, the radio-frequency signal processing using true-time delay is described mathematically and derived. The result shows the quantitative relations between the true-time delay and the Doppler shift when using time-variant true time-delay to realize the Doppler shift of a radio-frequency carrier. The conclusion is also verified by the matlab simulation. So, it's feasible in principle to realize Doppler frequency shift using time-variant true-time delay, and the results provide theoretical basis to simulate the echo of a moving target by means of optical true-time delay.
     2) An optical true-time delay scheme with high precision and a large range is proposed. In the scheme, the time delay is divided into two parts, in between with an optical wavelength convertor (OWC) using partially degenerate four-wave mixing in a highly nonlinear fiber. The first part is digitally incremental time-delay using optical switches and different lengths of single mode fibers (SMFs) to achieve a large time-delay range. The second part is sub-continuous time-delay using a chirped fiber grating (CFG) and tuned by changing the pump wavelength of the OWC.
     3) All-optical wavelength conversion using partially degenerate four-wave mixing in a highly nonlinear fiber is realized. To optimize the OWC and thus to enhance the performance of the optical transmission link, the impacts of several parameters (such as the pump wavelength and the optical power) on OWC were experimentally studied when the signal light was modulated by radio-frequency sub-carrier. The experimental results showed that due to optical wavelength conversion, the line-width of the radio-frequency sub-carrier increased from 63.9599kHz to 64.2490kHz, and the power density of the in-band noise became larger, e.g. at frequencies 100kHz and 500kHz away from the carrier frequency, the increments of 5dB and 20dB were observed respectively.
     4) The cascaded optical true time-delay scheme using an OWC is studied. In the experiment using a 15km-long SMF and a CFG with a dispersion of 51.1ps/nm, the SMF exhibited a dispersion of 10.9ps/nm, less than 1/20 of the dispersion of the SMF (the typical value is 255ps/nm) without an OWC. A total delay of 62.601209μs at the wavelength of 1548nm was achieved, and by tuning the pump wavelength of the OWC, a sub-continuous time delay within 509ps was realized.
引文
[1] Stimson G W.机载雷达导论.吴汉平.北京:电子工业出版社,2005. 3-31, 385-402, 861-892, 1003-1012
    [2] Strong R. Radar: the evolution since World War II. IEEE A&E Systems Mag. Jan. 2005: 19-24
    [3] Fuller K L. To see and not be seen. IEE Proceedings. 1990, 137(1): 1-9
    [4] Schleher. D C. Electronic warfare in the information age. Boston·London:Artech House,1999. 167-175
    [5] Li N, Zhang Y. A survey of radar ECM and ECCM. IEEE Trans. on Aerospace and Electronic Systems. 1995, 31(3): 1110-1120
    [6] Kerins W J. Analysis of towed decoys. IEEE Trans Aerospace and Electronic Systems. 1993, 29(4): 1222-1227
    [7] Abel S N, Patrick T M, et al. ECM Techniques Generator. Proc. of SPIE. 2006, 6228
    [8] Guo J, Li J, Lv Q. Survey on radar ECCM methods and trends in its developments. 2006 International Conference on Radar, 2006: 1-4
    [9] Roome S J. Digital Radio Frequency Memory. Electronics and Communication Engineering Journal, 1990: 147-153
    [10] Berger S D. Digital Radio Frequency Memory Linear Range Gate Stealer Spectrum. IEEE Trans. Aerospace and Electronic Systems. 2003, 39(2): 726-736
    [11] Greco M, Gini F, Farina A, Ravenni V. Effect of phase and range gate pull-off delay quantization on jamming signal. IEE Proc. Radar Sonar Navig 2006. 2006, 153(5): 454-459
    [12] Townsend J D, Saville M A, Hong S M, Martin R K. Simulator for velocity gate pull-off electronic countermeasure techniques. 2008 IEEE Radar Conference. 2008: 1-6
    [13] Hong S, Saville M A, Simpson C, Marshall P. Investigation on genetic algorithm for countermeasure technique generator. 2007 International Symposium on Signals, Systems and Electronics. 2007: 351-354
    [14] Brooks R R, Pang J-E, Griffin C. Game and information theory analysis of electronic countermeasures in pursuit-evasion games. IEEE Trans. Systems, Man, and Cybernetics-Part A: Systems and Humans. 2008, 38(6): 1281-1294
    [15] Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. Jour of Lightwave Technology. 2006, 24(1): 201-229
    [16] Agrawal G P. Fiber-optic communication systems. New York. John Wiley & Sons, Inc. 2002. 1-8
    [17] Cox C, Ackerman E, Helkey R, Betts G. Techniques and performance of intensity-modulation, direct-detection analog optical links. IEEE Trans Microwave Theory and Techniques. 1997, 45(8): 1375-1383
    [18] Cox C H. Analog optical links. Cambridge. Cambridge University Press. 2004. 1-8
    [19] Cox C H, Ackerman E I, Betts G E, Prince J L. Limits on the performance of RF-Over-Fiber links and their impact on device design, IEEE Trans. Microwave Theory and Techniques. 2006, 54(2): 906-920
    [20] Shi Z, Foshee J J. Remoting alternatives for a multiple phased array antenna network. Proceedings of SPIE. 2001, 4604(36)
    [21] Manka M E. Microwave photonics for electronic warfare applications. 2008 International Topics Meeting on Microwave Phtonics, Jointly held with the 2008 Asia-Pacific Microwave Photonics Conference. 2008: 275-278
    [22] Cox C H, Ackerman E I. Microwave photonics: past, present and future. 2008 International Topics Meeting on Microwave Phtonics, Jointly held with the 2008 Asia-Pacific Microwave Photonics Conference. 2008: 9-11
    [23] Cox C H, Ackerman E I, Betts G E. The Role of Photonic and Electronic Gain in the Design of Analog Optical Links. 2005 IEEE Conference on Avionics, Fiber-Optics and Photonics. 2005: TuA1
    [24] Ackerman E I, Cox C H. Microwave photonic links with gain and low noise figure. The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society 2007. 2007: ME1
    [25] Urick V J, Bucholtz F. Optical amplification in avionic analog photonic links. 2006 IEEE Avionics, Fiber-Optics and Photonics Technology Conference. 2006: WB3
    [26] Ackerman E I, Burns W K, Betts G E. RF-Over-Fiber links with very low noise figure. Jour. Lightwave Technology. 2008, 26(15): 2441-2448
    [27] Hastings A S, Urick V J, Sunderman Christopher, et al. Suppression of even-order photodiode nonlinearities in multimode photonic links. Jour. Lightwave Technology. 2008, 26(15): 2557-2562
    [28] Haas B M, Urick V J, Mckinney J D, et al. Dual-wavelength linearization of optically phased-modulated analog microwave signals. Jour. Lightwave Technology. 2008, 26(15): 2748-2753
    [29] Kurniawan T, Nirmalathas A, Lim C, et al. Performance analysis of optimized millimeter-wave fiber radio links. IEEE Trans. Microwave Theory and Techniques. 2006, 54(2): 921-928
    [30] Roussell H V, Regan M D, Campbell J C, et al. Gain, noise figure and bandwidth-limited dynamic range of a low-biased external modulation link. 2007 IEEE International Meeting on Microwave Photonics. 2007: 84-87
    [31] Pirich R, Anumolu P. Next-generation fiber-optic technology enablers for manned & unmanned ISR platforms. 2008 IEEE Avionics, Fiber-Optics and Photonics Technology Conference. 2008: TuA2
    [32] Devgan P, McKinney J, Williams K. Hybrid analog-digital fiber optic network for aircraft communication and control. 2007 IEEE Avionics, Fiber-Optics and Photonics Technology Conference. 2007: TuC3
    [33] Mckinney J D, Williams K J. A linerized phase-modulated analog optical link. Conference on Lasers and Electro-Optics 2008. 2008: CMP4
    [34] Priest T S, Manka M E, Gupta K K. Demonstration of a microwave photonic link insertion into the ALR-2001 EW system. Australian Conference on Optical Fiber Technology/Australian Optical Society 2006. 2006:31-33
    [35] Shi Y, Wang W, Bechtel H. High-Isolation Photonic microwave mixer/link for wideband signal processing and transmission. Jour of Lightwave Technology. 2003, 21(5): 1224-1232
    [36] Robert A. Minasiam. Photonic signal processing of microwave signals. IEEE Trans. on Microwave Theory and Techniques. 2006. 54(2): 832-846
    [37] Jose Capmany, Beatriz Ortega, et al. Discrete-time optical processing of microwave signals. Jour of Lightwave Technology. 2005, 23(2): 702-723
    [38] Kenneth P. Jackson, Steven A. Newton, et al. Optical fiber delay-line signal processing. IEEE Trans. on Microwave Theory and Techniques. 1985, 33(3): 193-210
    [39] Zach S, Singer L. RF photonics: Why should defense take notice?. 2006 IEEE 24th Convention of Electrical and Electronics Engineers in Israel. 2006: 408-412
    [40]邱绍峰,范戈.光纤延迟线在雷达信号处理中的应用.光学技术. 2003, 29(4): 429-431
    [41] Kaylor B M, Berg T J, Cole Z, et al. Adaptive waveform radar enabled by S2-material based photonic signal processing hardware. 2007 International Conference on Electromagnetics in Advanced Applications. 2007:435-438
    [42] Prcic M M. Flyable fiber-optic radar target generator. IEEE AES Systems Magazine. 1994, Jan: 17-20
    [43] Odman S, Ingmar R. A fiber opitcal system for range gate pull-off of radar echoes. World Intellectual Property Organization International Bureau. WO93/06502. 1993-04-01
    [44] Chang C T, Altman D E, Wehner D R, Albares D J. Noncoherent radar moving target indicator using fiber optic delay lines. IEEE Trans on Circuits and Systems. 1979, Cas-26(12): 1132-1135
    [45] Zari M C, Anderson C S, et al. An X-Band acousto-optic variable delay line for radar target simulation. IEEE Trans on Microwave Theory and Techniques. 1995, 43(8): 1889-1894
    [46] Goldstein S T, Dolfi D, et al. Optical signal processing in radar systems. IEEE Trans on Microwave Theory and Techniques. 2006, 54(2): 847-853
    [47] Jacobs E W, Olsen R B, et al. RF-over-fiber and optical processing for navy applications. Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference 2007. 2007: OWU1
    [48] Ng W, Walston A A, et al. The first demonstration of an optically steered microwave phased array antenna using true-time-delay. Jour of Lightwave Technology. 1991, 9(9): 1124-1131
    [49] Frigyes I, Seeds A J. Optically generated true-time delay in phased-array antennas. IEEE Trans. Microwave Theory and Techniques. 1995, 43(9): 2378-2386
    [50] Seeds A J. Microwave photonics. IEEE Trans. Microwave Theory and Techniques. 2002, 50(3): 877-887
    [51] Seeds A J, Williams K J. Microwave photonics. J. Lightwave Technology. 2006, 24(12): 4628-4641
    [52] Yao J. Microwave photonics. J. Lightwave Technology. 2009, 27(3): 314-335
    [53]周波.基于啁啾光纤光栅的光控微波波束形成网络的研究:[博士学位论文].北京:清华大学电子工程系,2008
    [54] Jemison W D, Herczfeld P R. Acousto optically controlled true time delays. IEEE Micrwoave and Guided Wave Letters. 1993, 3(3): 72-74
    [55] Shin J, Yoon Y, et al. A 4-bit optical true-time delay for 10-GHz phased array antennas using optical MEMS switches and fiber-optic delay lines. The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society 2004. 2004, 1: 274-275
    [56] Yang Y, Dong Y, Liu D, et al. A 7-bit photonic true-time-delay system based on an 8x8 MOEMS optical switch. Chinese Optics Letters. 2009, 7(2): 118-120
    [57] Howley B, Wang X, Chen M, Chen R T. Reconfigurable delay time polymer planar lightwave circuit for an X-band phased-array antenna demonstration. Jour of Lightwave Technology. 2007, 25(3):883-890
    [58] Li X, Peng L, Wang S, Kim Y-C, Chen J. A novel kind of programmable 3n feed-forward optical fiber true delay line based on SOA. Optics Express. 2007, 15(25): 16760-16766
    [59]陈锐.光真延时网络的研制. [硕士学位论文].北京:清华大学电子系,2003
    [60] Yegnanarayanan S, Trinh P D, Jalali B. Recirculating photonic filter: a wavelength-selective time delay for phased array antennas and wavelength code-division multiple access. Optics Letters. 1996, 21(10): 740-742
    [61] Fu Z, Zhou C, Chen R T. Waveguide-hologram-based wavelength-multiplexed pseudoanalog true time delay module for wideband phased-array antennas. Applied Optics. 1999, 38(14): 3053-3059
    [62] Jiang Y, Jiang W, Chen X, et al. Nano-photonic crystal waveguides for ultra-compact tunable true time delay lines. Proc of SPIE. 2005, 5733: 166-175
    [63] Daryoush A, Herczfeld P, et al. Optical beam control of mm-wave phased array antennas for communications. Microwave Journal. 1987, 30(3): 97,98,100
    [64] Esman R, et al. Fiber-optic prism true time-delay antenna feed. IEEE Photonics Technology Letters. 1993, 5: 1347-1349
    [65] Minasian R A, Alameh K E. High capacity optical beam forming for phased arrays with fiber gratings and frequency conversion for beat noise control. Applied Optics. 1999, 38(21):4665-4670
    [66] Corral J L, Marti J, Fuster J M, et al. True time delay scheme for feeding optically controlled phased array antennas using chirped-fiber gratings. IEEE Photonics Technology Letters. 1997, 9(11): 1529-1531
    [67] Zhou B, Zheng X, Yu X, et al. Optical beamforming networks based on broadband optical source and chirped fiber grating. IEEE Photonics Technology Letters. 2008, 20(9): 733-735
    [68] Ortega B, Cruz J L, Capmany J, et al. Analysis of a microwave time delay based on a perturbed uniform fiber bragg grating operating at constant wavelength. Jour of Lightwave Technology. 2000, 18(3)
    [69] Han Y G, Lee J H. Multiple-element photonic microwave true-time-delay beam forming incorporating a tunable chirped fiber Bragg grating with symmetrical bending techniqure. Optics Letters. 2007, 32(12): 1704-1706
    [70] Campopiano S, Pisco M, et al. Electrically tunable true time delay line based on a chirped fiber Bragg grating. Proc. of SPIE. 2006, 6351(63510D): 1-10
    [71] Raz O, Rotman R, et al. Implementation of photonic true time delay using high-order-mode dispersion compensating fibers. IEEE Phtonics Technology Letters. 2004, 16(5): 1367-1369
    [72] Chen M Y, Subbarman H, Chen R T. Photonic Crystal Fiber Beamformer for Multiple X-Band Phased-Array Antenna Transmissions. IEEE Photonics Technology Letters. 2008, 20(5): 375-377
    [73] Liu Z, Zheng X, et al. X-band continuously variable true time delay lines using air-guiding photonic band-gap fibers and broadband light source. Optics Letters. 2006, 31(18): 2789-2791
    [74] Juswardy B, Xiao F, Alameh K. Opto-VLSI-based photonic true-time delay architecture for broadband adaptive nulling in phased array antennas. Optics Express. 2009, 17(6): 4773-4780
    [75] Tian M, Reibel R, Babbitt W R. Demonstration of broadband true-time delay with optical coherent transients. International Topical Meeting on Microwave Photonics 2001. 2001: 223-226
    [76] Warnky C M, Mital R, Anderson B L. Demonstration of a quartic cell, a free-space true-time-delay device based on the white cell. Jour of Lightwave Technology. 2006, 24(10): 3849-3845
    [77] Rabb D J, Anderson B L, et al. Spherical Fourier cell and application for optical true time delay. Jour of Lightwave Technology. 2009, 27(7): 879-876
    [78] Zadok A, Raz O, et al. Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers. IEEE Photonics Technology Letters. 2007, 19(7): 462-464
    [79] Alic N, Windmiller J R, Coles J B, Radic S. Two-Pump Parametric Optical Delays. IEEE Jour of Selected Topics in Quantum Electronics. 2008, 14(3): 681-690
    [80] Dai Y, Chen X, Okawachi Y, et al. 1μs tunable delay using parametric mixing and optical phase conjugation in Si waveguide. Optics Express. 2004, 17(9): 7004-7010
    [81] Alic N, Myslivets E, Moro S, et al. 1.83μs wavelength-transparent all-optical delay. 2009 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. 2009: PDPA1
    [82] Gao L, Herriot S I, Wagner K H. Sluggish light and its applications in true-time-delay beam forming for wideband RF phased-array antennas. Proc of SPIE. 2007, 6482(648205):1-10
    [83] ?hman F, Yvind K, M?rk J. Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics. Jour of Lightwave Technology. 2007, 19(15): 1145-1147
    [84] Chang-Hasnain C J, Chuang S L. Slow and fast light in semiconductor quantum-well and quantum-dot devices. Jour of Lightwave Technology. 2006, 24(12): 4642-4654
    [85] Riza N A, Arain M A, Khan S A:Hybrid analog-digital variable fiber-optic delay line. Jour of Lightwave Technology. 2004, 22(2): 619-624
    [86] Mengual T, Vidal B, Stoltidou C, et al. Optical beamforming network with multibeam capability based on a spatial light modulator. 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. 2008: JThA71
    [87] Rideout H R, Seregelyi J S, Yao J. A true time delay beamforming system incorporating a wavelength tunable optical phase-lock loop, Jour of Lightwave Technology. 2007, 25(7): 1761-1770
    [88] Jung B M, Shin J D, Kim B G. Optical true time-delay for two-dimensional X-band phased array antennas. IEEE Photonics Technology Letters. 2007, 19(12): 877-879
    [89]丁鹭飞,耿富录.雷达原理.西安:西安电子科技大学出版社,2002. 251-254
    [90]郑君里,应启珩,杨为理.信号与系统上册.北京:高等教育出版社, 2002. 157-159
    [91]郑君里,应启珩,杨为理.信号与系统下册.北京:高等教育出版社, 2002. 135-154
    [92] Morris G V.机载脉冲多普勒雷达.季节,许伟武.北京:航空工业出版社,1990. 19-22
    [93] IEEE Standard Letter Designations for Radar-Frequency Bands
    [94]王伟南,郑小平,周波,张汉一,李艳和.基于宽谱光源的光控微波延时技术.中国激光. 2006, 33(9): 1239-1242
    [95]国际电信联盟电信标准化部门(ITU-T). G.652.单模光纤和光缆的特性.国际电信联盟,2005-03
    [96] Inoue K, Toba H. Wavelength conversion experiment using fiber four-wave mixing. IEEE Photonics Technology Letters. 1992, 4(1): 69-72
    [97] Tadokoro M, Taniguchi T, Sakurai N. Optically-controlled beam forming technique for 60 GHz ROF system using dispersion of optical fiber and DFWM. Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference 2007. 2007: OWN2
    [98] Tanemura T, Goh C S, Kikuchi K, Set S Y. Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing. IEEE Photonics Technology Letters. 2004, 16(2): 551-553
    [99] Inoue K. Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies. Jour Lightwave Technology. 1994, 12(11): 1916-1920
    [100] Yu C, Pan Z, Wang Y, et al. Polarization-insensitive four-wave mixing wavelength conversion using a fiber Bragg grating and a Farady rotator mirror. 2003 Conference on Optical Fiber Communication. 2003: WG2
    [101] Jung B-M, Yao J. A Two-Dimensional Optical True Time-Delay Beamformer Consisting of a Fiber Bragg Grating Prism and Switch-Based Fiber-Optic Delay Lines. IEEE Photonics Technology Letters. 2009, 21(10): 627-629
    [102] Kurosu T, Namiki S. Continuously tunable 22 ns delay for wideband optical signals using a parametric delay-dispersion tuner. Optics Letters. 2009, 34(9): 1441-1443

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700