镁合金高能表面强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的表面性能如疲劳、耐蚀、耐磨和热稳定性等决定了其服役环境和使用寿命,加强镁合金耐蚀耐磨性能的研究,对于推动镁合金更加广泛的应用并充分发挥其性能优势具有重要意义。本文通过高能撞击诱导表面自身纳米化和激光表面合金化两种工艺来达到改善镁合金材料表面性能的目的。
     系统研究了高能撞击的工艺,优化出了适用于镁合金表面自身纳米化的工艺参数:N2和02压力为1.5 MPa,氮氧流量比为7:5,煤油流量为4 L/h,撞击颗粒粒径为Φ0.5mm、撞击距离在290-320mm范围内、处理时间在180-240s间,均能成功实现镁合金表面纳米化。
     纳米化层的组织分析表明,撞击形变层变由严重塑性变形的表层、变形孪晶为主的亚表层及靠近基体轻微变形的过渡层,变形层呈明显的梯度变化特征。通过透射电镜(TEM/HRTEM)对微观精细组织结构的观察和分析,推演出了镁合金表面纳米化的内在细化机理,并建立了粗大晶粒在剧烈塑性形变条件下纳米晶粒形成模型。即:形变初始阶段以孪生为主,同时伴随着基面(0001)和棱柱面{1010}或{1120}的位错运动;形变中期以孪生和位错运动的协调/竞争为主,通过前期晶粒一定程度的细化和温度的升高,导致交滑移的产生,位错在后期的竞争中占据主导,进一步分割残余孪晶和微观条带状亚结构;随着畸变加剧、变形储能增加以及位错的增值、湮灭与重排,高能亚结构在足够的驱动力下发生了动态再结晶,最终形成了分布均匀、取向随机、晶界清晰的纳米晶粒。
     纳米化层的行为研究表明,纳米化层为基体硬度的两倍左右,硬度纵向分布呈典型的梯度变化特征;纳米化层摩擦系数和磨损失重均显著减小,磨损机制为以粘着磨损和磨粒磨损为主,同时伴随着氧化磨损;在不同PH值的3.5%NaCl酸、碱、盐腐蚀介质中,纳米化层呈现耐蚀性明显恶化的特征;纳米化层热稳定的临界温度为330℃;纳米化层的微波加热扩散Al-Si合金时,随着微波加热温度的升高,合金化层厚度逐渐增加,纳米晶层的合金化层厚度为微米晶层的2-3倍。
     研究了采用脉冲YAG激光进行镁合金激光表面合金化的工艺,得到了最佳工艺参数,即:脉宽为0.8 ms,频率为45Hz,光斑直径约为1.0 mm,电流220 A,扫描速度350mm/min。
     Al-Nb/Al-TiB2和Al-(W, Ti)C系激光合金化的结果表明,合金化层中Al与Nb及基体成分Gd、Y等元素产生了原位反应,生成了高温硬质相Al2Gd、Al2Y、Al3Nb等金属间化合物,且在合金化过程中强化相TiB2和(W, Ti)C并未发生分解。表面宏观形貌显示,随着元素Al在合金化混合粉末中含量的减少,表面质量呈现出逐渐变差的趋势,出现了一定程度的结瘤现象。
     激光合金化层的SEM观察发现,晶粒显著细化、分布均匀,整个横截面分为合金化层、过渡层和基体三部分;TEM观察显示,原位合成的新相如Al2Gd、Al2Y、A13Nb及强化相TiB2和(W, Ti)C等在合金化层中的分布弥散均匀,绝大多数形貌呈近球形,仅有小部分呈四边形块状,与基体结合部位较为圆润,且形成的大部分金属间化合物的尺寸在100 nm左右;通过进一步观察发现,粒度稍大的形貌并不是单个的化合物析出相,而是多个粒子的团聚,与基体之间具有良好的相容性。
     激光合金化层的性能研究表明,合金化层的显微硬度提高达4-6倍;不同成分合金化层的干摩擦磨损性能得到明显提高,摩擦系数由基体的0.52左右降至0.25-0.35,磨损机理为粘着磨损、磨粒磨损和氧化磨损;成分配比为1:1左右时,激光表面合金化显著改善了镁合金材料在3.5%NaCl水溶液中的耐蚀性能。
In most cases, material failures occur on surfaces such as fretting fatigue, wear, corrosion and thermostability, etc. These failures are very sensitive to the structure and properties of the material surface. Optimization of the surface microstructure and properties is an effective approach to enhance the global behavior and service lifetime of materials. It has realistic significance for promoting wider application and giving full play to its unique performance advantages of magnesium alloys to strengthen the research on improving the wear and corrosion resistance. In this paper, the techniques of self-surface nanocrystallization induced by high-energy bombarding and laser alloying were used to achieve the purposes of improvement on surface properties of magnesium alloy.
     The technology of high-energy bombarding was investigated systematically. The process parameters were optimized to applicable to self-surface nanocrystallization of a magnesium alloy as follows:the pressure of N2 and O2 is 1.5 MPa, nitrogen and oxygen flow ratio of 7:5, kerosene flow rate of 4 L/h, bombing particle diameter ofφ0.5 mm, impact distance range of 290~320 mm, handling time in the range of 180~240 s. The surface nanocrystallization on magnesium alloy can be obtained successfully using the above technological parameters.
     Cross-sectional microstructure analysis of nano-layer revealed that the deformation layer presents gradient variation obviously, including the topmost surface layer of severe plastic deformation, deformation twins-based subsurface layer and a transition layer with slight deformation near the substrate. The inherent refinement mechanism of surface nanocrystallization on magnesium alloy was deduced through observation and analysis using transmission electron microscopy (TEM/HRTEM). Meanwhile, the grain refinement model of coarse grains converted into nano-grains was established under the condition of severe plastic deformation, i.e. the deformation model is dominated by mechanical twinning in the initial stage of magnesium alloy, and accompanied with the dislocation movement of basical plane (0001) and prismatic plane {10(?)0} or {11(?)0}. The coordination/competition between the deformation twinning and dislocation motion dominated the deformationprocess in the mid-stage of the severe plastic deformation. Subsequently, cross slip can be activated owing to a certain degree of grain refinement and temperature rising derived from high-energy bombarding, Dislocation movement dominates the competition in the later stage, and resulting in further fragmentation of the residual twins and micro-banded substructure. Then, the dynamic recrystallization occurred with sufficient driving force that coming from high-energy substructure with the increasing distortion, deformation storage increase, dislocation multiplication, annihilation and rearrangement. Eventually, the nano-grains formed with clear grain boundary, homogeneous distribution and random orientation.
     The behaviors of nano-layer were studied systematically. The microhardness of the most top surface layer is about twice comparison with the substrate, and it is gradually decreasing with the increase of the depth from the surface. The friction coefficient and wear weight loss of nano-layer were reduced significantly, and adhesive wear and abrasive wear is the main wear mechanism, meanwhile, coupled with oxidation wear. It is found that the deterioration of corrosion resistance occurred for nano-layer in acid, alkali and salt 3.5% NaCl solution with different PH values. Thermal stability experiments show that the critical temperature of stabilized existence for nanocrystalline of magnesium alloy is 330℃. The vacuum microwave oven was used for experiments of diffusion alloying Al-Si alloy in magnesium alloy before and after the surface nanocrystallization treatment. It's worth noting that the diffusion alloying of magnesium alloy utilizing microwave heating has not been reported. The results showed that the thickness of alloyed layer increasing with the processing temperature increases, and the thickness of nano-treated alloying layer is more 2 to 3 times than that without nano-treatment.
     Laser process of magnesium alloy by pulsed YAG laser surface alloying was investigated systematically. The optimized process parameters of laser surface alloying for Mg alloys are obtained as follows:pulse duration of 0.8 ms, frequency of 45 Hz, spot diameter of about 1.0 mm, current of 220 A and the scanning speed is 350 mm/min.
     The results of laser surface alloying for Al-Nb/Al-TiB2 and Al-(W, Ti)C system showed that in situ reaction produced in the alloyed layer between the element Al and Nb, and the matrix elements Gd, Y, and generated a high-temperature hard-phase such as Al2Gd, Al2Y and Al3Nb intermetallic compounds. Furthermore, strengthening phase TiB2 and (W,Ti)C did not decompose by XRD diffraction analysis of the alloyed layer. Surface macro-morphology shows that there has been some degree of nodulation phenomenon on the quality of laser surface alloying with the content of alloying element Al tapering off in the mixed powders.
     It is found that the entire cross-section is divided into three parts:alloyed layer, transition layer and matrix by SEM observation. The TEM observation shows that the grain refinement is significant and uniform distribution, furthermore, the new phases such as Al2Gd, Al2Y, Al3Nb, etc. of in situ synthesis and strengthening phase TiB2 and (W, Ti)C are uniformly dispersed in the alloyed layer, and most present nearly spherical shape, only a small part of that shows the quadrangle blocks like, and the size of most of intermetallic compounds is about 100 nm. It is worth noting that the morphology of larger size is not a single precipitates, but agglomeration of a number of fine particles by further observation.
     The performance of laser alloyed layer shows that the hardness of alloyed layer is to improve up to 4-6 times compared with the substrate. The friction and wear performance of the alloyed layer with different alloying elements and the mass ratio can be improved under the condition of dry friction and wear significantly, and the friction coefficient changed from about 0.52 to 0.25~0.35. The main mechanism of wear for the alloyed layer is the adhesive wear, abrasive wear and oxidation wear. The corrosion resistance of magnesium alloy in 3.5% NaCl solution can be improved by laser surface alloying.
引文
[1]丁文江等.镁合金科学与技术[M].北京:科学出版社,2007.
    [2]Eli Aghion, Amir Arnon. Mechanical properties and environmental behavior of a magnesium alloy with a nano-/sub-micron structure [J]. Advanced Engineering Materials,2007,9(9):747-750.
    [3]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J].航空工程与维修,2002,4:41-42.
    [4]陈礼清,赵志江.从镁合金在汽车及通讯电子领域的应用看其发展趋势[J].世界有色金属,2004,7:12-20.
    [5]Mordike B L, Ebert T. Magnesium properties--applications--potential [J]. Materials Science and Engineering A,2001 (302):37-45.
    [6]刘正,张奎,曾小勤.镁基轻质合金理论基础及应用[M].北京:机械工业出版社,2002.
    [7]Bouaricha S, Dodelet J P, Guay D, et al. Hydriding behavior of Mg-Al and leached Mg-Al compounds prepared by high-energy ball-milling [J]. Journal of Alloys and Compounds,2000,297:282-293.
    [8]Tony Spassov, Uwe Koster. Hydrogenation of amorphous and nanocrystalline Mg-based alloys [J]. Journal of Alloys and Compounds,1999,287:243-250.
    [9]Sang Soo Han, Hee Yong Lee, Nam Hoon Goo, et al. Improvement of electrode performances of Mg2Ni by mechanical alloying [J]. Journal of Alloys and Compounds,2002,330-332:841-845.
    [10]Gutfleisch O, Schlorke-de Boer N, Ismail N, et al. Hydrogenation properties of nanocrystalline Mg- and Mg2Ni-based compounds modified with platinum group metals (PGMs)[J]. Journal of Alloys and Compounds,2003,356-357:598-602.
    [11]Spassov T, Lyubenova L, Koster U, et al. Mg-Ni-RE nanocrystalline alloys for hydrogen storage [J]. Materials Science and Engineering A,2004, 375-377:794-799.
    [12]Tony Spassov, Vesselina Rangelova, Nikolay Neykov. Nanocrystallization and hydrogen storage in rapidly solidified Mg-Ni-RE alloys [J]. Journal of Alloys and Compounds,2002,334:219-223.
    [13]Gebert A, Khorkounov B, Wolff U, et al. Stability of rapidly quenched and hydrogenated Mg-Ni-Y and Mg-Cu-Y alloys in extreme alkaline medium [J]. Journal of Alloys and Compounds,2006,419:319-327.
    [14]Staigera M P, Pietaka A M. Magnesium and its alloys as orthopedic biomaterials: A review [J]. Biomaterials,2006,27(9):1728-1734.
    [15]尹冬松,张二林,曾松岩.生物医用镁合金腐蚀的研究现状[J].铸造设备研究,2008,4:38-41.
    [16]Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials,2006,27(7):1013-1018.
    [17]Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response [J]. Biomaterials,2005,26(17):3557-3563.
    [18]Li L C, Gao J C, Wang Y. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid [J]. Surface and Coatings Technology,2004,185(1):92-98.
    [19]Witte F, Ulrich H, Rudert M, et al. Biodegradable magnesium scaffolds:Part 1: Appropriate inflammatory response,81(3):748-756.
    [20]赵志远,朱慕霞,鲁立奇.航空材料学[M].上海:上海科学技术出版社,1985.
    [21]魏世丞,徐滨士,付东兴,等.军用装备镁合金表面防腐蚀技术研究[J].装甲兵工程学院学报,2006,20(6):79-83.
    [22]Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach [J]. Journal of Materials Science and Technology,1999,15(3):193-197.
    [23]Gray J E, Luan B. Protective coatings on magnesium and its alloys-a critical review [J]. Journal of Alloys and Compounds,2002,336:88-113.
    [24]张津,孙智富.AZ91D镁合金表面热喷铝涂层研究[J].中国机械工程,2002,13(23):2057-2059.
    [25]邓春明,刘敏,任建平,等.AZ31镁基高速火焰喷涂WC涂层的研究[J].轻金属,2008,2:48-52.
    [26]Bolellia G, Giovanardia R, Lusvarghi R, et al. Corrosion resistance of HVOF-sprayed coatings for hard chrome replacement [J]. Corrosion science,2006,48(11): 3375-3397.
    [27]Maria P, Zhao L D, Jochen Z, et al. Investigation of HVOF spraying on magnesium alloys [J]. Surface & Coatings Technology,2006,201:3269-3274.
    [28]Maria P, Zhao L D, Jochen Z, et al. Investigation of particle flattening behavior and bonding mechanisms of APS sprayed coatings on magnesium alloys[J]. Surface & Coatings Technology,2007,201:6290-6296.
    [29]Chiu L H, Chen C C, Yang C F, Improvement of corrosion properties in an aluminum-sprayed AZ31 magnesium alloy by a post-hot pressing and anodizing treatment [J]. Surface & Coatings Technology,2005,191:181-187.
    [30]Stewart D A. Novel engineering coatings with nanocrystalline and naocomposite by thermspray [J]. Therm Spray Technology,1998,7(3):422-423.
    [31]Cantor B. Nanocrystalline materials manufactured by advanced solidification processing methods [J]. Matetable and Nanocrystallines Materials,1999, 1:143-152.
    [32]Kear B H, Kailman Z, Sadangi R K, et al. Plasma sprayed nanostructured powders and coatings[J]. Therm Spray Technology,2000,9(4):483-487.
    [33]叶宏,张津,孙智富,等.镁合金表面等离子喷涂纳米陶瓷涂层研究[J].武汉理工大学学报,2004,26(4):9-11.
    [34]Normand B. Tribological properties of plasma sprayed aluminum titanium coatings: role and control of the microstructure [J]. Surface and Coatings Technology,2000, 123:278-287.
    [35]Gerard Barbezat. Advanced thermal spray technology and coating for lightweight engine blocks for the automotive industry [J]. Surface and Coatings Technology, 2005,200(5-6):1990-1993.
    [36]Mateus C, Costil S, Bolot R, et al. Ceramic/fluoropolymer composite coatings by thermal spraying-a modification of surface properties [J]. Surface and Coatings Technology,2005,191(1):108-118.
    [37]Stevens T. Synergistic Fluoropolymer Coatings [J]. Materials Science,1997,19 (9):22-23.
    [38]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006.
    [39]Liu Z M, Gao W. The effect of substrate on the electroless nickel plating of Mg and Mg alloys [J]. Surface & Coatings Technology,2006,200:3553-3560.
    [40]Rajan Ambat, Zhou W. Electroless nickel-plating on AZ91D magnesium alloy: effect of substrate microstructure and plating parameters [J]. Surface and Coatings Technology,2004,179:124-134.
    [41]Yang L H, Li J Q, Zheng Y Z, et al. Electroless Ni-P plating with molybdate pretreatment on Mg-8Li alloy[J]. Journal of Alloys and Compounds,2009,467: 562-566.
    [42]Zhang H, Wang S L, Yao G C, et al. Electroless Ni-P plating on Mg-10Li-1Zn alloy [J]. Journal of Alloys and Compounds,2009,474:306-310.
    [43]Hanna Farid, Abdel Hamid Z, Abdel Aal A. Controlling factors affecting the stability and rate of electroless copper plating [J]. Materials Letters,2003, 58:104-109.
    [44]Zhang W X, Jiang Z H, Li G Y, et al. Electroless Ni-P/Ni-B duplex coatings for improving the hardness and the corrosion resistance of AZ91D magnesium alloy[J]. Applied Surface Science,2008,254:4949-4955.
    [45]Hagans P L, Hass C M. Chromate conversion coating [J]. Surface Engineering, 1994,5:10-13.
    [46]钱建刚,李荻,郭宝兰.镁合金的化学转化膜[J].材料保护,2002,35(3):5-6.
    [47]蔡启舟,王立世,魏伯康.镁合金防蚀处理的研究现状及动向[J].特种铸造及有色合金,2003,3:33-35.
    [48]Makoto D, Mitsuo S, Susumu T. Coating pretreatment and coating method for magnesium alloy product [P]. JP6116739,1994.
    [49]Hagans P L. Method of forming a chromate conversion coating for magnesium containing materials [P]. US4569699,1986.
    [50]Kouisni L, Azzi M, Zertoubi M, et al. Phosphate coatings on magnesium alloy AM60 part 1:study of the formation and the growth of zinc phosphate films [J]. Surface & Coatings Technology,2004,185:58-67.
    [51]Kouisni L, Azzi M, Zertoubi M, et al. Phosphate coatings on magnesium alloy AM60 part 2:Electrochemical behavior in borate buffer solution [J]. Surface & Coatings Technology,2005,192:239-246.
    [52]Niu L Y, Jiang Z H, Li G Y, et al. A study and application of zinc phosphate coating on AZ91D magnesium alloy [J]. Surface & Coatings Technology,2006, 200:3021-3026.
    [53]David Hawke, Albright D L. A Phosphate-permanganate Conversion Coating for Magnesium [J]. Metal Fishing,1995,98(10):34-38.
    [54]Gonzalez-nunez M A, Nunez-lopez C A, Skeldon P, et al. A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites [J]. Corrosion,1995,37(11):1763-1772.
    [55]Lin C S, Lin H C, Lin K M, et al. Formation and properties of stannate conversion coatings on AZ61 magnesium alloys [J]. Corrosion Science,2006,48:93-109.
    [56]Umehara H, Takaya M, Terauchi S. Chrome-free surface treatments for magnesium alloy [J]. Surface & Coatings Technology,2003,169-170:666-669.
    [57]Skar J I, Walter M, Albrigh D. Non-chromate conversion coatings for magnesium die castings [C]. SAE International Congress and Exposition,1997:1-7.
    [58]Manuele Dabala, Katya Brunelli, Enrico Napolitani, et al. Cerium-based chemical conversion coating on AZ63 magnesium alloy [J]. Surface & Coatings Technology, 2003,172:227-232.
    [59]Rudd A L, Breslin C B, Florian Mansfeld. The corrosion protection afforded by rare earth conversion coatings applied to magnesium [J]. Corrosion Science,2000, 42:275-288.
    [60]Krysmann W, Kurze P, Dittrich K H. Process characteristics and parameters of anodic oxidation by sparx deposition (ANOF) [J]. Crystal Research and Technology,1984,19:975-979.
    [61]Krysmann W, Sehneider H G. Application fields of ANOF layers and composites [J]. Crystal Research and Technology,1987,21(12):1603-1609.
    [62]Clarence E. Habermamn. Anticorrosive coated retifier metals and their alloys [P]. US 4668347,1987.
    [63]Kurze P. Method of producing articles of aluminum, magnesium or titanium with an oxide ceramic layer filled with fluorine polymers [P]. US 5487825,1996.
    [64]Duane E. Bartak. Hard anodic for magnesium alloys [P]. US 5470664,1995.
    [65]Barton F. Tomos. Anodization of magnesium and magnesium based alloys [P]. US 5792335,1998.
    [66]邓姝皓,易丹青,毛俊华,等.镁及镁合金环保型阳极氧化工艺研究[J].电镀与涂饰,2005,24(1):15-19.
    [67]周玲伶,易丹青,邓姝皓,等.镁合金环保型阳极氧化工艺研究[J].中国腐蚀与防护学报,2006,26(3):176-179.
    [68]王利敏,李子全.镁合金阳极氧化及其耐蚀性研究[J].材料开发与应用,2005,20(6):38-40.
    [69]Barton T F, Johnson C B. The effect of electrolyte on the anodized finish of a magnesium alloy [J]. Plating & Surface Finishing,1995,82(5):138-141.
    [70]罗胜联,戴磊,周海晖,等.镁合金环保型阳极氧化工艺研究[J].湖南大学学报(自然科学版),2005,32(3):15-18.
    [71]Zhang Y J, Yan C W, Wang F H, et al. Study on the environmentally friendly anodizing of AZ91D magnesium alloy [J]. Surface and Coatings Technology,2002, 161:36-43.
    [72]钱建刚,李荻,郭宝兰.镁合金环保型阳极氧化成膜工艺[J].材料保护,2003,36(11):38-40.
    [73]Kobayashi W, Takahata S. Aqueous anodizing solution and process for coloring article of magnesium or magnesium-base alloy [P]. US 4551211,1985.
    [74]Oscar Khaselev, Danny Weiss, Joseph Yahalom. Structure and composition of anodic films formed on binary Mg2Al alloys in KOH-aluminate solutions under continuous sparking [J]. Corrosion Science,2001,43:1295-1307.
    [75]Oscar Khasalev, Danny Weiss, Joseph Yahalom. Anodizing of pure magnesium in KOH-aluminate solutions under sparking [J]. Journal of the Electrochemical Society,1999,146(5):1757-1761.
    [76]Hsiao H Y, Tsai W T. Characterization of anodic films on AZ91D magnesium alloy [J]. Surface & Coatings Technology,2005,190:299-308.
    [77]马幼平,温维新,刘鹏飞,等.温度变化对ZM5镁合金表面扩渗层组织的影响[J].兵器材料科学与工程,2004,27(2):33-35.
    [78]谭成文,郭冠伟,王潇屹,等.AZ31镁合金表面液相渗铝的工艺与性能[J].中国有色金属学报,2007,17(7):1053-1057.
    [79]张艳,梁伟,王红霞,等.AZ91D镁合金表面真空扩散渗铝层结构及性能[J].稀有金属材料与工程,2008,37(11):2023-2026.
    [80]Liu F C, Liang W, Li X R, et al. Improvement of corrosion resistance of pure magnesium via vacuum pack treatment [J]. Journal of Alloys and Compounds, 2008,461:399-403.
    [81]徐哲,席慧智,姜鹏,等.AZ91D镁合金热扩渗涂层研究[J].稀有金属材料与工程,2007,36(S2):552-555.
    [82]赵爱彬,尹志娟,席慧智,等.AZ91镁合金热扩渗涂层的研究[J].应用科技,2006,33(8):58-61.
    [83]Shigemastu I, Nakamura M, Siatou N, et al. Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating [J]. Journal of Materials Science and Letters,2000,19:473-475.
    [84]He M F, Liu L, Wu Y T, et al. Corrosion properties of surface-modified AZ91D magnesium alloy [J]. Corrosion Science,2008,50:3267-3273.
    [85]郭洪飞,安茂忠.镁及镁合金电镀与化学镀[J].电镀与环保,2004,24(2):125-127.
    [86]曹晓明,温鸣,杜安.现代金属表面合金化技术[M].北京:化学工业出版社,2007.
    [87]吴国松,曾小勤,郭兴伍,等.气相沉积膜层在镁合金表面改性中的应用[J].材料工程,2006,1:61-65.
    [88]傅永庆,朱晓东,何家文.离子束辅助沉积技术制备耐磨耐蚀膜层的研究进展[J].材料导报,1995,6:14-18.
    [89]Christoglou C, Voudouris N, Angelopoulos G N, et al. Deposition of aluminium on magnesium by a CVD process [J]. Surface and Coatings Technology,2004, 184:149-155.
    [90]Rie K T, Wohle J. Plasma-CVD of TiCN and ZrCN films on light metals [J]. Surface and Coatings Technology,1999,112:226-229.
    [91]Fracassi F, Agostino R D, Palumbo F, et al. Application of plasma deposited organosilicon thin films for t he corrosion protection of metals [J]. Surface and Coatings Technology,2003,174-175:107-111.
    [92]Yamada H, Hiraide T, Takezawa N, et al. Study on improvements of tribological properties of magnesium alloys-diamond-like carbon film coating with the interface layer of carbonaceous film containing silicon [J]. Journal of Japanese Society of Tribologists,2003,48:66-672.
    [93]Dabosi F J P, Morancho R, Pouteau D. Process for producing a protective film on magnesium containing substrates by chemical vapor deposition of two or more layers [P]. US 4980203,1990.
    [94]张津,杨栋华,王东亚,等.镁合金表面磁控溅射沉积铝膜的力学性能[J].北京科技大学学报,2008,30(12):1388-1392.
    [95]Zhang J, Yang Dong H, Ou X B. Micro-structures and properties of aluminum film and its effect on corrosion resistance of AZ31B substrate [J]. Transactions of Nonferrous Metals Society of China,2008,18:312-317.
    [96]霍宏伟,王福会,李瑛,等.A1扩散涂层对AZ91D镁合金耐腐蚀性能的影响[J].腐蚀科学与防护技术,2001,13(11):484-486.
    [97]吴国松,曾小勤,姚寿山.AZ31镁合金表面气相沉积不锈钢薄膜的实验研究[J].材料工程,2006,S1:43-46.
    [98]Wu G S, Zeng X Q, Ding W B, et al. Characterization of ceramic PVD thin films on AZ31 magnesium alloys [J]. Applied Surface Science,2006,252:7422-7429.
    [99]Hollstein F, Wiedemann R, Scholz J. Characteristics of PVD-coatings on AZ31hp magnesium alloys [J]. Surface and Coatings Technology,2003,162:261-268.
    [100]Hoche H, Blawert C, Broszeit E, et al. Galvanic corrosion properties of differently PVD-treated magnesium die cast alloy AZ91 [J]. Surface & Coatings Technology, 2005,193:223-229.
    [101]Wang J Y, Tsai H J, Uan J Y, et al. Investigation of the photo-catalytic coating on AZ91 alloy [J]. Journal of Alloys and Compounds,2009,467:257-260.
    [102]Giovanni Straffelini, Elisabetta Gariboldi. Sliding behavior of hard and self-lubricating PVD coatings against an Mg-alloy [J]. Wear,2007, 263:1341-1346.
    [103]Hikmet Altun, Sadri Sen. The effect of PVD coatings on the corrosion behavior of AZ91 magnesium alloy [J]. Materials and Design,2006,27:1174-1179.
    [104]Hikmet Altun, Sadri Sen. The effect of PVD coatings on the wear behavior of magnesium alloys [J]. Materials Characterization,2007,58:917-921.
    [105]Zheng M Y, Xu S W, Qiao X G, et al. Compressive deformation of Mg-Zn-Y-Zr alloy processed by equal channel angular pressing [J]. Materials Science and Engineering A,2008,483-484:564-567.
    [106]Figueiredoa R B, Langdona T G. Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP [J]. Materials Science and Engineering A,2009,501:105-114.
    [107]Chino Y, Kimura K, Mabuchi M. Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy [J]. Materials Science and Engineering A,2008,486: 481-488.
    [108]Ding S X, Lee W T, Chang C P, et al. Improvement of strength of magnesium alloy processed by equal channel angular extrusion [J]. Scripta Materialia,2008,59: 1006-1009.
    [109]Altenberger I, Seholtes B. Improvement of fatigue behaviour of mechanically surafce treatmented materials by annealing [J]. Seripta Materialia,1999,41(8): 873-581.
    [110]冯忠信,张建中,陈新增.ZMlMg合金的表面滚压强化[J].金属学报,1994,30(9):422-426.
    [111]邹世坤.激光冲击处理技术的最新发展[J].新技术新工艺,2005,4:44-46.
    [112]Srinivasan S, Garcia D B, Gean M C, et al. Fretting fatigue of laser shock peened Ti-6Al-4V [J]. Tribology International,2009,42:1324-1329.
    [113]Gomez-Rosas G, Rubio-Gonzalez C, Ocana J L, et al. High level compressive residual stresses produced in aluminum alloys by laser shock processing [J]. Applied Surface Science,2005,252:883-887.
    [114]鲁金忠,孙益飞,张雷鸿,等.激光斜冲击对S1100型曲轴疲劳强度的影响[J]. 农业机械学报,2007,38(11):167-169.
    [115]龙骁旋,陈东林,何卫锋,等.激光冲击强化对镍基高温合金疲劳寿命的影响[J].热加工工艺,2008,37(24):78-80.
    [116]李晓轩,孙锡军,王华明,等.奥氏体不锈钢1Cr18Ni9Ti激光冲击强化研究[J].宇航材料工艺,1999,4:16-19.
    [117]张永康,陈菊芳,许仁军.AM50镁合金激光冲击强化实验研究[J].中国激光,2008,35(7):1068-1072.
    [118]Gleiter H. In proceedings of second riscp international symposium on metallurgy and materials science, Hoesewell A, Leffers T and Lilholt H. (eds.) Risφ Nat. Laboratory Roskilde, Denmark,1981:15.
    [119]Birringer R, Gleiter H, Klein H P, et al. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder [J]. Physics Letters,1984,102 A(8):365-369.
    [120]Han S S, Lee H Y, Goo N H, et al. Improvement of electrode performances of Mg2Ni by mechanical alloying [J]. Journal of Alloys and Compounds,2002, 330-332:841-845.
    [121]Lu L, Raviprasad K, Lai M O. Nanostructured Mg-5%Al-x%Nd alloys [J]. Materials Science and Engineering A,2004,368:117-125.
    [122]Jiang W H, Pinkerton F E, AtzmonM. Deformation-induced nanocrystallization in an Al-based amorphous alloy at a subambient temperature [J]. Scripta Materialia, 2003,48:1195-1200.
    [123]Rivas M, Garcia J A, Riba J, et al. Surface crystallization and magnetic properties in Co66Fe4Mo2Si16B12 [J]. Journal of Magnetism and Magnetic Materials,2007,316: 538-540.
    [124]Liu L, Li Y, Wang F H. Influence of nanocrystallization on passive behavior of Ni-based superalloy in acidic solutions [J]. Electrochimica Acta,2007,52: 2392-2400.
    [125]Gebert A, Khorkounov B, Wolff U, et al. Stability of rapidly quenched and hydrogenated Mg-Ni-Y and Mg-Cu-Y alloys in extreme alkaline medium [J]. Journal of Alloys and Compounds,2006,419:319-327.
    [126]Bakonyi I. Thermal stability of nanocrystalline nickel electrodepsits:differential scanning calorimetry, transmission electron microscopy and magnetic studies [J]. Materials science and Engineering A,1994,179-180:531-535.
    [127]Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials presentation of the concept behind a new approach [J]. Journal of Materials science and Technology,1999,15(3):193-197.
    [128]Shankar M R, Rao B C, Lee S, et al. Severe plastic deformation (SPD) of titanium at near-ambient temperature [J]. Acta Materialia,2006,54:3691-3700.
    [129]刘刚,周蕾.工程金属材料的表面纳米化技术(一)[J].纳米科技,2006,3(1):56-60.
    [130]刘刚,周蕾.工程金属材料的表面纳米化技术(二)[J].纳米科技,2006,3(2):51-55.
    [131]Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Materials Science and Engineering A,2004, 375-377:38-45.
    [132]Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Materialia,2002,50:4603-4616.
    [133]Zhou L, Liu G, Ma X L, et al. Strain-induced refinement in a steel with spheroidal cementite subjected to surface mechanical attrition treatment [J]. Acta Materialia, 2008,56:78-87.
    [134]Zhang H W, Hei Z K, Liu G, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Materialia,2003,51:1871-1881.
    [135]Li W, Wang X D, Meng Q P, et al. Interdiffusion of alloying elements in nanocrystalline Fe-30 wt.% Ni alloy during surface mechanical attrition treatment and its effect on α→γ transformation [J]. Scripta Materialia,2008,59:344-347.
    [136]Wen C S, Li W, Rong Y H. Nanocrystallization and martensitic transformation in Fe-23.4Mn-6.5Si-5.1Cr (wt.%) alloy by surface mechanical attrition treatment [J]. Materials Science and Engineering A,2008,481-482:484-488.
    [137]Huang L, Lu J, Troyon M. Nanomechanical properties of nanostructured titanium prepared by SMAT [J]. Surface & Coatings Technology,2006,201:208-213.
    [138]Zhu K Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism of α-titanium using SMAT [J]. Acta Materialia,2004,52:4101-4110.
    [139]Wu X L, Tao N R, Wei Q M, et al. Microstructural evolution and formation of nanocrystalline intermetallic compound during surface mechanical attrition treatment of cobalt [J]. Acta Materialia,2007,55:5768-5779.
    [140]Wu X, Tao N, Hong Y, et al. γ→ε martensite transformation and twinning deformation in fcc cobalt during surface mechanical attrition treatment [J]. Scripta Materialia,2005,52:547-551.
    [141]Li W L, Tao N R, Lu K. Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment [J]. Scripta Materialia,2008,59:546-549.
    [142]Wang K, Tao N R, Liu G, et al. Plastic strain-induced grain refinement at the nanometer scale in copper [J]. Acta Materialia,2006,54:5281-5291.
    [143]Liu G, Wang S C, Lou X F, et al. LOW CARBON STEEL WITH NANOSTRUCTURED SURFACE LAYER INDUCED BY HIGH-ENERGY SHOT PEENING [J]. Scripta Materialia,2001,44:1791-1795.
    [144]Tao N R, Sui M L, Lu J, et al. SURFACE NANOCRYSTALLIZATION OF IRON INDUCED BY ULTRASONIC SHOT PEENING [J]. Nanostructured Materials, 1999,11(4):433-440.
    [145]Xing Y M, Lu J. An experimental study of residual stress induced by ultrasonic shot peening [J]. Journal of Materials Processing Technology,2004,152:56-61.
    [146]Guo F A, Trannoy N, Lu J. Microstructural analysis by scanning thermal microscopy of a nanocrystalline Fe surface induced by ultrasonic shot peening [J]. Superlattices and Microstructures,2004,35:445-453.
    [147]Liu G, Lu J, Lu K. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening [J]. Materials Science and Engineering A,2000,286: 91-95.
    [148]Bohdan N. Mordyuk, Georgiy I. Prokopenko. Ultrasonic impact peening for the surface properties' management [J]. Journal of Sound and Vibration,2007,308: 855-866.
    [149]熊天英,刘志文,李智超.超音速微粒轰击金属表面纳米化新技术[J].材料导报,2003,17(3):69-71.
    [150]赵新奇,徐政,熊天英,等.40Cr钢表面纳米层形成机理的研究[J].同济大学学报,2005,33(2):196-200.
    [151]熊天英,王吉孝,金花子,等.0Cr18Ni9Ti钢焊接接头表面纳米化及接头抗H2S应力腐蚀性能的研究[J].材料保护,2005,38(1):13-16.
    [152]巴德玛,马世宁,李长青,等.超音速微粒轰击38CrSi钢表面纳米化的研究[J].材料工程,2006,12:3-7.
    [153]Wei Y H, Liu B S, Hou L F, et al. Characterization and properties of nanocrystalline surface layer in Mg alloy induced by surface mechanical attrition treatment[J]. Journal of Alloys and Compounds,2008,452:336-342.
    [154]Sun H Q, Shi Y N, Zhang M X, et al. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy [J]. Acta Materialia,2007,55:975-982.
    [155]Wang X Y, Li D Y. Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel [J]. Electrochimica Acta,2002,47:3939-3947.
    [156]Asquith D T, Yerokhin A L, Yates J R, et al. The effect of combined shot-peening and PEO treatment on the corrosion performance of 2024 Al alloy [J]. Thin Solid Films,2007,516:417-421.
    [157]李瑛,王福会,刘刚.表面纳米化低碳钢电化学行为尺寸效应[J].中国腐蚀与防护学报,2001,21(14):215-219.
    [158]Raja K S, Namjoshi S A, Misra M. Improved corrosion resistance of Ni-22Cr-13Mo-4W Alloy by surface nanocrystallization [J]. Materials Letters, 2005,59:570-574.
    [159]Mordyuk B N, Prokopenko G I, Vasylyev M A, et al. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel [J]. Materials Science and Engineering A,2007,458:253-261.
    [160]Wang T S, Yu J K, Dong B F. Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel [J]. Surface & Coatings Technology,2006,200:4777-4781.
    [161]王爱香,刘刚,周蕾,等.表面机械研磨处理后316L不锈钢的表层结构和硬度的热稳定性[J].金属学报,2005,41(6):577-582.
    [162]佟伟平.纯Fe和38CrMoAl的表面纳米化及其氮化行为研究[D].沈阳:中国科学院金属研究所,2003.
    [163]Chen A Y, Zhang J B, Song H W, et al. Thermal-induced inverse γ/α' phase transformation in surface nanocrystallization layer of 304 stainless steel [J]. Surface & Coatings Technology,2007,201:7462-7466.
    [164]Xiang Z D, Datta P K. Shot peening effect on aluminide diffusion coating formation on alloy steels at low temperatures [J]. Scripta Materialia,2006,55: 1151-1154.
    [165]Tong W P, Liu C Z, Wang W, et al. Gaseous nitriding of iron with a nanostructured surface layer [J]. Scripta Materialia,2007,57:533-536.
    [166]Tong W P, Han Z, Wang L M, et al. Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment [J]. Surface & Coatings Technology,2008,202:4957-4963.
    [167]Tong W P, Tao N R, Wang Z B, et al. Nitriding Iron at Lower Temperatures [J]. Science,2003,299:686-688.
    [168]Lin Y M, Lu J, Wang L P, et al. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel [J]. Acta Materialia,2006,54:5599-5605.
    [169]高波,郝胜智,董闯,等.镁合金表面处理研究的进展[J].材料保护,2003,36(10):1-3.
    [170]Kyuhong Lee, Dukhyun Nam, Sunghak Lee, et al. Hardness and wear resistance of steel-based surface composites fabricated with Fe-based metamorphic alloy powders by high-energy electron beam irradiation [J]. Materials Science and Engineering A,2006,428:124-134.
    [171]Eunsub Yun, Sunghak Lee. Improvement of hardness and wear resistance in stainless-steel-based surface composites fabricated by high-energy electron beam irradiation [J]. Surface & Coatings Technology,2006,200:3478-3485.
    [172]高波,孙树臣,赵铁钧,等.纯镁及镁合金强流脉冲电子束处理微观组织分析[J].稀有金属,2007,31(3):293-298.
    [173]高波,郝胜智,姜利民,等.镁合金AZ91HP强流脉冲电子束表面处理及抗蚀性能研究[J].材料热处理学报,2004,25(4):67-71.
    [174]王秀敏,韩会民,高波,等.镁合金AZ91HP强流脉冲电子束表面改性EPMA分析[J].电子显微学报,2005,24(1):46-49.
    [175]刘自刚,况军,王丹丹,等.AZ31D表面电子束Al合金化组织性能研究[J].材料热处理技术,2009,38(8):82-84.
    [176]况军,李刚,相珺,等.AZ31镁合金表面强流脉冲电子束铝合金化研究[J].特种铸造及有色合金,2009,29(11):1064-1066.
    [177]叶宏,闫忠琳,薛志芬.镁合金表面电子束熔覆铝涂层[J].铸造技术,2008,29(8):1056-1058.
    [178]Hao S Z, Gao B, Wu A M, et al. Surface modification of steels and magnesium alloy by high current pulsed electron beam [J]. Nuclear Instruments and Methods in Physics Research B,2005,240:646-652.
    [179]Gao B, Hao S Z, Zou J X, et al. Effect of high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ91HP magnesium alloy [J]. Surface & Coatings Technology,2007, 201:6297-6303.
    [180]崔洪芝,王勇.镁合金表面等离子束熔凝处理的组织和耐蚀性研究[J].金属热处理,2007,32(6):72-74.
    [181]吴国松,代伟,孙丽丽,等.基于线性离子束技术的镁合金表面类金刚石膜的制备和性能研究[J].材料工程,2009,S1:172-175.
    [182]Steippich E V F, Wolf G K, Berg G, et al. Enhanced corrosion protection of magnesium oxide coatings on magnesium deposited by ion beam-assisted evaporation [J]. Surface and Coatings Technology,1998,103-104:29-35.
    [183]Bruckner J, Gunzel R, Moller W. Metal plasma immersion ion implantation and deposition (MPIIID):chromium on magnesium [J]. Surface and Coatings Technology,1998,103-104:227-230.
    [184]陈菊芳,张永康,许仁军.AM50镁合金表面激光熔凝层的组织与耐蚀性能[J].中国激光,2008,35(2):307-310.
    [185]陈菊芳,张永康,李仁兴,等.AM50A镁合金表面激光熔凝层的强化效果与机制[J].中国有色金属学报,2008,18(8):1426-1431.
    [186]许仁军,张永康,陈菊芳.AZ91镁合金激光表面熔凝处理的微观组织变化[J].激光技术,2008,32(5):487-489.
    [187]高亚丽,王存山,刘红宾,等.高功率激光熔凝AZ91HP镁合金组织和性能[J].中国激光,2007,34(7):1019-1024.
    [188]高亚丽,王存山,刘红宾,等.AZ91HP镁合金真空激光熔凝晶粒细化[J].材料热处理学报,2006,27(1):92-95.
    [189]高亚丽,王存山,刘红宾,等.激光功率对AZ91HP镁合金熔凝层组织和性能 影响[J].大连理工大学学报,2007,47(4):469-472.
    [190]Yao J, Sun G P, Jia S S. Characterization and wear resistance of laser surface melting AZ91D alloy [J]. Journal of Alloys and Compounds,2008,455:142-147.
    [191]Majumdar D J, Galun R, Mordike B L, et al. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy [J]. Materials Science and Engineering A,2003,361:119-129.
    [192]赵宇,崔振宇,陈莉,等.AZ91D镁合金激光熔凝层的缺陷[J].理化检验—物理分册,2009,45(4):202-204.
    [193]Ignat S, Sallamand P, Grevey D, et al. Magnesium alloys laser (Nd:YAG) cladding and alloying with side injection of aluminium powder [J]. Applied Surface Science, 2004,225:124-134.
    [194]崔泽琴,王文先,葛亚琼,等.AZ31B镁合金表面激光熔覆Ni60合金粉末组织及性能[J].材料工程,2009,S1:163-166.
    [195]Wang A H, Yue T M. YAG laser cladding of an Al-Si alloy onto an Mg/SiC composite for the improvement of corrosion resistance [J]. Composites Science and Technology,2001,61:1549-1554.
    [196]Mei Z, Guo L F, Yue T M. The effect of laser cladding on the corrosion resistance of magnesium ZK60/SiC composite [J]. Journal of Materials Processing Technology,2005,161:462-466.
    [197]Pokhmurska H, Wielage B, Lampke T, et al. Post-treatment of thermal spray coatings on magnesium [J]. Surface & Coatings Technology,2008, 202:4515-4524.
    [198]张仁,肖泽辉.镁合金表面激光熔覆Fe合金[J].材料热处理技术,2009,38(18):90-93.
    [199]高亚丽,王存山,熊党生,等.激光工艺参数对镁合金非晶涂层制备的影响[J].材料热处理学报,2009,30(4):146-150.
    [200]刘红宾,王存山,高亚丽,等.镁合金表面激光熔覆Cu-Zr-Al非晶复合涂层[J]. 中国激光,2006,33(5):709-713.
    [201]Yue T M, SuLaser Y P. cladding of SiC reinforced Zr65Al7.5Ni10Cu17.5 amorphous coating on magnesium substrate [J]. Applied Surface Science,2008,255: 1692-1698.
    [202]Yue T M, Li T. Laser cladding of Ni/Cu/Al functionally graded coating on magnesium substrate [J]. Surface & Coatings Technology,2008,202:3043-3049.
    [203]Yue T M, Hu Q W, Mei Z, et al. Laser cladding of stainless steel on magnesium ZK60/SiC composite [J]. Materials Letters,2001,47:165-170.
    [204]黄伟容,肖泽辉.AZ91D镁合金表面激光熔覆Ni基+WC合金涂层[J].中国激光,2009,36(12):3267-3271.
    [205]黄开金,林鑫,陈池,等.AZ91D镁合金表面激光熔覆Zr-Cu-Ni-Al/TiC复合粉末的组织与磨损[J].中国激光,2007,34(4):549-553.
    [206]Majumdar D J, Chandra B R, MordikeB L, et al. Laser surface engineering of a magnesium alloy with Al+Al2O3 [J]. Surface and Coatings Technology,2004,179: 297-305.
    [207]Samanta A N, Du B S, Paital S R, et al. Pulsed laser surface treatment of magnesium alloy:Correlation between thermal model and experimental observations [J]. Journal of Materials Processing Technology,2009,209: 5060-5067.
    [208]Hazra M, Mondal A K, Kumar S, et al. Laser surface cladding of MRI 153M magnesium alloy with (Al+Al2O3) [J]. Surface & Coatings Technology,2009,203: 2292-2299.
    [209]陈长军,张敏,常庆明,等.镁合金表面激光熔覆纳米三氧化二铝[J].中国激光,2008,35(11):1752-1755.
    [210]叶宏,王宾,龙刚,等.AZ31镁合金表面Al合金化层的制备与性能研究[J].表面技术,2010,39(1):20-22.
    [211]Gao Y L, Xiong D S, Wang C S, et al. Influences of laser powers on microstructure and properties of the coatings on the AZ91HP magnesium alloy [J]. Acta Metallurgica Sinica (English Letters),2009,22(3):167-173.
    [212]陈长军,常庆明,张敏,等.ZM5镁合金表面激光Al合金化行为的研究[J].应用激光,2007,27(4):261-268.
    [213]刘帅,殷锦捷,张娈,等.激光合金化对AZ91D镁合金力学性能的影响[J].热加工工艺,2009,38(2):35-37.
    [214]Majumdar D J, Manna I. Mechanical properties of a laser-surface-alloyed magnesium-based alloy (AZ91) with nickel [J]. Scripta Materialia,2010, 62:579-581.
    [215]李达,钱鸣,金昌,等.AZ91D镁合金Al-Si粉末激光合金化及腐蚀性能[J].中国激光,2008,35(9):1395-1400.
    [216]Majumdar D J, Chandra B R, Galun R, et al. Laser composite surfacing of a magnesium alloy with silicon carbide [J]. Composites Science and Technology, 2003,63(6):771-778.
    [217]Majumdar D J, Galun R, Mordike B L, et al. Studies on laser surface alloying of a Mg alloy with nickel [J]. Proceedings of the international Conference on Advances in Surface Treatment:Research and Applications,2004:186-190.
    [218]Majumdar D J, Maiwald T, Galun R, et al. Laser surface alloying of an Mg alloy with Al+Mn to improve corrosion resistance [J]. Lasers in Engineering,2002, 12(3):147-169.
    [219]马晓青,韩峰.高速碰撞动力学[M].北京:国防工业出版社,1998.
    [220]Klimanek P, Potzsch A. Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates [J]. Materials Science and Engineering A,2002,324:145-150.
    [221]Karnthaler H P, Waitz T, Rentenberger C, et al. TEM of nanostructured metals and alloys [J]. Materials Science and Engineering A,2004,387-389:777-782.
    [222]Cαceres C H, Lukαc P, Blake A. Strain hardening due to {1012} twinning in pure magnesium [J]. Philosophical Magazine,2008,88(7):991-1003.
    [223]Christian J W, Mahajan S. Deformation twinning [J]. Progress in materials science, 1995,39:1
    [224]Yoo M H. Slip, twinning and fracture in hexagonal close-packed metals [J]. Metallurgical Transaction,1981,12A:409
    [225]Al-Samman T. Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy [J]. Acta Materialia,2009,57:2229-2242.
    [226]李雪莉,李瑛,王福会.Fe-20Cr溅射纳米涂层的腐蚀电化学性能研究[J].中国腐蚀与防护学报,2003,23(2):84-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700