缓控释肥料养分释放机理及评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口—资源—环境问题的日渐突出,农业生产中为保障高产而对肥料的应用愈加关注。在肥料的施用中提高肥料利用率、降低资源浪费、减少环境污染是保障土壤资源可持续利用的目标和关键。缓控释肥料可以显著提高肥料的利用率、减少养分的挥发和淋溶损失、减轻施肥对环境的污染、改善作物的生长发育状况、提高作物的产量和品质,因而受到了研究人员的广泛关注。生产和施用缓控释肥料已经成为目前化肥工业发展的主要趋势之一,也是发展现代农业、实施可持续发展战略的必然要求。缓控释肥料能提高养分利用率是其养分释放特性包括养分释放率和释放期以及养分释放与作物对养分吸收的同步性所决定的,因此,对其释放特性的研究和评价方法的建立是评价缓控释肥料质量和性能的关键环节。
     本研究采用水浸提法、饱和盐溶液蒸汽压法、土壤培养法和肥料填埋法,探讨了不同种类缓控释肥料养分释放机理,并按照缓控释肥料行业标准(HG/T 3931-2007)、硫包衣尿素行业标准(HG/T 3997-2008)和欧洲标准化委员会(CEN)推荐的控释肥料和硫包衣尿素评价标准,对15种缓控释肥料的养分释放特性进行了研究和评价。采用扫描电镜和红外光谱分析,对缓控释肥料的微观结构进行了研究。同时,采用盆栽和大田试验,评价了缓控释肥料养分释放特性与作物需肥规律的吻合性。主要研究结果如下:
     1.温度是影响缓控释肥料养分释放的主要因素。对于热塑性树脂包膜尿素、热塑性树脂包膜复合肥、热固性树脂包膜复合肥、硫包衣尿素、异丁叉二脲来说,温度越高,养分释放速率就越快,释放期就相对越短。聚合物包膜控释肥在水中的释放曲线多为“S”型,SCU为“破裂式释放”,IBDU的释放曲线呈倒“L”型。在不同培养温度条件下氮素释放率与时间的关系可用一级动力学方程Nt=No(1-e-kt)、Elovich方程Nt=a+blnt和抛物线方程Nt=a+bt0.5表征,在25℃和40℃时,以一级动力学方程拟合效果最好。定量描述氮素养分释放的动力学方程中以一级动力学方程更具有实效性。聚合物包膜复合肥的养分释放规律为氮素释放速率最快,其次是钾,磷素释放速率较慢。
     2.包膜控释肥料的养分释放是由包膜内外水蒸汽压差引起的,其释放速率常数k随着水蒸汽压差的增大而增大。蒸汽压差越大,养分释放率越大,反之越小。在同一水蒸汽压下,包膜肥料的养分释放率随着培养时间的延长而增大;相同的培养时间,养分累积释放率表现为H2O>KH2PO4饱和溶液>KCl饱和溶液。包膜控释肥料膜内外水蒸汽压差是控制养分释放速率快慢的根本因素。
     3.土壤含水量对缓控释肥料养分释放速率有较大的影响。当土壤含水量在田间持水量之内,随着土壤含水量的增加,养分释放加快。包膜尿素在不同土壤含水量下拟合曲线的相关系数在0.9740~0.9972之间,标准误在0.0015~0.0022之间,达极显著水平(ρ=0.0001)。对于包膜复合肥来说,供试样品CRF1和CRF2在各培养时期内氮素释放率均随着土壤含水量的增大而增大。对于硫包衣尿素来说, SCU在土壤培养中的释放率要高于其在静水浸提中的释放率。而异丁叉二脲在水中的释放率始终快于土壤培养中的释放率。
     4.扫面电镜试验表明,包膜材料不同,包膜后在肥料颗粒表面成膜的结构不同。热塑性树脂膜表面有微小的孔隙,这些微孔是养分释放的通道;热固性膜表面都比较致密,都存在不同的固体颗粒突起,很难看出微孔的存在。硫包衣尿素膜表面非常光滑,包膜材料之间的排列和堆积比较致密。从断面照片可以看出,供试样品PCU1、CRF1、CRF2、Nutricote、Osmocote和SCU1的膜厚度分别为59.5μm、58.6μm、41.4μm、107μm、46.3μm和55.1μm,同时六种肥料的膜厚度均匀,包膜质量较好。
     5.红外光谱分析试验表明,不同膜质材料的红外光图谱有明显差异。两种热塑性树脂包膜复合肥料(CRF1和Nutricote)的膜材料在波长3447 cm-1、2919 cm-1、2850 cm-1、670 cm-1附近都有红外吸收,说明两种膜材料有一定的相似性,同时比较两者的红外谱图也可见波谱的相似处;两种热固性树脂包膜复合肥料(CRF2和Osmocote)的谱图有很大的相似性,不同的是Osmocote含有脂肪族一元酸的官能团;而SCU1的红外光谱图不仅显示SCU1膜中除无机硫占大多数以外,还含有类似氧化乙烯聚合物或聚乙烯蜡等添加物。
     6.采用25℃常温浸提法测定与100℃快速浸提法测定,后者的养分释放率加快。可用100℃快速浸提法建立预测缓控释肥料在常温下(25℃)的释放期的回归方程(一元二次方程,相关系数大于0.98),预测值与实测值相差1~3d。对于25℃常温浸提法测定释放期分别为66d和84d的包膜控释复合肥CRF2和CRF3,用100℃电导率法预测的养分释放期分别为65d和81d,相对误差小于3.5%,可见电导率法也可以准确快速地预测包膜控释复合肥料的养分释放率和释放期。用初期养分释放率、平均释放率和养分释放期等参数,可用于缓控释肥料的综合评价。
     7.缓控释肥料在水、土两种介质中的养分释放特性有一定的关系,4种缓控释肥料在水浸法和土壤培养法中的养分释放特性均可用二项式方程进行拟合,说明两种方法存在一定的相关性。因此,在对缓控释肥料进行农业评价时,应在实验室水浸法的基础上,进行土壤培养试验,进而测定作物的养分吸收量,并结合作物生长与产量的结果加以具体分析。本研究结果表明树脂包膜控释肥料可以在相同温度下用水中测定的释放率预测在土壤中的养分释放率。
     8.控释肥料的养分释放可以通过制作工艺的调整与改进使其与作物对养分的吸收相同步,达到使作物增产和增效的作用,CRF1、CRF2两处理的油菜养分吸收量和生物量显著高于其他处理,以CRF2处理为最高,并且CRF1、CRF2的养分释放特性更接近油菜的需肥规律。通过对肥料种类与作物匹配性的评价与预测,并将两者结合起来,可以制造出适合各种作物生长发育的专用控释肥料。
The problem of population-resource-environment becomes more and more prominented. It should been pay more attention to the using of fertilizer in order to enhance the output of soil. The problems such as how to enhance the efficiency of fertilizer,how to reduce the waste of resources,how to lessen the environment pollution ,how to ensure soils and so on are the targets for fertilizer research.The efficiency of fertilizer have been improved evidently, loss and volatilization of nutrition elements hav been reduced, waste of resources have been lightened,product quality and crop output have been enhanced markedly by applied slow and controlled-release fertilizers,so many experts think highly of them. The production and use of slow and controlled-release fertilizers are one of the main trends for the development of chemical fertilizers at present, and are necessary need for the development of modern agriculture and sustainable development stratagem.
     “Water extraction method”“vapor pressure method in saturated salt”“soil incubation method”and“fertilizer embedding method”were used to discuss mechanism of slow and controlled-release fertilizers. Nutrient release characteristics of fifteen different kind of slow and controlled-release fertilizers were evaluated according to the chemical industry standard of slow/controlled-release fertilizer (HG/T 3931-2007), the chemical industry standard of sulfur coated urea (HG/T 3997-2008)and the standard recommended by the Committee of European Normalization (CEN) using water extraction method and soil incubation method. The membrane microstructures of slow and controlled-release fertilizers were studied by scanning electron microscopy and infrared spectra. Meanwhile, the relationship between fertilizer release rates and nutrient requirements of plant were tested in a pot experiment and a field experiment. The main results were summarized as follows:
     1. Temperature was the main factor which affected the nutrient release of slow and controlled-release fertilizers. These slow and controlled-release fertilizers could include ploymer coated urea, risen coated compound fertilizers, polymer coated compound fertilizers, sulfur coated urea and Isobutylidene diurea, and the higher the temperature was , the quickly the release rate of them was. In water, the nutrient release curves in water were“S”pattern for CRF1 and CRF2, burst release for SCU, and reverse“L”pattern for IBDU. The dynamics of nitrogen release rate could be quantitatively described by three equations: the first-order kinetics equation (Nt=No(1-e-kt)), Elovich equation (Nt=a+blnt) and parabola equation (Nt=a+bt0.5). However, the imitation of the first-order kinetics equation was the best at 25℃and 40℃. So, the imitation of the first-order kinetics equation was the most practical for the release of nitrogen release. Besides, the nitrogen release of coated compound fertilizers was the fast, next was potassium, and phosphorus release was the slowest.
     2. The differences of inside and outside water vapor pressures arose to the nutrient release of coated controlled-release fertilizers. The constant k increased with the water vapor differential pressure increased. The bigger the water vapor differential pressure, the higher the nutrient release rate. Under the same water vapor pressure, the nutrient release rate would grow bigger when the time was extended, and at the same time, the order of nutrient cumulative release rate was H2O>KH2PO4 saturted solution>KCl saturted solution. So the base factor of controlling the nutrient release rate was the differences of inside and outside water vapor pressures.
     3. Soil water content would influence the nutrient release rate of slow and controlled-release fertilizers. When the soil water content was under the field moisture capacity, the nutrient release would be speedy with the increase of soil water content. For coater urea, the correlation coefficient of fittingcurve was between 0.9740 and 0.9972, and the standard error would be between 0.0015 and 0.0022, so the fitting curve would reach best conspicuous level. For coated compound fertilizers, the nitrogen release of CRF1 and CRF2 would increase with the increase of soil water content at different time. For SCU1, the release rate in soil was higher than that in water, but opposite phenomenon occurred for IBDU.
     4. Scanning electron microscope test indicated that when the material of coat was different, the structure of membrane was different. The surface of thermoplast had minim pore which was the channel of the nutrient release. The surface of polymer was relatively collapse, and there was different solid particle, so minim pore could not see clearly. The surface of SCU was very smoothing, so arrange and deposit of material were relatively compactness. It could be seen that from fracture the film thickness of PCU1 CRF1 CRF2 Nutricote Osmocote and SCU1 were 59.5μm 58.6μm 41.4μm 107μm 46.3μm and 55.1μm. Besides, the film thickness of six fertilizers was uniformity, and the quality of coat was preferably.
     5. Infrared spectra test indicated, the infrared spectra of different coated material had distinct variance. For CRF1 and Nutricote, they had infrared absorption at 3447 cm-1 2919 cm-1 2850 cm-1 and 670 cm-1, so the material of the two fertilizers had some similarity. For CRF2 and Osmocote, the spectra of them also had prodigious similarity, but Osmocote had functional group of aliphatic hydrocarbons. The infrared spectra of SCU1 showed that there were ont only lots of inorganic sulfur but also addition such as ethylene epoxide and polyethylene wax.
     6. Nutrition release was accelerated when temperature of the solution in the water extraction method was raised from 25℃to 100℃. The regression equation for prediction and forecast of the 100℃fast extraction method fit a quadric equation in one variable with a correlative coefficient being < 0.98, and could be used to quickly and precisely predict release duration of slow/controlled fertilizers. The difference between the measured value and predicted one was only one to three days. Besides, electric conductivity measurement could also be used to quickly and precisely predict nutrient release rate and duration. By using the electric conductivity measurement at 100℃, the release duration of CRF2 and CRF3 was predicted to be 65days and 81days, less than 3.5% in difference from their measured duration of 66 days and 84. Parameters, like initial nutrient release rate, mean release rate, and release duration, could be used for integrative evaluation of slow- and controlled- release fertilizers.
     7. The nutrient release characteristics of the four fertilizers in“water extraction”and“soil incubation”all fit binomial equations, suggesting there was some correlation between the two methods. Therefore, when the agriculture evaluation of slow and controlled-release fertilizers was carried out,“soil incubation”test should be take on the base of“water extraction”test, and also the nutrient absorptivity of plant should be measured, and then the plant growth and output should be analysis. This study indicated that the release rate in soil could be predicted by the releasee rate in water at the same temperature.
     8. Slow and controlled-release fertilizers are fertilizers containing a plant nutrient in a form which either delays its availability for plant uptake and use after application, or which is available to the plant significantly longer than a reference“rapidly available nutrient fertilizer”. The nutrient uptakes and biomass of plants treated with CRF1 and CRF2 were significantly higher than other treatments, among which CRF2 the greatest. Nutrient release curves of CRF1 and CRF2 accorded with nutrient requirements of canola more closely. Meanwhile, special purposes controlled-release fertilizers which suit the growth and development of plants could produce by evalution and predict of fertilizer kind and plant matching.
引文
1.鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000.56-109,163-179,263-271
    2.常建华,董绮功.波谱原理及解析[M].北京:科学出版社. 2001,4-19
    3.陈剑慧,曹一平,许涵,等.有机高聚物包膜控释肥氮素释放特性的测定与农业评价[J].植物营养与肥料学报,2002,8(1):44-47
    4.陈剑慧.有机高聚物包膜控释肥氮释放特性的测定与农业评价[J].植物营养与肥料学报,2002,8(1):44-47
    5.陈强,吕伟娇,张文清,等.温度对壳聚糖包膜尿素氮素释放特性的影响[J].植物营养与肥料学报,2006,12(5):727-731
    6.陈同斌,曾希柏,胡清秀.中国化肥利用的区域分区[J].地理学报,2002,57(5):531-538
    7.戴建军,樊小林,喻建刚,等.热固性树脂包膜控释肥料肥效期的快速预测方法[J].植物营养与肥料学报,2006,12(3):431-436
    8.丁振亭等.新型尿素产品的开发[J] .现代化工,1994,6:7-11
    9.董燕,王正银.缓/控释复合肥料不同形态氮素释放特性研究[J].中国农业科学,2006,39(5):960-967
    10.杜昌文,周建民,Avi Shaviv.聚合物包膜肥料中钾素释放特征及其模拟[J].农业工程学报,2006,22(2):18-20
    11.杜昌文,周建民.控释肥料的研制及其进展[J].土壤,2002,(3):127-133
    12.杜昌文,周健民,王火焰,等.载体缓控释尿素研制初探[J].土壤,2003,35(5):397-400
    13.杜昌文,周健民,王火焰.高分子载体控释尿素的研制[J].土壤学报,2004,41(6):970-972
    14.杜建军,廖宗文,宋波,等.包膜控释肥料养分释放特性评价方法研究进展[J].植物营养与肥料学报,2002,8(1):16-21
    15.杜建军.包膜控释肥养分释放特性评价方法的研究进展[J].植物营养与肥料学报,2002,8(1):16-21
    16.段平,缓效多营养包硫尿素氮溶出率的试验研究[J.磷肥与复肥,2000,15(2):21-22
    17.樊小林,廖宗文.控释肥料与平衡施肥和提高肥料利用率[J].植物营养与肥料学报,1998,4(3):219-223
    18.樊小林,王浩,喻建刚.粒径膜厚与控释肥料的氮素养分释放特征[J].植物营养与肥料学报,2005,11(3):327-333
    19.范康年.谱学导论[M] .北京:高登教育出版社. 2001, 245-251.
    20.傅高明.北京地区褐潮土硫肥肥效研究初报[J].土壤肥料,1991,(6):46-47
    21.高祥照,马常宝,杜森.我国农业发展现状与化肥需求趋势.见:中国土壤学会主编,中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会《面向农业与环境的土壤科学(综述篇)》(第一版)[M].北京:科学出版社,2004,73-79
    22.谷洁,高华.提高肥料利用率技术创新展望[J].农业工程学报,2000,16(2):17-20
    23.韩晓日.新型缓控释肥料研究现状与发展[J] .植物营养与肥料学报,2006,37(1):3-8
    24.何绪生,李素霞,李旭辉等.控效肥料的研究进展[J].植物营养与肥料学报,1998,4(4):97-106
    25.候翠红.控制释放肥料养分释放特性的研究[J].磷肥与复肥,1998,4(2):97-106
    26.黄培钊,廖宗文,葛仁山,毛小云.不同造粒工艺的肥芯-包膜微结构特征与缓/控释性能的研究[J].中国农业科学,2006,39(8):1605-1610
    27.姜宝雷,张民,杨越超.硫包膜尿素养分释放特征[J].化肥工业,2005.32(1):36-41
    28.蒋永忠,刘海琴,张永春等.高效尿素提高小麦产量及氮素利用率的研究[J].江苏农业科学,1999,6:54-56
    29.解宏图,武志杰.包膜肥料的开发现状与应用前景[A] .陈新平,张福锁.21世纪的土壤科学[C] .北京:中国农业出版社.1999,183-186
    30.李方敏,樊小林,汪强.离子交换树脂膜吸附控释肥钾素养分的动力学特征[J].中国农业科学,2005,38(11):2283-2289
    31.李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题[M].江西科学技术出版社.1998,1
    32.李生秀.植物营养与肥料学科的现状与展望[J] .植物营养与肥料学报,1999,5(3):193-205
    33.李述信,孟广征,于建国,等译.美国公职分析家协会(AOAC)分析方法手册-上册[M].北京:中国光学学会光谱专业委员会1986,50-52
    34.李燕,吴然然,于佰华.红外光谱在中药定性定量分析中的应用[J] .光谱学与光谱分析. 2005,26(10):1846-1849
    35.李玉颖.硫在作物营养平衡中的作用[J].黑龙江农业科学,1992,(6):37-39
    36.林葆,李家康.当前我国化肥的若干问题和对策[J].磷肥与复肥,1997,2:1-5
    37.刘刚,万连步,张民,等.缓控释肥料.中华人民共和国化工行业标准.北京:化学工业出版社,2007
    38.刘可星,廖宗文.平衡施肥概念的发展及其技术开发[J].磷肥与复肥,1997,6:64-65
    39.鲁剑巍等.钾、硫肥配施对作物产量与品质的影响[J].1994,25(5):216-218
    40.陆建刚.国内外新型肥料的开发[J].化肥工业. 1994,21(3):8-16
    41.吕殿青,扬学成,张航等.陕西娄土中硝态氮运移特点及影响因素[J].植物营养与肥料学报.1996,2(4):289-295
    42.吕耀.农业生态系统中氮素造成的非点源污染[J].农业环境保护,1998,17(1):35-39
    43.毛小云,冯新,王德汉,等.固—液反应包膜尿素膜的微结构与红外光谱特征及氮素释放特性研究[J] .中国农业科学,2004,37(5):704-710
    44.山田文雄,越野正义,藤井国博等著,韩辰极,付玉振等译,肥料分析方法祥解(修订版)[M],北京:化学工业出版社,1983,483-486
    45.石元亮,孙毅,译.农业生产中的控释与稳定肥料[M].北京:中国科学技术出版社,2002,13-38
    46.孙克君,卢其明,毛小云,等.复合控释材料的控释性能、肥效及其成膜特性研究[J].土壤学报,2005,42(1):128-133
    47.孙彭力,王惠君.氮素化肥的环境污染[J].环境污染与防治,1995,17(1):38-41
    48.孙秀廷.国内外长效肥研究概况[J].见:土壤养分、植物营养与合理施肥.北京:农业出版社,1986,256-278
    49.孙秀廷.新型化肥及其施用[M].北京:农业出版社,1989,56-57
    50.唐拴虎,徐培智,张发宝,等.一次性全层施用控释肥对水稻根系形态发育及抗倒伏能力的影响[J] .植物营养与肥料学报,2006,12(1):63-69
    51.汪建飞,刑素芝.农田土壤施用化肥的负效应及其防治对策[J].农业环境保护,1998,17(1):40-43
    52.王新民,介晓磊,侯彦林.中国控释肥料的研究现状与发展前景[J].土壤通报. 2003,34(6):572-575
    53.谢瑞芝,董书亭,胡昌浩.植物硫素营养研究进展[J].中国农学通报,2002,18(2):65-68
    54.熊又升,陈明亮,等.包膜控释肥料的研究进展[J] .湖北农业科学,2000,5:40-42
    55.熊又升,陈明亮,等.包膜控释肥料养分释放速率测定方法的研究[J].华中农业大学学报,2000,19(50:442-445
    56.熊又升,张行峰,熊桂云,等.包膜缓释肥料养分释放速率评价方法的探讨[J].磷肥与复肥,1999,14(10):21-22
    57.徐和昌.包膜缓释肥料及其制法.CN1074206A
    58.徐人萃,试论我国氮肥工业发展战略[J].化工设计,1998,(1):5-9
    59.许秀成,李菂萍,王好斌.包裹型缓释/控制释放肥料专题报告.第二报世界缓释/控制释放肥料生产、消费现状[J].磷肥与复肥,2000b,15(4):5-7
    60.许秀成,李菂萍,王好斌.包裹型缓释/控制释放肥料专题报告.第三报包膜(包裹)型控制释放肥料各国研究进展,1.美国、加拿大;2.日本[J].磷肥与复肥,2000c,15(6):7-12
    61.许秀成,李菂萍,王好斌.包裹型缓释/控制释放肥料专题报告.第四报包膜(包裹)型控制释放肥料各国研究进展,3.欧洲;4.中国[J].磷肥与复肥,2001a,16(2):7-12
    62.许秀成,李菂萍,王好斌.包裹型缓释/控制释放肥料专题报告.第一报概念区分及评价标准[J].磷肥与复肥,2000a,15(3):1-6
    63.许秀成.缓释控释-肥料工业的发展方向[J].农药快讯,2002,2:25-26
    64.许秀成.世界控制释放废料发展现状[J].农资科技. 2001,(3):24-25
    65.颜冬云,张民.控释复合肥对番茄生长效应的影响研究[J].植物营养与肥料学报, 2005,11(1):110-115
    66.杨越超,耿毓清,张民,等.膜特性对包膜控释肥养分控释性能的影响[J].农业工程学报,2007,23(11):23-30
    67.杨越超,张民,陈剑秋,等.聚合物硫包尿素的养分释放特征[J].化肥工业,2006,33(1):26-30
    68.俞巧钢,朱本岳,叶雪珠.控释肥在柑桔上的应用研究[J].浙江农业学报,2001,13(40):210-213
    69.喻建刚,樊小林,李宁,刘芳.Richards方程在描述包膜控释肥料氮素释放特征中的运用[J].中国农业科学,2006,39(9):1853-1858
    70.喻建刚,樊小林,李宁.Richards方程在描述包膜控释肥料氮素释放特征中的运用[J].中国农业科学,2006,39(9):1853-1858
    71.曾宪坤.中国化肥工业的性状与展望[J].土壤学报,1995,32(2):117
    72.翟军海,高亚军,周建斌.控释和缓释肥的研究现状与进展[J].化肥工业,2001,28(5):27-30
    73.张宝林.新型缓释性复合肥料-包裹型复合肥[J].化肥工业.1995,22(6):329-336
    74.张春伦,朱兴明,胡思农.缓释尿素的肥效及氮素利用率研究[J].土壤肥料,1998,6:17-20
    75.张海军,武志杰,陈利军,梁文举.聚合物包膜尿素溶出动力学特征及其与包膜层通透性的关系[J].中国农业科学,2003,36(10):1177-1183
    76.张民,史衍玺,等.控释和缓释肥的研究现状与进展[J].化肥工业,2001,28(5):27-30
    77.张民,杨越超,宋付朋等.包膜控释肥料研究与产业化开发[J].化肥工业,2005.32(2):7-12
    78.张桥,樊小林.我国控释肥料生产应用现状与发展对策[J].广东农业科学,2005,(1):52-53
    79.张世贤,施肥与环境学术讨论会论文集——中国土地资源保护与平衡施肥对策[M].中国农业科技出版社.1994, 1
    80.张玉凤,曹一平,陈凯,张福锁.高聚物包膜尿素的氮素释放特征及其评价方法[J].中国农业大学学报,2003,8(50):83-87
    81.张玉凤,曹一平,陈凯.膜材料及其构成对调节控释肥养分释放特性的影响[J].植物营养与肥料学报,2003b,9(2):170-173
    82.张玉凤,曹一平,等.高聚物包膜尿素的氮素释放特征及其评价方法[J].中国农业大学学报,2003a,8(5):83-87
    83.张毓钟.农牧情报研究[J].1987,(9):3-14
    84.赵秉强,张福锁,廖宗文,等.我国新型肥料发展的战略研究[J].植物营养与肥料学报,2004,10(4):80-84
    85.赵国钧.一种新型缓释长效性氮肥的制备[J] .化肥设计,2000,38:48-49
    86.赵世民,唐辉,等.包膜型缓释/控释肥料的研究现状和发展前景[J] .化工科技,2003,11(5):50-54
    87.赵秀芬,房增国,赵钢.温度对几种有机高聚物包膜控释肥磷素释放特性的影响[J].仲恺农业技术学院学报,2007,20(1):29-32
    88.郑润梅,田秀明,周文嘉.山西省主要土壤硫状况和施硫效应的研究[J].山东农业大学学报,1994,14(2):123-125
    89.郑圣先,肖剑,易国英.控释肥料养分释放动力学及其机理研究第1报温度对包膜型控释肥料养分释放的影响[J].磷肥与复肥,2002,17(4):14-17
    90.郑圣先,肖剑,易国英.控释肥料养分释放动力学及其机理研究第2报水蒸气压对包膜型控释肥料养分释放的影响[J].磷肥与复肥,2002,17(4):22-25
    91.郑圣先,肖剑,易国英.控释肥料养分释放动力学及其机理研究第3报土壤水分对包膜型控释肥料养分释放的影响[J].磷肥与复肥,2002,17(6):9-12
    92.周卫,林葆.土壤与植物中硫行为研究进展.土壤肥料,1997,(5):8-11
    93.朱本岳,俞巧钢,郑永平等.控释肥在苗木生产中的应用[J].浙江大学学报(农业与生命科学版),2000,26(3):274-276
    94.朱兆良,文启孝.中国土壤氮素——农田生态系统中的化肥氮的去向和氮素管理[M].江苏科技出版社.1992, 213
    95.朱兆良.我国氮肥的使用现状、问题和对策[A].中国农业持续发展中问题[C].南昌:江西出版社
    96. Association of American Plant Food Control Officials (AAPFCO).Official Publication No.48. Published by Association of American Plant Food Control Officials, Inc.; West Lafayette, Indiana, USA,1995
    97. Attoe OJ, Rasson FL, Dahnke WC, et al. Fertilizer release from packets and its effect on tree growth [J]. Soil Science Society of America Journal, 1970, 34: 137-142
    98. Bouwman P., B. Lagen, E. J. Veltgrost. Direct emission of nitrous oxide from agricultural soil [J]. Nitr. Cycling Agroecosyst. ,1996, 46:53-70
    99. Carlsson, et al. Historical atmospheric deposition a Swedish mining area traced by S isotope ratios in soils [J]. Water, Air, and Soil Pollution, 1999, 110:103- 118
    100.Christiansen, C. B., Factors affecting N release of urea from reactive layer coated urea [J]. Fert. Res., 1988, 16:273-284
    101.Clayton H., I. P. McTaggart, et al. Nitrous oxide emissions from fertilized grassland: a two-year study of the effects of N fertilizer and environmental conditions [J]. Biol. Fertil. Soils, 1997, 25:252-260
    102.Crutzen P. J. Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide. In: Delwiche C. C. (ed.), Denitrification, Nitrification and Atmospheric Nitrous Oxide [M]. Wiley and Sons, New York, 1981, 17-44
    103.Ewen H., T. Jahns. Bacterial degradation of methyleneureas used as slow-release fertilizers [J]. Recent Research Developments in Microbiology, 2000, 4(2):537-546
    104.Fan L T, Singh S K. Controlled release– A quantitative treatment [M]. Springer– Verlag, Berlin, 1990
    105.Friedman S. P. Agrochemical controlled-release and transport in the soil profile: I. Model formulation and sensitivity analysis for bare soil under field condition [J]. European Journal of Soil Science, 1997, 48:523-533
    106.Friedman S. P., Y. Mualem. Diffusion of fertilizer from controlled-release sources uniformly distributed in soil [J]. Fertilizer Research,1994,39(1):19-30
    107.Fujisawa E, Hanyu T. A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods.Ⅶ. Simulation of nutrient release from coated fertilizers as influence by soil moisture [J]. Japanese Journal of Soil Science and Plant Nutrient, 2000, 71:607-614
    108.Fujisawa E, Kobayashi A, Hanyu T. A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods.Ⅳ. Relation between release of nitrogen from resin-coated urea and water vapor pressure in saturated salt solutions [J]. Japanese Journal of Soil Science and Plant Nutrient, 1998, 69:555-560. (in Japanese)
    109.Fujisawa E, Kobayashi A, Hanyu T. A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods.Ⅴ. Effect of soil moisture level on release rates from resin-coated mixed fertilizer [J]. Japanese Journal of Soil Science and Plant Nutrient, 1998, 69:582-589. (in Japanese)
    110.Fujisawa E., Kobayashi A., Hanyuu. T. A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods. IV. Relation between release of nitrogen from resin-coated urea and water vapor pressure in saturated saltsolution [J]. Japanese Journal of Soil Science and Plant Nutrient, 1998a, 69:555-560. (in Japanese)
    111.Fujisawa E., Kobayashi A., Hanyuu. T. A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods. V. Effect of soil moisture level on release rates resin coated mixed fertilizer [J]. Japanese Journal of Soil Science and Plant Nutrient, 1998b, 69:582-589. (in Japanese)
    112.Fujisawa E., Kobayashi A., Hanyuu. T. A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods. VII. Simulation of nutrient release from coated fertilizers as influence by soil moisture [J]. Japanese Journal of Soil Science and Plant Nutrient, 2000, 71:607-614 (in Japanese)
    113.Gambash S, Kochab M, Avnimelech Y. Studies on slow release fertilizers:Ⅱ.a method for evaluation of nutrient release rate from slow-releasing fertilizer [J]. Soil Science, 1990, 150(1):446-450
    114.Gandeza AT, Shaoji S, Yamada I. Divisions-8-fertilizer management and technology simulation of crop response to polyolefin-coated urea:Ⅰ. Field dissolution. Soil Science Society of America Journal, 1991, 55: 1462-1467
    115.Goertz H M. Technology development in coated fertilizers [A]. Hagin A. Workshop on Controlled/Slow Resease Fertilizers [C]. Haifa Israel: Technion. 1993,158-164
    116.Granli T., O. C. Bockman. Nitrous oxide from agriculture [J]. Norwegian J. Agricult. Sci. Suppl., 1994,2:66-71
    117.Hanyuu. T., Kobayashi A., Fujisawa E. A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods.Ⅵ. Release of constituent compounds from resin-coated compound fertilizers [J]. Japanese Journal of Soil Science and Plant Nutrient, 1999, 70:117-122. (in Japanese)
    118.Hassan Z. A., S. D. Yong, An evaluation of urea-rubber matrices as slow-release fertilizers [J]. Fertilizer Research, 1990, 22:63-70
    119.Hauck R. D. Slow release and bio-inhibitor-amended nitrogen fertilizers. In: Engelstad OP ed. Fertilizer Technology and Use [M]. 3rd Edition. Nadison, Soil Science Society of America. 1985, 507-533
    120.Hauck R. D. Synthesis of 15N-labelled isobutylidene diurea, oxamide, and ureaforms for use in agronomic studies [J]. Communications in Soil Science and Plant Analysis, 1994, 25(3&4):191-197
    121.Hauck R. D. Synthesis slow-release fertilizer and fertilizer amendments [M]. In: Organic Chemical in the Soil Environment. Goring C. A. I. and J. W. Hamaker, Eds. 1972, 2:33-690
    122.Holcomb E J, A technique for determining potassium release fertilizers [P], Japan Patent: JP 61 08039[8608039], 1985-10-23
    123.Husby C.E., A.X. Niemiera, et al. Influence of diumal temperature on nutrient release patterns of three polymer-coated fertilizers [J]. Hortscience, 2003, 38(3):387-389
    124.J.R.V. Wazer, Phosphorus and its compounds [J].Interscience, New York, 1996
    125.Jarrell W. M. and L. Boersma. Model for the release of urea by granules of sulfur-coated urea applied to soil [J]. Soil Sci. Soc. Am. J., 1979, 43:1044-1050
    126.Jarrell, W. M. And Boersma L., Release of urea by granules of sulfur coated urea [J]. Soil Sci. Soc. Am. J. ,1980,44:418
    127.Kang B T, and.Osiname O A. Sulfur response of maize in western Nigeria [J]. Agron.J.1976, 68:333-336
    128.Kobayashi A, Fujisawa E, Hanyu T. A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods.Ⅰ. Effect of water vapor pressure on nutrient release [J]. Japanese Journal of Soil Science and Plant Nutrient, 1997a, 68:8-13. (in Japanese)
    129.Kobayashi A, Fujisawa E, Hanyu T. A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods.Ⅱ. Release of nutrients affected by the permeability of water vapor through coated material [J]. Japanese Journal of Soil Science and Plant Nutrient, 1997b, 68:14-22. (in Japanese)
    130.Kobayashi A, Fujisawa E, Hanyu T. A mechanism of nutrient release from resin-coated fertilizers and its estimation by kinetic methods.Ⅲ. An improved simulation model for nutrient release from coated urea Gaussian correction [J]. Japanese Journal of Soil Science and Plant Nutrient, 1997c, 68:487-492. (in Japanese)
    131.Kochab M, Gambash S, Avnimelech Y. Studies on slow release fertilizers:Ⅰ.effects of temperature, soil moisture, and water vapor pressure [J].Soil Science, 1990, 149(6):339-343
    132.Kochba M. S. and Y. Avnimelech. Studies on slow release fertilizers I. Effects of temperature, soil moisture, and water vapor pressure [J]. Soil Sci., 1990, 149(6):339-343
    133.Kumazawa K. Nitrogen fertilization and nitrate pollution in groundwater in Japan: Present status and measures for sustainable agriculture [J]. Nutrient Cycling in Agroecosystems, 2002, 63(2):129-137
    134.Loneragan J. F. Plant nutrition in the 20th and perspective for the 21st century [J]. Plant and Soil, 1997, 196:163-174
    135.Lunt O R, Oertli J J. Controlled release of fertilizer minerals by encapsulating membrances.Ⅱ.Efficiency of recovery, influence of soil moisture, mode of application, and other considerations related to use [J]. Soil Science Society Proceedings, 1962, 26:584-587
    136.Lunt O. R. Modified sulphur coated granular urea for controlled nutrient release. Trans Ni nth Int Congr Soil Sci., 1968, 3:337-383
    137.Mahler R L, Ensiqn R D. Evaluation of N, P. Sand B fertilization of Kentucky Blue grass seed in north-ernIdaho [J]. Commun. SoilSci. PlantAnal.,1989, 20(9&10):989-1009
    138.Mahler R.J., Maples R L. Effect of sulfur additions on soil and the nutrition of wheat. Commun.SoilSci.PlantAnal.,1987,18(6):653-673
    139.Mahler.R.J., R.L.Maples. Response of wheat to sulfur fertilization.Commun.Soil Sci. Plant Anal.,1986, 17(9):975-988
    140.McClellan G. H. and R. M. Scheib. Texture of sulfur coatings on urea [J]. Adv. Chem Ser., 1975, 140:18-32
    141.Mikkelsen R L, and Wan H F.The effect of selenium on sulfur uptake by barley and rice. Plant and Soil,1990,121:151-153
    142.Nobili M. D., S. Santi and C. Mondini. Fate of nitrogen (15N) from oxamide and urea applied to turf grass: a lysimeter study [J]. Fertilizer Research, 1992, 33(1):71-79
    143.Novotny V., H. Olem. Water Quality: Prevention, Identification, and Management of Diffuse Pollution. New York: Van Nostrand Reinhold.1993
    144.Oertli J J, Lunt O R. Controlled release of fertilizer minerals by encapsulating membrances.Ⅰ.Factors influencing the rate of release [J]. Soil Science Society Proceedings, 1962, 26:579-583
    145.Oertli J.J. Controlled-release fertilizers [J]. Fertilizer Research, 1980, 9(1):103-123
    146.Paramasivam S, Alva A K. Leaching of nitrogen forms from controlled-release nitrogen fertilizers [J]. Comm. Soil Sci. Plan Anal., 1997b, 28:1663-1674
    147.Paramasivam S, Alva A K. Nitrogen recovery from controlled-release nitrogen fertilizers during four months soil incubation [J]. Soil Sci., 1997a, 162:447-453
    148.Patel A J, Sharma G C.Nitrogen release characteristics of controlled-release nitrogen fertilizers [J]. Comm. Soil Sci. Plan Anal., 1997b, 28:1663-1674
    149.Perrin.T.S., Boettinger J.L., Drost D.T.,et al. Decreasing Nitrogen Leaching from Sandy Soil with Ammonium-Loaded Clinoptilolite [J]. Environ. Qual. ,1998,27:656-663
    150.Rashid M, Bajwa M Z, Hussain R. Rice response to sulphur in Pakistan .Sulphur in Agricuture,1992,16:3-5
    151.Salman O A. Polymer coating on ureu pills to reduce dissolution rate [J]. J. Agric. Food Anal., 1988, 13:793-802
    152.Sanvant NK. A technique for predicting urea release from coated urea in wetland soil. Communications in Soil Science and Plant Analysis, 1982, 13: 793-802
    153.SAS Institute. SAS/STAT User's guide: Statistics. Version 8, 1st ed [A]. SAS Inst., Cary, NC, USA, 1999
    154.Shaviv A, Ranban S, Zaidel E. Modeling controlled nutrient release from a population of polymer coated fertilizers: statistically based model for diffusion release [J]. Environment Science Technology, 2003, 37(10):2257-2261
    155.Shaviv A. Plant response and environment aspects as affected by rate and pattern of nitrogen release from controlled release N fertilizers [J].van Clempt.ed.Progress in Nitrogen Cycling Studies.Kluwer Academ.,the Netherlands,1996.285-291
    156.Shaviv, A., Mikkelsen R. L., Slow release fertilizers for a safer environment maintaining high agronomic use efficiency [J]. Fertilizer Research.,1993,35:1
    157.Shaviv, A., S. Raban, E. Zaidel. Statistically based model for diffusion release from a population of polymer coated controlled release fertilizers [J]. Envir. Sci. & Tech., 2003, 37:2257-2261
    158.Shoji S, Gandeza A T, Kimum K. Simulation of response to polyolefin-coated urea:Ⅱ. Nitrogen uptake by corn. [J]. Soil Sci. Soc. Am. J., 1991, 55:1468-1473
    159.Shoji S, Kanno H. Use of polyolefin-coated fertilizers for increasing fertilizer efficiency and reducing nitrate leaching and nitrous oxide emissions [J]. Fert. Res., 1994, 39:147-152
    160.Shouichiy O S, Hidsand M.R.Chaudhry. Sulfur nutrition of rice Soil Sci.Plant Nutr.,1979, 25(1):121-134
    161.Tlustos P. and A. M. Blackmer. Release of nitrogen from ureaform fractions as in fluenced by soil pH [J]. Soil Science Society of America Journal, 1992, 56(6): 1807-1810
    162.Trenkel, M. E., Controlled release and Stabilized Fertilizers in Agriculture [M]. IFA, Paris.UK Stratospheric Ozone Review Group, 1987. Stratospheric Ozone. HMSO, London. 1997
    163.Wang F L, Alva A K. Leaching of nitrogen from slow-release Urea sources in sandy soils [J]. Soil Sci. Soc. Am. J., 1996, 60:1454-1458
    164.Worrall R J, Lamont G P, Oconnell M A. The growth response of container grown woody ornamentals to controlled-release fertilizers [J].Scientia Horticulture, 1987, 32:275-286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700