用户名: 密码: 验证码:
基于压缩感知理论的无线多径信道估计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对无线通信需求地不断增长,提供高质量、高速率的数据及多媒体业务成为移动通信领域的首要任务。模拟通信系统到数字通信系统的转变,是移动通信技术的一次重大革命,在频谱效率、系统容量、保密性以及通话质量方面得到了极大的改善。随着无线通信技术的进一步发展,正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术的提出,有效地提高频谱的利用率,并有效抵抗信道衰落和信道时延扩展的影响。多输入多输出(Multiple Input Multiple Output, MIMO)技术则通过空间分集增加无线系统的覆盖范围,有效地提高系统容量。目前,中继(relay)技术的研究,能够在不增加基站数目的前提下,提高小区边缘的通信质量。
     虽然OFDM、MIMO和中继技术有诸多优点,但是,在具体实际应用中,仍然面临很多问题。OFDM系统对同步误差甚为敏感,在信号传输过程中,由于信号受周围环境及障碍物影响,产生不同程度地衰落和时延,时间同步误差会造成符号间干扰(Inter Symbol Interference, ISI),频率同步误差会产生子载波间干扰(Inter Carrier Interference, ICI)。只有对信道特征有很好的了解,才能有效克服干扰和失真。加入MIMO或中继后,符号间干扰和码间干扰更加严重,从而影响系统性能。因此,接收端需要获得精确的信道状态信息(Channel State Information, CSI),精确的信道估计起到尤为重要的作用。针对上述问题,论文对无线多径信道的信道估计进行了研究。重点分析压缩感知理论在无线多径信道估计中应用的可行性,并重点研究了基于压缩感知理论的单天线系统、多天线系统、双向中继系统以及水声通信系统中的信道估计算法,并取得相应的科研成果。论文主要完成了以下具有创新性的研究成果。
     首先,论文从典型的单天线系统入手,通过分析其信道特征,建立稀疏信道模型,将传统的线性算法转化为非线性算法,将频域信道估计方法转化为时域信道估计方法,并利用压缩感知的凸优化算法来恢复信道状态信息,即压缩信道感知。所提方法充分运用无线多径信道固有的稀疏性特点,利用一阶范式最优化来恢复信道冲激响应,达到使用较短的训练序列获得较高的信道估计精确度的目的。
     其次,研究发现,多天线系统与单天线系统相比,具有天线数目增多,数据传输速率较高,信道状态复杂等特点,因此,在信噪比低的快衰落信道状态下难以获得准确的信道估计。快速而准确的恢复信道估计状态是亟需解决的关键问题。对于多天线系统,在快衰落条件下,传统线性信道估计算法,如LS (Least Squares),虽然信道估计计算复杂度较低,但是信道估计精确度不高。基于压缩感知的凸优化信道估计算法,能显著提高信道估计性能,然而往往计算比较复杂。基于二者的优缺点,本文提出了一种基于压缩采样匹配追踪(Compressive Sampling Matching Pursuit, CoSaMP)的高效信道估计算法。该算法对高速移动的多天线系统,在快衰落信道情况下,能以很高的概率恢复信道状态信息,准确性和实时性有了很大地提高。另外,利用离散傅里叶变换(Discrete Fourier Transform, DFT)的特性,该算法可进一步扩展运用于MIMO-OFDM系统的信道估计中。
     再次,就目前趋势而言,点对点通信已不能满足人们对通信网的需求,于是,催生了中继网络的发展。双向中继系统是指两个节点通过半双工中继进行信息的交互与传递,两节点直接无直达路径。对于双向中继系统,信道状态信息由传统点对点的单一的未知信道变量转化为三点间两个未知的信道变量,因此,信道估计过程复杂繁琐。本论文在深入研究双向中继系统信道特点的基础上,提出一种基于压缩感知理论的自适应的联合信道估计算法,从而巧妙的将二维变量转化为一维变量,该算法不但能显著提高双向中继系统的信道估计性能,同时,也大大提高了信道估计效率以及频谱利用率。
     此外,本论文还关注先进理论在实际场景中的应用——基于压缩感知的水声通信系统信道估计的研究与应用。目前,声波是水下唯一进行远程信息传输的媒体,水声信道不但受频率的影响,还与海水的运动,高度以及密度等有关,因此,水声信道要比无线电信道复杂得多。本文深入研究水声信道的特殊复杂性,根据水声信道的稀疏表示模型与非相关观测矩阵构建压缩感知算法,并筛选出适合水声信道的重构算法,为水声通信系统信道估计提出了一种可行的解决途径,基于压缩感知的水声通信系统信道估计是该领域具有创新性的研究方向。
With the growing demand for wireless communications, providing high-quality, high-speed data and multimedia services becomes the primary task of the mobile communications. It is a great revolution in mobile communication technology for the change from analog communication system to the digital communication system. The revolutionary improvement includes spectrum efficiency, the system capacity, confidentiality and the call quality. With the development of wireless communications, the proposal of orthogonal frequency division multiplexing (OFDM) has improved the spectrum utilization rate effectively, and reduced the channel fading and channel delay spread effect effectively. The multiple input multiple output (MIMO) technology has improved the system capacity effectively by increase the wireless system coverage using spatial diversity. At present, the research in relay technology could improve the communication quality of the community edge without increase the number of base station.
     Though the OFDM, MIMO and relay technologies have many advantages, they still face a lot of problems in some specific applications. The OFDM system is sensitive to synchronization error. In the process of signal transmission, the signal gets througth time delay and power attenuation due to the constructions and obstacles nearby. The time synchronization error can cause inter-symbol interference (ISI), while the frequency synchronization error can cause inter-carrier interference (ICI). The interference and distortion could be overcome effectively only the channel information is well understood. When the MIMO or relay is jointed, the ISI and ICI get lager, which influence the system performance seriously. Therefore, the receiver needs to get accurate channel state information (CSI), which is also very important for coherent detection and equalization. Concerned about the above issue, this paper researched the channel estimation of the wireless multipath channel. Specifically, emphatically analyzes the feasibility of the application of compressed sensing theory on wireless multipath channel estimation, mainly studies the channel estimation algorithm of single antenna system, multiple antenna system, two-way relay system and underwater acoustic system based on compressed sensing theory. Corresponding scientific research achievements have been obtained. This thesis mainly completed the following innovative research.
     First, the classic single antenna system has been studied. The research includes analyzing the channel characteristics, creating the sparse channel model, and so on. The research shows that compressed sensing theory can be used for sparse channel estimation. This method can transform the traditional linear algorithm into nonlinear algorithm, and recover the channel state information in time domain instead of frequency domain. In other word, this method makes full use of the wireless multipath channel inherent sparse characteristic, recovers the channel impulse response by the l1norm minimization, and obtains higher channel estimation accuracy with fewer training signals.
     Second, compare with the single antenna system, the multiple antenna system has the characteristics of more antenna number, higher data transmission rate, and more complicated channel state. Therefore, it is difficult to obtain accurate channel estimation in low SNR and fast fading conditions. Channel estimation aims for fast and accurate recovery of channel state information. For the multiple antenna system, in the fast fading conditions, the traditional linear channel estimation algorithm, i.e., least squares (LS), has lower computational complexity; however, the channel estimation accuracy is far from satisfied. The compressive sensing-based convex optimizing estimation algorithm, could significantly improve the performance of channel estimation, but implement complex. Based on the advantages and disadvantages of the method mentioned above, this thesis proposed a highly efficient channel estimation algorithm based on the compressive sampling matching pursuit (CoSaMP). For the high-speed multiple antenna systems, this algorithm can recover the channel state information with very high probability even in fast fading conditions. In the meanwhile, both the real-time performance and estimation accuracy have been greatly improved. By using the discrete Fourier transform (DFT), we could extend the application in the channel estimation of MIMO-OFDM systems.
     Third, the conventional point to point systems have not satisfied people's demand, therefore, the relay networks have been intensively researched. For the two-way relay system, the two nodes interact and transfer information by the half duplex relay, and there is no direct path for the two nodes. The channel state information changed from the traditional single unknown channel variable into two unknown channel variables. Therefore, the channel estimation process is much more complicated than the point to point systems. Based on the thorough research of the channel characteristics of the two-way relay system, our thesis proposed an adaptive joint channel estimation algorithm based on the compressive sensing theory. Thus, transform the2-dimensional variables into a1-dimensional variable ingeniously, and improve the channel estimation performance of the two-way relay system significantly.
     Moreover, this thesis is focused on the application of the advanced theory in the practical scene-the research and application of compressed sensing-based underwater acoustic channel estimation. At present, sound wave is the only one carrier for remote underwater information transmission. The underwater acoustic channel is influenced not only by the frequency, but also by the sea movement, height and density and so on. Therefore, underwater acoustic channel is much more complicated than radio channels. This thesis presents a thorough study on the complexity of the underwater acoustic channel, constructs compressed sensing algorithms according to the sparse underwater acoustic channel model and non-relevant observation matrix, and selects the suitable reconstruction algorithm for the underwater acoustic channel estimation. This thesis provides a feasible solution to the channel estimation of underwater acoustic communication system and a new research direction for this field.
引文
[1-1]啜刚,王文博,常永宇等,移动通信原理与系统,北京邮电大学出版社,2005,pp.1-2。
    [1-2]张平,王卫东,陶小峰等,WCDMA移动通信系统,第二版,人民邮电出版社,2004,pp.2-3。
    [1-3]吴伟陵,牛凯,移动通信原理,电子工业出版社,2005,pp.2-3。
    [1-4]孙孺石,丁怀元,穆万里等,GSM数字移动通信工程,人民邮电出版社,1996,pp.5-25。
    [1-5]邬国扬,CDMA数字蜂窝网,西安电子科技大学出版社,2000,pp.1-4。
    [1-6]钟章队,蒋文怡,李红君等,GPRS通用分组无线业务,人民邮电出版社,2001,pp.4-7。
    [1-7]郝良彬,李有科,移动通信的技术进步及其在世界主要国家的发展,武汉科技学院学报,第21卷,第5期,2008年,pp.26-28.
    [1-8]谢显中,TD-SCDMA第三代移动通信系统技术与实现,电子工业出版社,2005,pp.1-7。
    [1-9]沈嘉,索士强,全海洋等,3GPP长期演进(LTE)技术原理与系统设计,人民邮电出版社,2008,pp.1-5。
    [1-10]沈嘉,从宽带无线计入与宽带移动通信技术的融合看B3G技术的发展趋势,电信科学,2006(6)。
    [1-11]Sacristan David Martin, Monserrat Jose F., Penuelas Jorge Cabrejas, et al, "On the way towards fourth-generation mobile:3GPP LTE and LTE-advanced," EURASIP Journal on Wireless Communications and Networking, March 2009, pp.1-10.
    [1-12]Bolcskei H., Gesbert D., and Paulraj A.J. "On the capacity of OFDM-based spatial multiplexing systems," IEEE Transactions on Communications, vol. 50(2),2002, pp.225-234.
    [1-13]邹应全,李春国,赵睿等,多小区MIMO系统中的分布式预编码研究,仪器仪表学报,第31卷,第12期,2010,pp.2828-2827。
    [1-14]孙巧云,田辉,董琨等,下行链路MIMO-OFDM系统中的动态资源分配,仪器仪表学报,第30卷,第7期,2009,pp.1504-1507。
    [1-15]王妮娜,张治,姜军等,TD-LTE系统终端邻道泄漏功率比的测试方法,仪器仪表学报,第32卷,第10期,2011,pp.2357-2362。
    [1-16]赵瑞玉,4G移动通信系统的技术热点及其发展动态,山西电子技术,第2期,2008,pp.88-89。
    [1-17]张平,Beyond 3G移动通信系统关键技术,北京邮电大学学报,第25卷,第3期,2002,pp.1-6。
    [1-18]Chuang. J, Sollenberger. N, "Beyond 3G:wideband wireless data access based on OFDM and dynamic packet assignment," Communications Magazine, IEEE, vol.38(7), July.2000, pp.78-87.
    [1-19]Leonard J. Cimini, Jr., "Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing," IEEE Transactions on Communications, vol.33(7), July 1985, pp.665-675.
    [1-20]Doukopoulos X. G., and Legouable R., "Robust channel estimation via FFT interpolation for multicarrier systems," IEEE VTC-spring, Dublin, Ireland, 2007, pp.1861-1865.
    [1-21]王文博,郑侃,宽带无线通信OFDM技术,人民邮电出版社,2003,pp.46-47。
    [1-22]Digital Video Broadcasting (DVB); Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television, EN 300744, V1.4.1, ETSI, 2001 [Online]. Available:http://www.etsi.org.
    [1-23]Digital Audio Broadcasting (DAB) to Mobile, Portable and Fixed Receivers, ETS 300 401, ETSI,1995 [Online]. Available:http://www.etsi.org.
    [1-24]梁慜,无线中继网络中的频率复用与中继选择研究,[北京邮电大学博士论文],北京:北京邮电大学图书馆,2010。
    [1-25]邝育军,OFDM无线传输系统中定时同步和信道估计的研究,[北京邮电大学博士论文],北京:北京邮电大学图书馆,2003。
    [1-26]唐恬,正交频分复用系统的信道估计研究,[北京邮电大学博士论文],北京:北京邮电大学图书馆,2007。
    [1-27]周小平,高速移动MIMO OFDM系统快衰落信道估计方法,[上海大学博士论文],上海:上海大学,2011。
    [1-28]杨晓,基于OFDM系统的信道估计研究,[北京邮电大学硕士论文],北京:北京邮电大学图书馆,2011。
    [1-29]Tong L., Sadler B. M., Dong M., "Pilot-assisted wireless transmisions," IEEE Signal Processing Mag., vol.21(6),2004, pp.12-25.
    [1-30]Tong L. and Perreau S., "Multichannel blind identification:from subspace to maximum likelihood methods," Proc. IEEE, vol.86(10),1998, pp.1951-1968.
    [1-31]Pardes J L, Arce G R, and Wang Zhongmin, "Ultra-wideband compressed sensing:channel estimation," IEEE Journal of Selected Topics in Signal Processing, vol.1(3),2007, pp.383-395.
    [1-32]Candes E, "Compressive sampling," Proceeding of the International Congress of Mathematicians, Madrid, Spain,2006, pp.1433-1452.
    [1-33]Gui Guan, Wan Qun, Peng Wei et al,. "Sparse multipath channel estimation using compressive sampling matching pursuit algorithm," In IEEE VTS APWCS2010.
    [1-34]Berger C R, Zhou Shengli, Preisig J C,et al, "Sparse channel estimation for multicarrier underwater acoustic communication:from subspace methods to compressed sensing," IEEE Transaction on Signal Processing, vol.58(3), 2010, pp.1708-1721.
    [1-35]Taubock G and Hlawatsch F, "A compressed sensing technique for of dm channel estimation in mobile environments:exploiting channel sparsity for reducing pilots," In Proceedings of ICASSP'2008. Piscataway:IEEE,2008, pp.2885-2888.
    [1-36]Taubock G, Hlawatsch F., Eiwen D. et al,. "Compressive estimation of doubly selective channels in multicarrier systems:leakage effects and sparsity-enhancing processing," IEEE Journal of Selected Topics in Signal Processing, vol.4(2),2010, pp.255-271.
    [1-37]Paredes J L., Arce G R., ang Wang Zhongmin, "Untra-wideband compressed sensing:channel estimation," IEEE Journal of Selected Topics in Signal Processing, vol.1(3),2007, pp.383-395.
    [1-38]Kocic M., Brady D., and Merriam S., "Reduced-complexity RLS estimation for shallow-water channels," In Proc. Symp. Autonomous Unserwater Vehicle Technology (AUV'94), Cambirdge, MA, Jul.1994, pp.165-170.
    [1-39]Mallat S. G And Zhang Z., "Matching pursuit with time-frequency dictionaries," IEEE Trans. Signal Processing, vol.40(12),1993, pp.3397-3415.
    [1-40]Cotter S. F. and Rao B. D., "Matching pursuit based decision-feedback equalizers," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP'00), Istanbul, Turkey,2000, pp.2713-2716.
    [1-41]Wu C. J. and Lin D. W., "A group matching pursuit algorithom for sparse channel estimation for OFDM transmission," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP'06), Toulouse, France, 2006, pp.429-432.
    [1-42]Wang Dongming, Han Bing, Zhao Junhui, et al, "Channel estimation algorithoms for MIMO-OFDM sparse channel," in Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications (PIMRC'02), Beijing, China,2003, pp.1929-1933.
    [1-43]Li W. and Preisig J. C., "Estimation of rapid time-varying sparse channels,' IEEE J. Oceanic Eng., vol.32(4),2007, pp.927-939.
    [1-44]Berger C R, Wang Zhaohui, Huang Jianzhong et al, "Application of compressive sensing to sparse channel estimation," IEEE Communication Magazine, Nov.2010, pp.164-174.
    [1-45]Waheed U. Bajwa, Jarvis Haupt, Akbar M. Sayeed et al, "Compressed channel sensing:a new approach to estimating sparse multipath channels," Proceedings of the IEEE, vol.98(6), June 2010, pp.1058-1076.
    [1-46]Josso N.F., Zhang J. J., Fertonani D., et al, "Time-varying wideband underwater acoustic channel estimation for OFDM communications," 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), March 2010, pp.5626-5629.
    [1-47]王妮娜,桂冠,张治等,基于压缩感知的MIMO系统稀疏信道估计方法研究,应用科学学报,第二十九卷,第四期,2011,pp.347-352。
    [1-48]戴荣涛,王青春,现代水声通信技术的发展及应用,科技广场,第8期,2008年,pp.241-242。
    [2-1]Donoho D. L., "Compressed sensing," IEEE Transaction on Information Theory, vol.52(4), Apr.2006, pp.1289-1306.
    [2-2]Baraniuk R. G, "Compressive sensing," IEEE Signal Processing Magazine, vol.24(4),2007, pp.118-120.
    [2-3]Candes E. J. and Wakin M. B., "An introduction to compressive sampling," IEEE Signal Process. Mag., vol.25(2),2008, pp.21-30.
    [2-4]Chartrand R., Baraniuk R. G, Eldar Y. C., et al, "Introduction to the issue on compressive sensing," IEEE Journal Selected Topics Signal Process., vol. 4(2),2010, pp.241-243.
    [2-5]Candes E. J., "Compressive sampling," Proceedings of the International Congress of Mathematicians, Madrid, Spain,2006, pp.1433-1452.
    [2-6]Waheed U. Bajwa, Jarvis Haupt, Akbar M. Sayeed, et al, "Compressed channel sensing:a new approach to estimating sparse multipath channels," Proceedings of the IEEE, vol.98(6), June 2010, pp.1058-1076.
    [2-7]Candes E, "Compressive sampling," Proceeding of the International Congress of Mathematicians, Madrid, Spain,2006, pp.1433-1452.
    [2-8]Berger CR, Wang Z, and Huang J, "Application of compressive sensing to sparse channel estimation," IEEE Commun. Mag., vol.48(11), Nov.2010, pp.164-174.
    [2-9]石光明,刘丹华,高大化等,压缩感知理论及其研究进展,电子学报,第37卷,第5期,2009年5月,pp.1070-1081。
    [2-10]Candes E. J., Romberg J, Tao Terence, "Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information," IEEE Trans, on Information Theory, vol.52(2),2006, pp.489-509.
    [2-11]Candes E. J., "The restricted isometry property and its implications for compressed sensing," Academie des sciences, vol.346(1),2006, pp.598-592.
    [2-12]Donoho D. L., Tsaig Y, "Extensions of compressed sensing," Signal Processing, vol.86(3),2006, pp.533-548.
    [2-13]Candes E. J., Romberg J., "Sparsity and incoherence in compressive sampling," Inverse Problems, vol.23(3),2007, pp.969-985.
    [2-14]Candes E. J. and Tao T., "Near optimal signal recovery from random projections:universal encoding strategies," IEEE Trans. Info. Theory, vol. 52(12),2006, pp.5406-5425.
    [2-15]程云鹏,张凯院,徐仲,矩阵论,第3版,西北工业大学出版社,2006年,pp.109-138。
    [2-16]Chen S. S., Donoho D. L., Saunders M. A., "Atomic decomposition by basis pursuit," SIAM Review, vol.43(1),2011, pp.129-159.
    [2-17]Mallat S., Zhang Z., "Matching pursuit with time-frequency dictionaries," IEEE Trans. on Signal Process., vol.41(12),1993, pp.3393-3415.
    [2-18]Tropp J. A. and Glbert A. C, "Sparse recovery from random measurements via orthogonal matching pursuit," IEEE Trans. on Information Theory, vol. 53(12),2002, pp.374-377.
    [2-19]Gilbert A. C., Guha S., Indyk P., et al, "Near-optimal sparse Fourier representation via sampling," Proceedings of the Annual ACM Symposium on Theory of Computing, Montreal, Que, Canada:Association for Computing Machinery,2002, pp.152-161.
    [2-20]Gilbert A. C., Muthukrishnan S., Strauss M. J., "Improved time bounds for near-optimal sparse Fourier representation," Proceedings of SPIE, Wavelets Ⅺ, Bellingham, WA:International Society for Optical Engineering,2005, pp.1-15.
    [2-21]Takhar D., Laska J., Wakin M., et al, "A new compressive imaging camera architecture using optical-domain compression," In Proceedings of SPIE, Bellingham WA:International Society for Optical Engineering,2006, pp.60-65.
    [2-22]Takhar D., Bansal V, Wakin M., et al, "A compressed sensing camera:New theory and an implementation using digital micromirrors," SPIE Electronic Imaging:Computational Imaging, San Jose,2006.
    [2-23]刘记红,徐少坤,高勋章等,压缩感知雷达成像技术综述,信号处理,第2期,2011年,pp.251-260。
    [2-24]张先玉,刘郁林,王开,超宽带通信压缩感知信道估计与信号检测方法,西安交通大学学报,第44卷,第2期,2012年2月,pp.88-91。
    [2-25]Shi Guangming, Lin Jie, Chen Xuyang, et al., "UWB echo signal detection with ultra2low rate sampling based on compressed sensing," IEEE Trans. on Circuits and Systems-Ⅱ:Express Briefs, vol.55(4),2008, pp.379-383.
    [2-26]张坤,复杂背景信号的生成及无线信道特性的研究与实现,[国防科学技术大学硕士论文],北京,2010。
    [2-27]Li W. and Preisig J. C., "Estimation of rapidly time-varying sparse channels," IEEE J. Oceanic Eng., vol.32(4), Oct.2007, pp.927-939.
    [2-28]Wang Dongming, Han Bing, Zhao Junhui, et al, "Channel estimation algorithms for broadband MIMO-OFDM sparse channel," In Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications (PIMRC'02), Beijing, China, Sep.2003, pp.1929-1933.
    [2-29]Carbonelli C., Vedantam S., and Mitra U., "Sparse channel estimation with zero tap detection," IEEE Trans. Wireless Commun., vol.6(5), May 2007, pp.1743-1753.
    [2-30]Raghavendra M. R. and Giridhar K., "Improving channel estimation in OFDM systems for sparse multipath channels," IEEE Signal Processing Lett., vol.12(1), Jan.2005, pp.52-55.
    [2-31]Bajwa, W. U., Sayeed, A., Nowak, R., "Compressed sensing of wireless channels in time, frequency, and space," In Proc. Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, Oct.2008, pp.2048-2052.
    [3-1]Waheed U. Bajwa, Jarvis Haupt, Akbar M. Sayeed, et al, "Compressed channel sensing:a new approach to estimating sparse multipath channels," Proceedings of the IEEE, vol.98(6), June 2010, pp.1058-1076.
    [3-2]Fevrier I. J., Gelfand S. B., and Fitz M. P., "Reduced complexity decision feedback equalization for multipath channels with large delay spreads," IEEE Trans. Commun., vol.47, June 1999, pp.927-937.
    [3-3]Shukla P. K. and Turner L. E, "Channel-estimation-based adaptive DFE for fading multipath radio channels," Proc. Inst. Elect. Eng., vol.138, Dec.1991, pp.525-543.
    [3-4]Van De Beek. J. J, Edfors. O, Sandell. M, et al., "On channel estimation in OFDM systems," IEEE VTC 1995, Chicago, July.1995, pp.815-819.
    [3-5]Bajwa, Waheed U., Haupt, "Toeplitz-Structured Compressed Sensing Matrices," In Statistical Signal Processing, IEEE/SP 14th Workshop,2007, pp.294-298.
    [3-6]Asif M. Salman and Romberg Justin, "On the LASSO and Dantzig Selector Equivalence," In 44th Annual Conference on Information Sciences and Systems (CISS),2010, pp.1-6.
    [3-7]Tibshirani R., "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society, Series B, vol.58(1),1996, pp.267-288.
    [3-8]Candes E. and Tao T., "The Dantzig selector:Statistical estimation when p is much larger than n," Annals of Statistics, vol.35(6),2007, pp.2313-2351.
    [3-9]Gui Guan, Wan Qun, Huang Anmin, et al, "Sparse multi-path channel estimation using Dantzig selector," 12th International Symposium on Wireless Personal Multimedia Communications (WPMC), Sendai, Japan, September,2009.
    [3-10]Wang Nina, Tang Tian, Zhang Zhi, et al, "Effective sparse channel estimation for wireless multipath systems," Recent Advances in Computer Science and Information Engineering, Lecture Notes in Electrical Engineering, vol.127, 2011, pp.85-90.
    [4-1]Foschini G J. and Gans M. J., "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Pers. Commun., vol.40(6), August 1998, pp.311-335.
    [4-2]Gray R. M. "Toeplitz and circulant matrices:a review," Foundations and Trends in Communications and Information Theory, vol.3(2),2006, pp. 155-239.
    [4-3]Bajwa, Waheed U., Haupt, "Toeplitz-structured compressed sensing matrices," In Statistical Signal Processing, IEEE/SP 14th Workshop,2007, pp. 294-298.
    [4-4]Wang Nina, Tang Tian, Zhang Zhi, Jiang Jun, "Effective sparse channel estimation for wireless multipath systems," Recent Advances in Computer Science and Information Engineering, Lecture Notes in Electrical Engineering, vol.127,2011, pp.85-90.
    [4-5]Gui Guan, Wan Qun, Peng Wei and Fumiyuki Adachi, "Sparse multipath channel estimation using compressive sampling matching pursuit algorithm," IEEE VTS APWCS2010.
    [4-6]Needell D. and Tropp J A., "CoSaMP:Iterative signal recovery from incomplete and inaccurate samples," Appl. Comp. Harmonic Anal, vol.26(3), 2009, pp.301-321.
    [4-7]Needell D., "Topics in compressed sensing," PhD Dissertation, Mathematics, Univ. of California, Davis, May 2009.
    [4-8]Asif M. Salman and Romberg Justin, "On the LASSO and Dantzig Selector Equivalence," In 44th Annual Conference on Information Sciences and Systems (CISS),2010, pp.1-6.
    [4-9]王妮娜,桂冠,张治,唐恬,“基于压缩感知的MIMO系统稀疏信道估计方法研究,”应用科学学报,第四期,第二十九卷,2011,347-352。
    [4-10]Naterajan N. "On systems beyond 3G:requirements and approaches," In Proc. IEEE ICCT'03, Apr.2003, pp.1305-1309.
    [4-11]Recommemdation ITU-RM.1645:Vision frame work and over all objectives of the future development of IMT-2000 and of systens beyond IMT-2000.
    [4-12]Chang R. W., "Synthesis of band-limited orthogonal signals for multichannel data transmission," Bell Syst. Tech. J, Dec.1966, pp.1775-1796.
    [4-13]Berthold U., Jondral F. K., Brandes S., et al "OFDM-based overlay systems: a promising approach for enhancing spectral efficiency," IEEE Commun. Mag., vol.45(12),2007, pp.52-58.
    [4-14]张平,Beyond 3G移动通信系统关键技术,北京邮电大学学报,第二期,第25卷,2002,pp.1-6。
    [4-15]王甫莉,阔永红,陈健等,MIMO-OFDM系统信道估计算法综述,电子科技,第2期,第209卷,2007,pp.73-75。
    [4-16]Li Ye, "Simplified channel estimation for OFDM systems with multiple transmit antennas," IEEE Transaction on Wireless Communications, vol.1 (1),2002, pp.67-75.
    [4-17]Suh C, Hwang CS, Choit H., "Comparative study of time-domain and frequency-domain channel estimation in MIMO-OFDM systems," In the 14th IEEE 2003 International Symposium on Personal, Indoor and Mobile Radio Communication Proceedings. Beijing, China:IEEE Press,2003, pp.1095-1099.
    [4-18]Zhou Yan, Herdin M., Sayeed A. M., et al, "Experimental study of MIMO channel statistics and capacity via the virtual channel representation," 2007, http://dune.ece.wisc.edu/pdfs/zhou_meas.pdf.
    [4-19]Czink N., Yin X., Ozcelik H., et al, "Cluster characteristics in a MIMO indoor propagation environment," IEEE Trans. Wireless Commun., vol.6(4), 2007,pp.1465-1475.
    [4-20]Vuokko L., Kolmonen V. M., Salo J., et al, "Vainikainen. Measurement of large-scale cluster power characteristics for geometric channel models," IEEE Trans. Antennas Propagat., vol.55(11),2007, pp.3361-3365.
    [4-21]Cramer R. J.-M., Scholtz R. A., and Win M. Z., "Evaluation of an ultra-wide-band propagation channel," IEEE Trans. Antennas Propagat., vol. 50(5),2002, pp.561-570.
    [4-22]Taubock G., Hlawatsch F., Eiwen D., et al, "Compressive estimation of doubly selective channels in multicarrier systems:leakage effects and sparsity-enhancing processing," IEEE Journal of Selected Topics in Signal Processing, vol.4(2),2010, pp.255-271.
    [4-23]朱行涛,刘郁林,赵翔等,MIMO-OFDM系统中稀疏信道估计算法研究,云南大学学报(自然科学版),第二十九期,第六卷,2007,pp.574-578。
    [4-24]Wang Nina, Gui Guan, Tang Tian, et al, "A Novel Sparse Channel Estimation Method for Multipath MIMO-OFDM Systems," IEEE VTC2011-fall, San Francisco, CA,2011, pp.1-5.
    [4-25]Wang Nina, Zhang Zhi, Gui Guan, et al, "Improved Sparse Channel Estimation for Multicarrier Systems with Compressive Sensing," 14th International Symposium on Wireless Personal Multimedia Communications (WPMC), France,2011, pp.1-5.
    [4-26]Wang Nina, Zhang Zhi, Gui Guan, et al, "Effective Channel Estimation for Sparse Multipath OFDM Systems," IET International Conference on Communication Technology and Application (ICCTA2011), Beijing, China, 2011, pp.50-54.
    [4-27]Wang Nina, Zhang Zhi, Gui Guan, et al, "Improved Compressive Channel Estimation for MISO OFDM Systems," 2011 International Conference on Computational Problem-Solving (ICCP), Chengdu, China,2011, pp.291-295.
    [5-1]Laneman J. and Wornell G, "Distributed space time block coded protocols for exploiting cooperative disversity in wireless networks," IEEE Trans. Inf. Theory, vol.49(10), Oct.2003, pp.2415-2425.
    [5-2]Laneman J., Tse D., and Wornell G., "Cooperative diversity in wireless networks:Efficient protocols and outage behavior," IEEE Trans. Inf. Theory, vol.50(12), Dec.2004, pp.3062-3080.
    [5-3]Boyer J., Falconer D. D., and Yanikomeroglu H., "Multihop diversity in wireless relaying channels," IEEE Trans. Commu., vol.52(9), Oct.2004, pp.1820-1830.
    [5-4]Zhang S., Liew S. C., and Lam P. P., "Physical-layer network coding," in Proc. MobiComm, Los Angeles, CA, Sep.2006, pp.358-365.
    [5-5]Gao F., Zhang R., and Liang Y. C., "Optimal channel estimation and training design for two-way relay networks," IEEE Trans. Commun., vol.57(10), Oct. 2009, pp.3024-3033.
    [5-6]Gao F., Zhang R., and Liang Y. C., "Channel estimation for OFDM based two-way relay networks," IEEE Trans. on Signal Processing, vol.57(11), Oct. 2009, pp.4443-4455.
    [5-7]Gao F., Jiang B., Gao X., et al, "Channel estimation for ofdm modulated amplify-and-forward relay networks," IEEE Trans. Commun., vol.59(7), 2011, pp.2029-2039.
    [5-8]Yan Z., Herdin M., Sayeed A. M., et al, "Experimental study of MIMO channel statistics and capacity via the virtual channel representation," Available http://dune.ece.wisc.edu/pdfs/zhou_meas.pdf, Feb.2007.
    [5-9]Gray R M., "Toeplitz and circulant matrices:a review," Foundations and Trends in Communications and Information Theory, vol.,3(2),2006, pp.155-239.
    [5-10]Hoyer P. O., "Non-negative matrix factorization with sparseness constraints," Journal of Machine Learning Research, vol.49, June 2001, pp.1208-1215.
    [5-11]Gui Guan, Li J., Wang Nina, et al, "Compressive channel estimation for sparse multipath fading cooperation networks", Accepted by Advanced Science Letters,2011.
    [5-12]Gao F., T. Cui, A. Nallanatha, et al, "On channel estimation and optimal training design for amplify and forward relay networks," IEEE Trans. Wireless Commun., vol.7(5),2008, pp.1907-1916.
    [5-13]Zhang Aihua, Gui Guan, Yang Shouyi, "Compressive channel estimation for OFDM cooperation networks," Res. J. Appl. Sci. Eng. Technol., vol.4(8), 2012, pp.897-901.
    [5-14]Cheng P., Gui L., Rui Y, "Compressed Sensing Based Channel Estimation for Two-Way Relay Networks," IEEE Wireless Communications Letters, vol. PP(99),2012, pp.1-4.
    [6-1]Akyildiz I. F., Pompili D., and Melodia T., "Challenges for efficient communication in underwater acoustic sensor networks," ACM SIGBED Rev., vol.1(1), Jul.2004, pp.3-8.
    [6-2]Cui J. H., Kong J., Gerla M., et al, "The challenges of building mobile underwater wireless networks for aquatic applications," IEEE Network, Special Issue on Wireless Sensor Networking, vol.20(3), May 2006, pp.12-18.
    [6-3]Heidemann J., Mitra U., Preisig J. C., et al, "Guest editorial-Underwater wireless communication networks," IEEE J. Sel. Areas Commun., vol.26(9), Dec.2008, pp.1617-1619.
    [6-4]Singer A. C., Nelson J. K., and Kozat S. S., "Signal processing for underwater acoustic communications," IEEE Commun. Mag., vol.47(1), Jan. 2009, pp.90-96.
    [6-5]Stojanovic, M., "Recent advances in high-speed underwater acoustic communications," IEEE J. Ocean. Eng., vol.21(2), Apr,1996, pp.125-136.
    [6-6]Kilfoyle D. B. and Baggeroer A. B., "The state of the art in underwater acoustic telemetry," IEEE J. Ocean. Eng., vol.25(1), Jan.2000, pp.4-27.
    [6-7]Eggen T. H., Baggeroer A. B., and Preisig J. C., "Communication over Doppler spread channels. Part I:Channel and receiver presentation," IEEE J. Ocean. Eng., vol.25(1), Jan.2000, pp.62-71.
    [6-8]Stojanovic M., "Underwater acoustic communications," in Proc. Oceans'95. San Diego, CA, Oct.1995, pp.435-440.
    [6-9]乔刚,基于矢量传感器的水声通信技术研究,[哈尔滨工程大学博士学位论文],2004。
    [6-10]苏军,高速水声通信中OFDM的编码、调制技术与应用研究,[哈尔滨工程大学硕士学位论文],2008。
    [6-11]王明华,高速水声通信中OFDM的关键技术和应用研究,[哈尔滨工程大学博士学位论文],2007。
    [6-12]徐小卡,基于OFDM的浅海高速水声通信关键技术研究,[哈尔滨工程大学博士学位论文],2009。
    [6-13]王洪波,正交频分复用在水声通信中的应用研究,[哈尔滨工程大学博士学位论文],2006。
    [6-14]戴荣涛,王青春,现代水声通信技术的发展及应用,科技广场,第8期,2008年,pp.241-242。
    [6-15]黄晓萍,水声扩频通信技术研究,[哈尔滨工程大学博士学位论文],2006。
    [6-16]朱彤,基于正交频分复用的水声通信技术研究,[哈尔滨工程大学博士学位论文],2004。
    [6-17]孙博,程恩,欧晓丽,浅海水声信道研究与仿真,无线通信技术,第3期,2006,pp.11-15。
    [6-18]Dogandzic A. and Nihorai A., "Space-time fading channel estimation and symbol detection in unknown spatially correlated noise," IEEE Transactions on Signal Processing, vol.50(3),2002, pp.457-474.
    [6-19]杨士羲,水声传播原理,第1版,哈尔滨工程大学出版社,1994。
    [6-20]Urick著,洪申译,水声原理,哈尔滨工程大学出版社,1990。
    [6-21]Essebbar A, Loubet G, Vial F., "Underwater acoustic channel simulations for communication," in Proc. Oceans'94, Brest, France,1994, pp.495-500.
    [6-22]Marsh H W, Schulkin M., "Shallow water transmission," Journal of the Acoustical Society of America, vol.34,1962, pp.863-864.
    [6-23]刘伯胜,雷家煌,水声学原理,哈尔滨工程大学出版社,2002。
    [6-24]Domingo M. C., "Overview of channel models for underwater wireless communication networks," Physical communication, vol.1(3), Sep.2008, pp.163-182.
    [6-25]Lucani D., Medard M., Stojanovic M., "On the relationship between transmission power and capacity of an underwater acoustic communication channel," in Proc. IEEE Oceans'08 Conference, Kobe, Japan, April 2008, pp.1-6.
    [6-26]程恩,水声电子邮件传输研究,[厦门大学博士学位论文],2006。
    [6-27]Richard. V. N, Ramjee. P, "OFDM wireless multimedia communications," Arteck House, Boston, London, Jan.2000.
    [6-28]Weinstein. S. B, Ebert. P. M, "Data transmission by frequency division multiplexing using the discrete Fourier transform," IEEE Trans. Commun., vol.19(5), Oct.1971, pp.628-634.
    [6-29]Peled. A, Ruiz. A, "Frequency domain data transmission using reduced computational complexity algorithms," IEEE Conf. Acoust Speech Signal Processing, Denver,1980, pp.964-967.
    [6-30]Steele. R, "Mobile Radio Communication," IEEE Press, New York,1992.
    [6-31]Li. Y, Cimini. L. J, Sollenberger. N. R, "Robust channel estimation for OFDM systems with rapid dispersive fading channels," IEEE Trans. Commun., vol.46(7),1998, pp.902-915.
    [6-32]Kocic M., Brady D., Stojanovic M., "Sparse equalization for real-time digital underwater acoustic communications," MTS/IEEE OCEANS'95, vol.3(3), 1995,pp.1417-1422.
    [6-33]Qu F. and Yang L., "Basis expansion model for underwater acoustic channel," MTS/IEEE Oceans Conf., Quebec city, Quebec, Canada,2008, pp.1-7.
    [6-34]Huang S. J. and Schniter P., "Efficient multicarrier communication for highly spread underwater channels," IEEE J. Sel. Areas Commun., vol.26(9),2008, pp.1674-1683.
    [6-35]Leus G. and Walree P. A., "Multiband OFDM for covert acoustic communications," IEEE J. Sel. Areas Commun., vol.26(9),2008, pp.1662-1673.
    [6-36]Li W. and Preisig J. C., "Estimation of rapidly time-varying sparse channels," IEEE J. Ocean. Eng., vol.32(4),2007, pp.927-939.
    [6-37]Stojanovic M., "OFDM for underwater acoustic communications:adaptive synchronization and sparse channel estimation," the Int. Conf. Acoust., Speech, Signal Process., Las Vegas, NV,2008, pp.5288-5291.
    [6-38]Wu C. J. and Lin D. W., "Sparse channel estimation for OFDM transmission based on representative subspace fitting," IEEE Veh. Technol. Conf.-Spring, Stockholm, Sweden, vol.1,2005, pp.495-499.
    [6-39]Donoho D. L., "Compressed sensing," IEEE Transaction on Information Theory, vol.52(4), Apr.2006, pp.1289-1306.
    [6-40]Candes E., Romberg J., and Tao Terence, "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information," IEEE Trans. on Information Theory, vol.52(2),2006, pp.489-509.
    [6-41]Baraniuk R.G., "Compressive sensing," IEEE Signal Processing Magazine, vol.24(4),2007, pp.118-120.
    [6-42]Candes E. J. and Tao T., "Near optimal signal recovery from random projections:universal encoding strategies," IEEE Trans. Info. Theory, vol. 52(12),2006, pp.5406-5425.
    [6-43]Cotter S. F. and Rao B. D., "Sparse channel estimation via matching pursuit with application to equalization," IEEE Trans. Commun., vol.50(3),2007, pp.374-377.
    [6-44]Karabulut G.Z. and Yongacoglu A., "Sparse channel estimation using orthogonal matching pursuit algorithm," IEEE VTC2004-fall, Los. Angeles, CA.,2004, pp.3880-3884.
    [6-45]Wu C. J. and Lin D. W., "A group matching pursuit algorithm for sparse channel estimation for OFDM transmission," the Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Toulouse, France, vol.4,2006, pp.IV.
    [6-46]Carbonelli C. and Miltra U., "A simple sparse channel estimator for underwater acoustic channels," MTS/IEEE Oceans Conf., Vancouver, BC, Canada,2007, pp.1-6.
    [6-47]Paredes J. L., Arce J. and Wang Z., "Ultra-wideband compressed sensing: channel estimation," IEEE J. Sel. Topics Signal Proc., vol.1(3),2007, pp.383-395.
    [6-48]Friedlander B., "Random projections for sparse channel estimation and equalization," the Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, 2006, pp.453-457.
    [6-49]Bajwa W. U., Haupt J., Sayeed A. M., et al, "Compressed channel sensing:a new approach to estimating sparse multipath channels," proceeding of the IEEE, vol.98(6), June 2010, pp.1058-1076.
    [6-50]Sharp M. and Scaglione A., "Application of sparse signal recovery to pilot-assisted channel estimation," the Int. Conf. Acoust., Speech, and Signal Process. (ICASSP), Las Vegas, NV, Apr.2008, pp.3469-3472.
    [6-51]Taubock G. and Hlawatsch F., "A compressed sensing technique for OFDM channel estimation in mobile environments:Exploiting channel sparsity for reducing pilots," the Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Las Vegas, NV, Apr.2008, pp.2885-2888.
    [6-52]Taubock G. and Hlawatsch F., "Compressed sensing based estimation of doubly selective channels using a sparsity-optimized basis expansion," the Eur. Signal Process. Conf. (EUSIPCO), Lausanne, Switzerland, Aug.2008, pp.1-6.
    [6-53]Bajwa W. U., Sayeed A., and Nowak R., "Learning sparse doubly selective channels," in Proc. Allerton Conf. Commun., Contr. Comput., Sep.2008, pp.575-582.
    [6-54]Bajwa W. U., Sayeed A., and Nowak R., "Compressed sensing of wireless channels in time, frequency, and space," presented at the Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA, Oct.2008, pp.2048-2052.
    [6-55]Kang T. and Iltis R. A., "Iterative carrier frequency offset and channel estimation for underwater acoustic OFDM systems," IEEE J. Sel. Areas Commun., vol.26(9), Dec.2008, pp.1650-1661.
    [6-56]Candes E. J., Romberg J., and Tao T., "Stable signal recovery from incomplete and inaccurate measurements," Commun. Pure Appl. Math., vol. 59, Aug.2006, pp.1207-1223.
    [6-57]Li B., Zhou S., Stojanovic M., et al, "Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts," IEEE J. Ocean. Eng., vol.33(2), Apr.2008, pp.1638-1649.
    [6-58]Berger C. R., Zhou Shengli, and Preisig J. C., "Sparse channel estimation for multicarrier underwater acoustic communication:from subspace methods to compressed sensing," IEEE Transactions on Signal Processing, vol.58(3), March 2010, pp.1708-1721.
    [6-59]Needell D., "Topics in compressed sensing," PhD Dissertation, Mathematics, Univ. of California, Davis, May 2009.
    [7-1]王妮娜,桂冠,张治等,“基于压缩感知的MIMO系统稀疏信道估计方法研究,”应用科学学报,第二十九卷,第四期,2011,pp.347-352。
    [7-2]Donoho D. L., "Compressed sensing," IEEE Transaction on Information Theory, vol.52(4), Apr.2006, pp.1289-1306.
    [7-3]Baraniuk R. G, "Compressive sensing," IEEE Signal Processing Magazine, vol.24(4),2007, pp.118-120.
    [7-4]Candes E. J. and Tao T., "Near optimal signal recovery from random projections:universal encoding strategies," IEEE Trans. Info. Theory, vol. 52(12),2006, pp.5406-5425.
    [7-5]Needell and Tropp J. A., "CoSaMP:Iterative signal recovery from incomplete and inaccurate samples," Appl. Comp. Harmonic Anal, vol.26(3), 2009, pp.301-321.
    [7-6]Gao F., Zhang R., and Liang Y. C., "Optimal channel estimation and training design for two-way relay networks," IEEE Trans. Commun., vol.57(10), Oct. 2009, pp.3024-3033.
    [7-7]Gao F., Zhang R., and Liang Y. Cv, "Channel estimation for OFDM based two-way relay networks," IEEE Trans. on Signal Processing, vol.57(11), Oct. 2009, pp.4443-4455.
    [7-8]孙博,程恩,欧晓丽,浅海水声信道研究与仿真,无线通信技术,2006(3),pp.11-15。
    [7-9]王明华,高速水声通信中OFDM的关键技术和应用研究,[哈尔滨工程大学博士学位论文],2007。
    [7-10]徐小卡,基于OFDM的浅海高速水声通信关键技术研究,[哈尔滨工程大学博士学位论文],2009。
    [7-11]Zhang S., Liew S. C., and Lam P. P., "Physical-layer network coding," in Proc. MobiComm, Los Angeles, CA, Sep.2006, pp.358-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700