高速电弧喷涂FeMnCrAl/碳化物系涂层组织与性能及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外火力发电厂燃煤锅炉管道(水冷壁、过热器、再热器、省煤器管)存在严重冲蚀磨损、腐蚀现象以及由此造成的重大经济损失的现实问题。因此,针对燃煤锅炉管道的冲蚀磨损和腐蚀问题,立项研究并解决燃煤电厂锅炉管道表面的高温腐蚀和冲蚀磨损问题对于提高燃煤锅炉的发电能力,降低运行成本都有着非常重要的现实意义。本论文研究采用高速电弧喷涂粉芯丝材技术,选取低碳钢带作为表皮材料,选取适量配比的Mn粉、Cr粉、Al粉、Cr3C2粉、Ni包覆WC粉和Ni包覆Cr3C2粉等作为芯粉,成功制备了用于锅炉管道表面防护的低成本FeMnCrAl/碳化物系涂层。本文从影响冲蚀和热腐蚀的关键因素—材料出发,研制具有良好性价比的燃煤锅炉管道用新型电弧喷涂新材料,是一个节能防护课题,具有很大的实际应用价值和重要的学术意义。
     本论文首先采用高速电弧喷涂技术成功制备了FeMnCr/Cr3C2涂层、FeMnCrAl/Cr3C2涂层和FeMnCrAl/Cr3C2-Ni9Al涂层。涂层呈典型的层状显微组织结构,由金属结晶相、氧化物相、未熔颗粒和孔隙组成。与FeMnCr/Cr3C2涂层相比,FeMnCrAl/Cr3C2涂层和FeMnCrAl/Cr3C2-Ni9Al涂层具有明显较少的未熔颗粒、氧化物含量和孔隙,组织致密度更高,涂层与基体的界面结合状况更好。
     本论文研究了FeMnCr/Cr3C2涂层、FeMnCrAl/Cr3C2涂层和FeMnCrAl/Cr3C2-Ni9Al涂层的显微硬度、结合强度和内聚强度,并对拉伸断口形貌进行电镜分析。研究发现,FeMnCr/Cr3C2涂层和FeMnCrAl/Cr3C2涂层具有较高的显微硬度值,为20钢的2-3倍;FeMnCrAl/Cr3C2涂层和FeMnCrAl/Cr3C2-Ni9Al涂层结合强度较高,高于FeMnCr/Cr3C2涂层;FeMnCrAl/Cr3C2涂层的内聚强度高于其它对比涂层,达到174.5MPa;涂层的拉伸断口具有结晶相的准解理断裂、氧化物相的脆性断裂、“叠层”间分离脱开、未熔颗粒与“叠层”分离甚至被整体拔出等形貌特征。
     通过抗热震性能试验发现:与FeMnCr/Cr3C2和FeNiCr/Cr3C2涂层相比,FeMnCrAl/Cr3C2-Ni9Al涂层抗热震性能最好,32次循环后仍然无脱落现象。涂层热震失效过程包括裂纹在氧化物区域和孔隙处的萌生和扩展;涂层中的孔洞会阻碍裂纹扩展,但是,如果孔洞形状不规则,则热震会使裂纹在孔洞的大曲率尖端处激活继续扩展,形成二次裂纹并扩展。裂纹是氧向涂层内扩散的“快速通道”,氧还会沿着孔洞、凝片间隙向内扩散,导致高温氧化在整个涂层中发生。当氧渗入到涂层与基体的结合界面时,造成界面氧化现象,涂层与基体的结合状态恶化,最终导致涂层脱落失效。
     本文研究了FeMnCrAl/碳化物系涂层的高温氧化和热腐蚀性能,发现各涂层体系均具有良好的抗氧化性和耐热腐蚀性能,明显优于20钢,其中FeMnCrAl/Cr3C2涂层的抗腐蚀性能最好,约为20钢的1/10。
     冲蚀磨损性能试验表明,FeMnCr/Cr3C2涂层和FeMnCrAl/Cr3C2涂层的冲蚀率都明显低于20钢基材,尤以FeMnCrAl/Cr3C2涂层的抗冲蚀磨损性能为最佳。涂层的冲蚀磨损机理为:低冲击角下以犁耕和切削作用为主,伴随着二次冲击的塑性变形和脆性脱落;高冲击角下发生表面材料挤压、脆性裂纹生成和脱落以及过度塑性变形后的疲劳开裂和脱落。
     为改善陶瓷粉体在金属基涂层中浸润性和结合状态,本论文创新性地发明对WC和Cr3C2粉末进行化学镀Ni预处理的方法。该方法不需要贵金属敏化活化处理,预处理后的粉体可以保证后期镀Ni效果,镀层均匀。Ni颗粒的形核、长大和聚集的过程为:1)、化学镀溶液中的反应物在具有催化活性的表面缺陷上吸附,发生氧化-还原反应沉积出Ni颗粒。2)、Ni颗粒形核后长大成膜,其长大成膜过程为:Ni核依附“线条状”突起以“线型”方式长大、弯曲、分叉和聚集,而后缠绕成“胞状”结构,犹如生活中“缠毛线团”。“胞状”结构Ni颗粒不断长大聚集,最后成膜。与FeMnCrAl/WC涂层和FeMnCrAl/Cr3C2涂层相比,添加了Ni包覆陶瓷相的涂层结合强度和内聚强度平均值得到提高,其平均显微硬度值与原涂层相当。Ni包覆WC相改善了涂层抗冲蚀磨损性能,涂层的冲蚀机理基本相似。添加Ni包覆WC陶瓷相和Ni包覆Cr3C2陶瓷相的两种涂层的平均显微硬度值与未添加包覆陶瓷相的涂层相当。
     FeMnCrAl/碳化物系涂层已经应用于水冷壁和屏过等部分受热面管道高温防腐和防磨中,经过半年多时间运行检测发现,防护效果非常理想,预计该涂层可以使用2年以上。
According to actual problems that there were serious erosion, corrosion and resulting in major economic losses caused on the boiler tubes (water wall,superheater, reheater, economizer tube) of coal-fired thermal power plants at home and abroad, low-cost FeMnCrAl/carbide series coatings have been studied to resolve the surface temperature corrosion and erosion problems using high velocity arc spraying process in this paper. In this study, low-cost FeMnCrAl/carbide series coatings were successfully prepared using Mn, Cr, Al, Cr3C2, Ni-coated WC, Ni-coated Cr3C2, etc cored wires together with high velocity arc spraying for surface protection of the boiler tubes. New arc-spraying materials with good cost-effective development of coal-fired boiler tubes were studied. This study content is an energy-saving protection issues, having great practical value and academic significance.
     FeMnCr/Cr3C2 coating, FeMnCrAl/Cr3C2 coating and FeMnCrAl/Cr3C2-Ni9Al coating were deposited on 20 steel substrates by the high velocity arc spraying. The coatings characteristically consisted of successive layers contained metal crystalline phases, oxide phases, un-melted particles and pores. Compared with that of FeMnCr/Cr3C2 coating, FeMnCrAl/Cr3C2 coating and FeMnCrAl/Cr3C2-Ni9Al coating significantly had less un-melted particles, oxide content and porosity, possessed good interfacial bonding and microstructure between coatings and substrate, no coarse pores and cracks.
     Hardness, bond strength, cohesive strength and morphology of tensile fracture of FeMnCr/Cr3C2 coating, FeMnCrAl/Cr3C2 coating and FeMnCrAl/Cr3C2-Ni9Al coating have been studied. The results show that compared with that of 20 steel, FeMnCr/Cr3C2 coating and FeMnCrAl/Cr3C2 coating possess high average hardness,2-3 times than that of 20 steel. FeMnCrAl/Cr3C2 coating and FeMnCrAl/Cr3C2-Ni9Al coating exhibit higher bonding strength between coatings and substrate than that of FeMnCr/Cr3C2 coating. The average cohesive strength of FeMnCrAl/Cr3C2 coating is 174.5MPa, higher than that of FeMnCr/Cr3C2 coating.Characteristics of tensile fracture of coating are characteristics of quasi-cleavage fracture of metal crystalline phases and brittle fracture of oxide phases, characteristics of separation and disengagement of "laminations" and characteristics of un-melted particles integral putout.
     Thermal shock resistances of FeMnCr/Cr3C2 coating, FeMnCrAl/Cr3C2 coating and FeMnCrAl/Cr3C2-Ni9A1 coating have been analyzed. Compared with that of FeMnCr/Cr3C2 coating and FeMnCrAl/Cr3C2 coating, FeMnCrAl/Cr3C2-Ni9Al coating possesses the best thermal shock resistance, being no exfoliation phenomenon after the number of thermal shock cycles 32. Failure mechanism of thermal shock of arc-sprayed coatings includes cracks initiating and propagating along the oxide phases and pores. Cracks, pores and interfaces between "laminations" are "fast track" of oxygen diffusion within coatings, leading to high temperature oxidation occurred in the coating, and secondary cracks formed and propagated in the new sites of coatings. Pores in the coatings may hinder crack propagation. However, if the shape of pores was irregular, cracks would be activated and propagated along the large curvature of pore tip. On the other hand, oxygen penetrating to the combination interface of coatings and substrate caused oxidation during thermal shock test, leading to coating failure.
     High temperature oxidation and hot corrosion contrast tests of arc-sprayed coatings have been studied. The results show that FeMnCr/Cr3C2 coating and FeMnCrAl/Cr3C2 coating have better oxidation resistance and hot corrosion resistance than that of 20 steel. FeMnCrAl/Cr3C2 coating possess the best oxidation resistance and hot corrosion resistance.
     Erosion tests of FeMnCr/Cr3C2 coating, FeMnCrAl/Cr3C2 coating and 20 steel were performed in an erosion tester at different impact angles. Compared with that of 20 steel, FeMnCr/Cr3C2 coating and FeMnCrAl/Cr3C2 coating possess lower average erosive rate than that of 20 steel, and FeMnCrAl/Cr3C2 coating exhibiting the best erosion resistance under all impact angles. Erosion mechanisms of the coatings as follows:Failure mode at low impact angles is ploughing and cutting, accompanying with plastic deformation and brittle desquamation under secondary impacting. Failure mode at high impact angles is indenting, brittle cracks and desquamation, accompanying with fatigue cracking off and desquamation after excessive plastic deformation. Failure mode at intermediate impact angles is multi-transition status.
     In order to improve wettability and binding between carbide and metal matrix crystalline phases, Ni-coated WC and Ni-coated Cr3C2 powder were prepared by ultrasonic-assisted electroless plating process without conventional sensitization and activation treatments at room temperature. WC and Cr3C2 powders were first pretreated by immersing into an aqueous solution of hydrofluoric acid (HF) and ammonium fluoride (NH4F). The Ni layers on the powders had cell structure with dense, uniform distribution. The nucleation. growth and aggregation mechanisms of Ni layers as follows:1) the reactants in the plating solution were adsorbed on catalytic activity surfaces of powders and happened oxidation-reduction reaction.2) The growth and aggregation mechanisms of Ni particles after nucleation are "stripy" Ni-cells grew up, bend, bifurcated, and aggregated through "linear" approach, then wounding into a "cellular" structure, like "wrapping wool clusters" in the life. Finally "cellular" structure Ni particles grew up and merged into a layer. Compared with that of FeMnCrAl/WC coating and FeMnCrAl/Cr3C2 coating, Ni coated WC and Cr3C2 powders improve the bond strength and cohesive strength of coatings. Hardness of FeMnCrAl/Ni-coated WC coating and FeMnCrAl/Ni-coated Cr3C2 coating are similar to those of FeMnCrAl/WC coating and FeMnCrAl/Cr3C2 coating. Ni coated WC powder improves the erosion wear resistance of FeMnCrAl/Ni-coated WC coating. Erosion mechanism of FeMnCrAl/Ni-coated WC coating is similar to that of FeMnCrAl/WC coating.
     FeMnCrAl/carbide series coatings had been used to heat surfaces of water wall and the screen tubes as protective coatings.After more than six months to run, the tests results show that FeMnCrAl/carbide series coatings play very good protective effects. The coatings may be expected to use more than 2 years.
引文
[1]中国电力企业联合会.2008年全国电力工业统计快报[J].电业政策研究,2009(1):45-48.
    [2]张业圣.我国火力发电用高压锅炉管现状与需求分析[J].钢管,2008(37)5:1-10.
    [3]米子德,梅东升,韩旭东.300MW燃煤机组锅炉再热器高温腐蚀分析[J].华北电力技术,2006(2):7-9.
    [4]刘鹏飞,陶凯,周香林,张济山.锅炉“四管”用耐磨耐蚀涂层研究进展[J].表面技术,2007,36(1):75-80.
    [5]丁力,陈曲进.锅炉高温腐蚀分析与技术措施[J].四川电力技术,2007(30)1:67-69.
    [6]张志平.锅炉过热器爆管原因分析及对策[J].河北电力技术,2007(26)6:26-28.
    [7]张常乐,徐德刚.锅炉水冷壁爆管原因分析[J].山东电力技术,2008(4):35-37.
    [8]鲁玉龙,薛守洪,徐蓓,卫志刚,张利文.火电厂1025T/11锅炉高温过热器爆管分析[J].腐蚀科学与防护技术,2008(20)3:193-196.
    [9]Sidhu T S, Prakash S, Agrawal R D. Hot corrosion performance of a NiCr coated Ni-based alloy [J]. Scripta Materialia,2006(55):179-182.
    [10]Weulersse-Mouturat K, Moulin G, Billard P, Pierotti G. High temperature corrosion of superheater tubes in waste incinerators and coal-fired plants [J]. Materials Science Forum,2004(461-464):973-980.
    [11]Srivastava S C, Godiwalla K M, Banerjee M K. Fuel ash corrosion of boiler and superheater tubes [J]. Journal of Materials Science,1997,32(4):835-849.
    [12]岑可法.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社,1994.
    [13]齐慧滨,郭英倬,何业东,王德仁.燃煤火电厂锅炉“四管”的高温腐蚀[J]_腐蚀科学与防护技术,2002(14)2:113-119.
    [14]赵虹,魏勇.燃煤锅炉水冷壁烟侧高温腐蚀的机理及影响因素[J].动力工程,2002,(22)2:1700-1703.
    [15]陈征宇.电厂燃煤锅炉受热面管的高温腐蚀[J].中国锅炉压力容器安全,2004.20(5):51-53.
    [16]高全,张军营,丘纪华,赵永椿.燃煤电站锅炉高温腐蚀特征的研究[J].热能动力工程,2007,22(3):292-296.
    [17]Godlewski K. Review on high-temperature corrosion of PCF boilers in Poland [J]. Werkstoffe und Korrosion-Materials and Corrosion,1988,39(2):67-69.
    [18]Sundararajan G, Roy M. Solid particle erosion behaviour of metallic materials at room and elevated temperatures [J]. Tribology International,1997,30(5):339-359.
    [19]郭新成,束德林,王平.省煤器材料热冲蚀磨损问题的研究[J].表面工程,1993,(2):39-42.
    [20]刘少光.N2保护超音速电弧喷涂金属间化合物纳米复合涂层的组织结构及高温冲蚀性能[D].杭州:浙江大学博士学位论文,2006.
    [21]Hidalgo V H, Varela J B, Menendez A C, Martinez S P. High temperature erosion wear of flame and plasma-sprayed nickel-chromium coatings under simulated coal-fired boiler atmospheres [J]. Wear,2001(247):214-222.
    [22]Stringer J. Practical experience with wastage at elevated temperatures in coal combustion systems [J]. Wear,1995,11-27:186-18.
    [23]Sarkar G, Sakha S, Daschowdhury K P, Hazra S K, Sen S K. Proceedings of the ninth international coal preparation congress, edited by Indian coal committee [R] (New Delhi,India,1982) pp.G.1-13.
    [24]Wang B Q. Chromium-titanium carbide cermet coating for elevated temperature erosion protection in fluidized bed combustion boilers [J]. Wear,1999(225-229):502-509.
    [25]Srivastava S C, Godiwalla K M, Banerjee M K. Review fuel ash corrosion of boiler and superheater tubes [J]. Journal of matrials seience.1997(32):835-849.
    [26]景永伟,刘少光.流化床锅炉水冷壁管冲蚀磨损特性及防磨措施[J].动力工程,2005,25(5):747-755
    [27]闫建军,沈建龙.锅炉“四管”爆漏的原因分析及预防对策[J].宁夏电力,2008(3):61-65.
    [28]张艳.燃煤锅炉省煤器磨损原因分析及对策[J].能源与环境,2008(5):30-32.
    [29]唐贵平,陆继东.南昌电厂锅炉飞灰磨损的治理[J].发电设备,2003(5):15-17.
    [30]Suckling M, Allen C. Critical variables in high temperature erosive wear [J]. Wear,1997,203:528-536.
    [31]Ahmad J, Purbolaksono J, Beng L C, Rashid A Z, Khinani A, Ali A A. Failure investigation on rear water wall tube of boiler [J]. Engineering Failure Analysis,2009(16):2325-2332.
    [32]Sidhu T S, Prakash S, Agrawal R D, Bhaga R. Erosion-corrosion behaviour of Ni-based superalloy Superni-75 in the real service environment of the boiler [J]. Sadhana-Academy Proceedings in Engineering Sciences,2009,34(2):299-307.
    [33]李红兵.循环流化床锅炉的磨损及预防[J].科技情报开发与经济,2009(19)19:190-192.
    [34]孙永立.陶瓷颗粒复合涂层冲蚀磨损特性的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2004.
    [35]徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社,1999.
    [36]Finnie I. Some reflections on the past and future of erosion [J]. Wear, 1995(1-10):186-187.
    [37]Finnie I. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence [J]. Wear,1978,48(1):181-190.
    [38]冯益华,邓建新,史佩伟.陶瓷材料冲蚀磨损的研究[J].陶瓷学报2002,23(3):169-173.
    [39]Cousens A K, Hutchings I M. A critical-study of the erosion of an aluminum-alloy by solid spherical-particles at normal impingement [J]. Wear,1983,88(3):335-348.
    [40]Hutchings I M. Model for the erosion of metals by spherical particles at normal incidence [J]. Wear,1981,70:269-281.
    [41]Budinski K G. The wear-resistance of diffusion treated surfaces [J]. Wear,1993, 162(Part B):757-762.
    [42]Levy A V. The solid particle erosion behavior of steel as a function of microstructure [J]. Wear,1981,68(3):269-287
    [43]Levy A V. Erosion of solid-solution-strengthened alloys [J]. Wear,1988, 127(2):193-205.
    [44]Levy A V. Liquid-solid partiele slurry erosion of steels [J]. Wear,1987,117(2):129-146.
    [45]Levy A V, Wang B Q. Erosion of hard material coating systems [J]. Wear, 1988,121(3):325-346.
    [46]董刚.材料冲蚀行为及机理研究[D].杭州:浙江工业大学硕士学位论文,2004.
    [47]赵琪.含纳米金属陶瓷涂层的制备及其组织性能的研究[D].镇江:江苏科技大学硕士论文,2008.
    [48]Uuital M A, Vuoristo P M J, MantylaT A. Elevated temperature erosion-corrosion of thermal sprayed coating in chlorine containing environments [J]. Wear, 2002(252):586-594.
    [49]杨富,李为民,任永宁.超临界、超超临界锅炉用钢[J].电力设备,2004,5(10):41-46.
    [50]邵天佑,李法众,韩克刚.华能玉环电厂4×1000MW超超临界机组锅炉用钢[J].热力发电,2006(12):74.
    [51]龚正春.超超临界锅炉用E911钢管的高温性能[J].理化检验-物理分册,2003,39(11):552-554.
    [52]龚正春.超超临界锅炉用E911钢管的显微组织[J].机械工程材料,2003,27(1):51-54.
    [53]曲敬信,汪泓宏.表面工程手册[M].北京:化学工业出版社,1998:665-667.
    [54]Higuera V, Belzunce F J, Carriles A, Poveda S. Influence of the thermal-spray procedure on the properties of a nickel-chromium coating [J]. Journal of matrials seience,2002,(37):649-654.
    [55]王汉功,查柏林.超音速喷涂技术[M].北京:科学出版社,2005.
    [56]Sidhu T S, Malik A, Prakash S, Agrawal R D. Oxidation and hot corrosion resistance of HVOF WC-NiCrFeSiB coating on Ni-and Fe-based superalloys at 800℃ [J]. Journal of Thermal Spray Technology,2007,16(5-6):844-849.
    [57]Wang B Q, Lee S W. Erosion-corrosion behaviour of HVOF NiAl-Al2O3 intermetallic-ceramic coating [J]. Wear,2002,(239):83-90.
    [58]Wang B Q, Zheng R S. The hot erosion behavior of HVOF chromium carbide-metal cermet coatings sprayed with different powders [J]. Wear,2002(253):550-557.
    [59]Wang B Q. Chromium-titanium carbide cermet coating for elevated temperature erosion protection in fluidized bed combustion boilers [J]. Wear,1999(225-229):502-509.
    [60]Singh H, Prakash S, Puri D. Some observations on the high temperature oxidation behavior of plasma sprayed Ni3Al coatings [J]. Materials Science and Engineering A,2007(444):242-250.
    [61]Seo D, Ogawa K, Shoji T, Murata S.Effect of particle size distribution on isothermal oxidation characteristics of plasma sprayed CoNi-and CoCrAlY coatings [J]. Journal of Thermal Spray Technology,2007,16(5-6):954-966.
    [62]Li C J, Yang G J, Ohmori A. Relationship between particle erosion and lamellar microstructure for plasma-sprayed alumina coatings [J]. Wear,2006(260):1166-1172.
    [63]Matthews S J, James B J, Hyland M M. Microstructural influence on erosion behavior of thermal spray coatings [J]. Materials Characterization,2007(58):59-64.
    [64]Mishra S B, Chandra K, PrakashS. Characterisation and erosion behaviour of NiCrAlY coating produced by plasma spray method on two different Ni-based superalloys [J]. Materials Letters,2008(62):1999-2002.
    [65]Hjornhede A, Nylund A. Adhesion testing of thermally sprayed and laser deposited coatings [J]. Surface and Coatings Technology,2004(184):208-218.
    [66]Morimoto J, Onoda T, Sasaki Y, Abe N. Improvement of solid cold sprayed TiO2-Zn coating with direct diode laser [J]. Vacuum,2004,73:527-532.
    [67]Assadi H, Gartner F, Stoltenhoff T, Kreye H. Bonding mechanism in cold gas spraying [J]. Acta Materialia,2003(51):4379-4394.
    [68]Fukumoto M. The current status of thermal spraying in Asia [J]. Journal of Thermal Spray Technology,2008,17(1):6-9.
    [69]赵雁潮,魏琪,栗卓新,任春岭.热喷涂技术在锅炉管道防护中的应用进展[J].材料保护,2006,39(8):43-46.
    [70]徐滨士,刘世参.表面工程新技术[M].北京:国防工业出版社,2001.
    [71]徐滨士.装备再制造技术[J].中国设备工程,2008(8):63-65.
    [72]汪瑞军,张天剑,徐林,黄小鸥.大功率高速电弧喷涂层性能及其应用[J].焊接,2004(3):27-30.
    [73]汪瑞军,张天剑,徐林,黄小鸥,李勇,何宁.高速电弧喷涂涂层的性能[J].焊接,2003(5):26-29
    [74]Liu G M, Rozniatowski K, Kurzydlowski K J. Quantitative characteristics of FeCrAl films deposited by arc and high-velocity arc spraying [J]. Materials Characterization, 2001,46:99-104.
    [75]张恒华.超音速电弧喷涂技术[J].热处理,2008.,23(4):7.
    [76]李尚周,聂铭,余红雅,董重里,谭永源,丁红珍.NiCrFe-Cr3C2合金超音速活性电弧喷涂涂层性能的研究[J].表面技术,2003,32(4):15-17.
    [77]刘少光,赵琪,李志章,郦剑,张升才,吴进明,胡小海.N2保护对TiAl3和Cr3C2复合涂层组织结构及高温冲蚀性能的影响[J].功能材料,2008,39(1):166-169.
    [78]许一,梁秀兵,徐滨士,马世宁.还原性保护气氛电弧喷涂技术研究[J].同济大学学报.2001,29(9):1122-1125.
    [79]徐滨士.再制造工程基础及其应用[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [80]刘少光,吴进明,张升才,胡小海,荣淑杰,李志章.超临界锅炉管道耐磨涂层的微观组织结构及冲蚀规律[J].动力工程,2006,26(6):908-911.
    [81]Xu B S, Zhang W, Xu W P. Influence of oxides on high velocity arc sprayed Fe2Al/Cr3C2 composite coatings [J]. Journal of Central South University of Technology, 2005,12(3):259-261.
    [82]陈永雄,徐滨士,许一,魏世丞,刘燕.高速电弧喷涂技术在装备维修与再制造工程领域的研究运用现状[J].中国表面工程,2006,19(5):169-172.
    [83]杜令忠,徐滨士,杨华,张伟刚.高速电弧喷涂3Cr13钢涂层的组织及在含细沙油润滑条件下的磨损性能[J].金属热处理,2007,32(5):10-13.
    [84]徐滨士,马世宁,张振学.高效优质的防腐新技术-高速电弧喷涂技术.腐蚀与防护.2000,21(10):455-457.
    [85]徐维普,徐滨士,罗晓明,张亚余,葛雷,张伟.高速电弧喷涂FeAlCrNi/Cr3C2复合涂层的腐蚀性能研究[J].金属热处理,2005,30(12):51-54.
    [86]徐雏普,徐滨士,张伟,吴毅雄,孟凡军.高速电弧喷涂Fe-Al/Cr3C2复合涂层的冲蚀特性[J].金属热处理,2005,30(2):1-4.
    [87]徐维普,徐滨士,王维国,杜令忠.高速电弧喷涂Fe-Al/Cr3C2复合涂层的组织与性能[J].金属热处理,2004,29(5):5-8.
    [88]贺定勇,傅斌友,蒋建敏,李晓延,王智慧,栗卓新.含WC陶瓷相电弧喷涂层耐磨粒磨损性能的研究[J].摩擦学学报,2007,27(2):116-120.
    [89]贺定勇,张发云,蒋建敏,傅斌友,果卓新,王智慧.铁基含TiC陶瓷粉电弧喷涂粉芯丝材的研究[J].中国表面工程,2006,19(5):41-44.
    [90]贺定勇,将建敏,张发云,傅斌友,李晓延,栗卓新,王智慧.铁基含TiC陶瓷的耐磨电弧喷涂粉芯丝材[P].中国专利,2008,CN100427636C.
    [91]刘少光,温黎,张升才,李志章.含纳米材料药芯的电弧喷涂丝材的制备方法[P].中国专利,2005,CN1562555A.
    [92]Fang J J, Li Z X, Shi Y W. Microstructure and properties of TiB2-containing coatings prepared by arc spraying [J]. Applied Surface Science,2008(254):3849-3858.
    [93]Gedzevicius I, Valiulis A V. Analysis of wire arc spraying process variables on coatings properties [J]. Journal of Materials Processing Technology.2006(175):206-211.
    [94]Abedini A, Pourmousa A, Chandra S, Mostaghimi J. Effect of substrate temperature on the properties of coatings and splats deposited by wire arc spraying [J]. Surface and Coatings Technology,2006(201):3350-3358.
    [95]余存烨.节镍不锈钢的开发与展望[J].化工设备与管道,2008,45(2):4-8.
    [96]严旺生.200系列(锰系)不锈钢发展前景[J].中国锰业,2004,22(2):8-12.
    [97]赵朴.化学成分和固溶温度对1Cr17Mn9Ni4N不锈钢组织和性能的影响[J].钢铁研究学报,2003,15(3):21-24.
    [98]周广宏,丁红燕.铬-锰-氮奥氏体不锈钢在含沙海水中的冲蚀磨损行为研究[J].润滑与密封,2007,32(1):132-134.
    [99]王书晗,林兆森,刘振宇,邱以清,刘相华,王国栋.高锰氮奥氏体不锈钢塑性变形机制及组织性能的研究[J].稀有金属,2006,30(专刊):63-67.
    [100]袁志钟,戴起勋,王安东,陈康敏,程晓农.一种中氮高锰奥氏体不锈钢[P].中国专利,2008.08:CN101250674A.
    [101]王剑,王者昌,陈怀宁.新型CrMnNiN奥氏体不锈钢的抗空穴腐蚀及磨损性能[J].特殊钢,2002,23(4):23-24.
    [102]刘卫丽.新型Fe-Mn-Al-Cr不锈钢的耐蚀性能及钝化膜精细结构的研究[D].杭州:浙江大学硕士论文,1999:10-20.
    [103]冯根聪.铁锰铝铬奥氏体钢焊条的研制[D].杭州:浙江大学硕士论文,1996:3-15.
    [104]张彦生.一种新奥氏体钢系-Fe-Mn-Al热强钢、低温钢、无磁钢的发展[J].中国科学院金属研究所.
    [105]陈才金,鲁凤娟.一中奥氏体不锈钢[P].中国专利,2003.11:ZL01111434.7.
    [106]张彦生,张弗天,高会友,王根元.一种Fe-Mn-Al-Cr奥氏体热强钢37Mn31Al3Cr2MoVWNbB的研究[J].金属学报,1984,20(1):A1-A8.
    [107]陈才金,鲁凤娟,鲁捷.一中双相不锈钢[P].中国专利,2005.02:ZL02145172.9.
    [108]Li J F, Ding C X. Improvement in the properties of plasma-sprayed chromium carbide coatings using nickel-clad powders [J]. Surface and Coatings Technology,2000, 130(1):15-19.
    [109]罗来马,刘少光,俞佳,罗娟,刘永莉,郦剑.高速电弧喷涂FeNiCr/Ni包覆Cr3C2涂层组织和性能的研究[J].功能材料,2009,40(8):1285.1287.
    [110]纪岗昌.李文亚.杨冠军.李长久,白世鸿.超音速火焰喷涂Cr3C2-NiCr金属陶瓷 粒子加热熔化行为的模拟[J].兵器材料科学与工程,2002,25(3):26-29.
    [111]徐维普,徐滨士,张伟,吴毅雄,刘维民.高速电弧喷涂FeAlCr/Ni包Cr3C2复合涂层摩擦学特性[J].中国有色金属学报,2004,14(10):1671-1675.
    [112]李长久,王豫跃,武涛,大森明.表面熔融粒子结构对超音速火焰喷涂结合性能的影响[J].西安交通大学学报,2001,35(1):51-56.
    [113]Xie G Z, Zhang J X, Lu Y J, He Z Y, Hu B, Zhang D J, Wang K Y, Lin P H. Influence of laser treatment on the corrosion properties of plasma-sprayed Ni-coated WC coatings [J]. Applied Surface Science,2007(253):9198-9202.
    [114]徐维普,徐滨士,张亚余,葛雷.高速电弧喷涂Fe-Al/Cr3C2复合涂层摩擦氧化机理研究[J].兵器材料科学与工程,2006,29(1):13-16.
    [115]刘少光,陈久林,姚继蓬,刘永莉,杨涛.张力式直线拉丝机[P].中国专利,2009.6:CN101444798A.
    [116]刘少光,陈久林,陈成武,江凤娟,姚继蓬.轧拔式叠口包丝机[P].中国专利,2009.6:CN101457333A.
    [117]左演声,陈文哲,梁伟.材料现代分析方法[M].北京:北京工业大学出版社,2002.
    [118]黎樵燊,朱又春.金属表面热喷涂技术[M].北京:化学工业出版社,2009.
    [119]刘少光,姚继蓬,刘永莉,陈焱,赵建阳.增压式分段加热高温冲蚀磨损试验机[P].中国专利,2009.6:CN101451939A.
    [120]李小刚.电弧喷涂新型复合涂层治理锅炉管道热腐蚀的研究[D].沈阳:中国科学院金属研究所博士学位论文,1998.
    [121]Li C J, Yang G J, Akira O. Relationship between particle erosion and lamellar microstructure for plasma-sprayed alumina coatings [J]. Wear,2006,260:1166-1172.
    [122]Pokhmurska H, Dovhunyk V, Student M, Bielanska E, Beltowska E. Tribological properties of arc sprayed coatings obtained from FeCrB and FeCr-based powder wires [J]. Surface and Coatings Technology,2002(151-152):490-494.
    [123]Venugopal K, Agrawal M. Evaluation of arc sprayed coatings for erosion protection of tubes in atmospheric fluidised bed combustion (AFBC) boilers [J]. Wear,2008, 264:139-145.
    [124]傅斌友.含非晶涂层制备及其晶化规律研究[D].北京:北京工业大学博士学位论文,2009.
    [125]邓世均.高性能陶瓷涂层[M].北京:化学工业出版社,2004.
    [126]翟金坤.金属高温腐蚀[M].北京:北京航空航天大学出版社,1994.
    [127]吴涛,朱流,郦剑,姚继蓬.化学沉积法合成WC-Co粉体及其激光熔覆涂层的制备[J].材料热处理学报,2006,27(6):108-110.
    [128]朱流,郦剑,李军,姚继蓬.热压烧结工艺对超韧Al2O3-TiC-Co复合陶瓷性能的影响[J].材料热处理学报,2007,28(5):20-24.
    [129]朱流.金属-陶瓷复合粉体制备与机理及其应用研究[D].杭州:浙江大学博士论文,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700