西太平洋地区俯冲板块的精细结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西太平洋俯冲带是世界上最典型、最活动的俯冲带,已成为地学家们研究的一个热点。本研究以堪察加和日本地区为代表详细讨论了西太平洋俯冲板块的形态分布和速度结构。
     利用从16个地震台站拾取的768条远震到时和赵大鹏远震层析成像方法研究了堪察加地区下方从莫霍面至700 km深度范围内的三维速度结构。成像结果清楚地显示出两大速度异常特征,一是高波速的太平洋板块在堪察加地区南部下方一直俯冲到660-km不连续面以下,而且由南自北俯冲深度逐渐变浅,在阿留申-堪察加汇合带附近几乎消失;二是低波速的软流圈高温物质存在于堪察加的北部和汇合带的下方。在地幔过渡带内和过渡带的下方发现了两块高速异常体,分析认为它们分别是2 Ma前脱落的太平洋板块岩石圈和10 Ma前俯冲的Komandorsky板块。结合前人的研究,太平洋板块边缘处的岩石圈拆沉可能是由其周围高温地幔物质的消融和剪切作用引起的。此外,俯冲的明治海山群不但对太平洋板块的拆沉发挥了重要作用,而且使得靠近汇合带处的板块俯冲角度减小。
     尽管许多学者对日本列岛下的太平洋俯冲板块做了大量的研究,但板块的精细结构仍然不太清楚,主要包括板块厚度、板块内地震波速度随深度的变化、洋壳的俯冲情况以及橄榄石亚稳态楔是否存在等。本研究利用日本台网收集到的远震和近震的高精度到时数据探讨上述问题。采用三维射线追踪正演模拟法,首先利用333个远震计算得到了太平洋板块的平均厚度为85 km。接着利用3283个近震(震源深度大于40 km)分段测试了板块内的速度异常分布,结果表明速度异常随深度的增加而减小,这与地幔内的温度变化有关。然后在前者计算结果的基础上利用40-300 km深度范围内的近震测试得到日本东北和北海道地区下方洋壳俯冲的深度均为110 km,洋壳平均厚度分别为7.5 km和5 km,速度异常分别为1%和-3%。这说明洋壳在俯冲至110 km以深时,由于受温度和压力的影响,逐渐脱水、变质,直至与板块融合,而且通过分析震源与洋壳的位置关系认为靠近板块上边界的地震是由洋壳脱水变脆触发的。最后利用23个深震测试日本海地区和小笠原地区太平洋板块内的橄榄石亚稳态楔结构,结果显示在太平洋板块内约400 km深度附近的确存在一个低速异常体(-3%),该异常体被解释为橄榄石的亚稳态楔。通过分析深发震源与亚稳态楔的位置关系,发现大部分深震发生在亚稳态楔的内部。据此,可用相态转换断层理论解释深震的发震机制。
The western Pacific region is the most typical and most active subduction zone on Earth, and so it has been one of the most studied regions by many geoscientists since the advent of plate tectonics. In this study, we have investigated the morphology and seismic velocity structure of the subducting Pacific slab under Kamchatka and Japan Islands.
     We determined a 3-D P-wave velocity structure of the mantle down to 700 km depth under the Kamchatka peninsula by applying teleseismic tomography to 678 P-wave arrival times recorded by 16 seismic stations. The results show two significant structural features. One is the high-velocity subducting Pacific slab, which is visible in the upper mantle and extends below the 660-km discontinuity under southern Kamchatka, while it shortens toward the north and terminates near the Aleatian-Kamchatka junction. The other is a low-velocity anomaly interpreted as the asthenospheric flow, which is imaged beneath northern Kamchatka and under the junction. Two isolated high-velocity anomalies are imaged in and below the mantle transition zone, which are interpreted as the Pacific slab detached about 2 Ma ago and the Komandorsky lithosphere subducted about 10 Ma ago. Combining with many previous results, we conclude that the slab loss occurring under northern Kamchatka may be caused by slab-edge pinch-off by the asthenospheric flow. In addition, the subducted Meiji seamounts may have played an important role in the detachment of the Pacific slab, which cause the Pacific plate to subduct under Kamchatka with a lower dip angle near the junction.
     Although many studies have been made to image the subducting Pacific slab in and around the Japan Islands, details of the slab structure (such as the slab thickness, the relation between seismic velocity and depth variation, the subducting oceanic crust and the metastable olivine wedge) are still unclear. In this study, we have addressed these issues by adopting a forward-modeling approach with a 3-D ray-tracing technique and using arrival times from teleseismic, local and regional events recorded by the seismic network on the Japan Islands. Firstly, we use 333 teleseismic events and find that the average thickness of the Pacific slab beneath Japan is 85 km. Secondly, we use 3283 local and regional earthquakes with focal depths greater than 40 km to study the vertical distribution of velocity anomaly in the slab. Our result shows that the amplitude of velocity perturbation decreases with depth, which is related to the variation in temperature. Thirdly, we use the local and regional events with focal depths from 40 to 300 km to study the subducting oceanic crust beneath Northeast Japan and Hokkaido. Our results display that the oceanic crust extends down to 110 km depth under both regions, the average thickness of the oceanic crust is 7.5 and 5 km, and the velocity perturbation in the oceanic crust relative to the 1-D model is 1% and -3%, respectively. These results can be interpreted that the oceanic crust has dehydrated and metamorphosed gradually because of the increasing temperature and pressure with depth. After analyzing the relationship between the hypocenters and the oceanic crust, we consider that the earthquakes near the upper slab boundary are caused by the dehydration embrittlement of the oceanic crust. Finally, we use 23 deep earthquakes to investigate the metastable olivine wedge within the subducting Pacific slab beneath the Japan Sea and Izu-Bonin region. The results indicate that a low-velocity anomaly (-3%) indeed exists within the slab below 400 km depth, which is interpreted as the metastable olivine wedge. After careful earthquake relocation, we find that most deep earthquakes occurred within the wedge, suggesting that deep earthquakes may be caused by the phase transformational faulting.
引文
[1] Seno T., Gonzalez D G. Faulting caused by earthquakes beneath the outer slope of the Japan Trench. J., Phys. Earth, 1987, 35: 381~407
    [2] Stern R J. Subduction zones. Rev. Geophys., 2002, 40: 1012~1049
    [3] 臧绍先, 宁杰远. 西太平洋俯冲带的研究及其动力学意义. 地球物理学报, 1996, 39(2): 188~202
    [4] Gorbatov A., Kostoglodov V., Suárez G. Seismicity and structure of the Kamchatka subdunction zone. J. Geophys. Res., 1997, 102: 17883~17898
    [5] Davaille A., Lees M. Thermal modeling of subducted plates: tear and hotspot at the Kamchatka corner. Earth Planet. Sci. Lett., 2004, 226: 293~304
    [6] Peyton V., Levin V., Park J., et al. Mantle flow at a slab edge: seismic anisotrophy in the Kamchatka region. Geophys. Res. Lett., 2001, 28: 379~382
    [7] Yogodzinski G M., Lees J M., Churikova T G., et al. Geochemical evidence for the melting of subucting oceanic lithosphere at plate edges. Nature, 2001, 409: 500~504
    [8] Levin V., Shapiro N., Park J., et al. Seismic evidence for catastrophic slab loss beneath Kamchatka. Nature, 2002, 418: 763~767
    [9] Zhao D., Hasegawa A., Kanamori H. Deep structure of Japan subduction zone as derived from local, regional and teleseismic events. J. Geophys. Res., 1994, 99: 22313~22329
    [10] Tonegawa T., Hirahara K., Shibutani T., et al. Lower slab boundary in the Japan subduction zone. Earth Planet. Sci. Lett., 2006, 247: 101~107
    [11] Abdelwahed M F., Zhao D. Deep structure of the Japan subduction zone. Phys. Earth Planet. Inter., 2007, 162: 32~52
    [12] Nakajima J., Matsuzawa T., Hasegawa A., et al. Seismic imaging of arc magma and fluids under the central of northeastern Japan. Tectonophysics, 2001, 341: 1~17
    [13] Iidaka T., Mizoue M. P-wave velocity structure inside the subducting Pacific plate beneath the Japan region. Phys. Earth Planet. Inter., 1991, 66: 203~213
    [14] Shimamura H., Asada T., Suyehiro K., et al. Long shot experiments to study velocity anisotropy in the oceanic lithosphere of the northwestern Pacific. Phys. Earth Planet Inter.,1983, 31: 348~362
    [15] Stein S., Stein C A. Thermo-mechanical evolution of oceanic lithosphere: Implications for the subducting process and deep earthquakes, in Subduction: Top to Bottom. Geophys. Monogr. Ser., 1996. 96: 1~17
    [16] Sung C., Burns R. Kinetics of high-pressure phase transformations: implications to the evolution of the olivine → spinel transition in the downgoing lithosphere and its consequences on the dynamics of the mantle. Tectonophysics, 1976, 31: 1~32
    [17] Sung C., Burns R G. Kinetics of the olivine → spinel transition: implications to deep~focus earthquake genesis. Earth Planet. Sci. Lett., 1976, 32: 165~170
    [18] Frohlich C. A break in the deep. Nature, 1994, 368: 100~101
    [19] Iidaka T., Suetsugu D. Seismological evidence for metastable olivine inside a subducting slab. Nature, 1992, 356: 593~595
    [20] Kaneshima S., Okamoto T., Takenaka H. Evidence for a metastable olivine wedge inside the subducted Mariana slab. Earth Planet. Sci. Lett., 2007, 258: 219~227
    [21] Kennett B., Engdahl E. Travel times for global earthquake location and phase identification. Geophys. J. Int., 1991, 105: 426~465
    [22] Kirby S H., Stein S., Okal E A., et al. Metastable mantle transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophys., 1996, 34: 261~306
    [23]Burnley P C., GreenⅡ H W., Prior D. Faulting associated with the olivine to spinel transformation in Mg2GeO4 and its implications for deep-focus earthquakes. J. Geophys. Res., 1991, 96: 425~43
    [24] Green II H W. Tiny triggers deep down. Nature, 2003, 424: 893~894
    [25] Zhao D., Hasegawa A., Horiuchi S. Tomographic imaging of P and S wave velocity structure beneath Northeastern Japan. J. Geophys. Res., 1992, 97: 19909~19928
    [26] 齐诚. 中国首都圈和美国阿拉斯加地区的地震层析成像研究:[博士学位论文]. 北京:中国科学院研究生院, 2005
    [27] Dines K A., Lytle R J. Computerized geophysical tomography. Proc. IEEE, 1979, 67: 1065~1073
    [28] Zhao D. New advances of seismic tomography and its applications to subduction zones and earthquake fault zones: A reviews. The Island Arc, 2001, 10: 68~84
    [29] Aki K., Lee W H K. Determination of three dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes. Part I: A homogeneous initial earth model. J. Geophys. Res., 1976, 81: 4381~4399
    [30] Aki K., Christofferson A., Husebye E S. Determination of the three dimensional seismic structure of the lithosphere. J. Geophys. Res., 1977, 82: 277~296
    [31] Dziewonski A M., Hager B., O’ Connell R. Larger-scale heterogeneities in the lower mantle. J. Geophys. Res., 1977, 82: 23~55
    [32] Dziewonski A M. Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res., 1984, 89: 8929~5952
    [33] Nakanishi I., Anderson D. World-wide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion. Bull. Seism. Soc. Amer., 1982, 72:1185~1194
    [34] Woodhouse J., Dziewonski A. Mapping the upper mantle: three~dimensional modeling of earth structure by inversion of seismic waveforms. J. Geophys. Res., 1984, 89: 5953~5986
    [35] Tanimoto T., Anderson D. Mapping convection in the mantle. Geophys. Res. Lett., 1984. 11:287~290
    [36] Thurber C H. Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J. Geophys. Res., 1983, 88: 8226~8236
    [37] Horie A. Three-dimensional seismic velocity structure beneath the Kanto district by inversion of P~wave arrival times: (PhD Thesis). Tokyo, Japan: University of Tokyo, 1980
    [38] Thurber C H., Ellsworth W. Rapid solution of ray tracing problems in heterogeneous media. Bull. Seism. Soc. Amer., 1980, 70: 1137~1148
    [39] Miyatake T. On the travel time calculation by using approximate ray tracing in a laterally heterogeneous velocity structure. J. Seism. Soc. Jpn., 1987, 40: 99~110
    [40] Um J., Thurber C H. A fast algorithm for two-point seismic ray tracing. Bull. Seismol. Soc. Am., 1987, 77: 972~986
    [41] Prothero W., Taylor W., Eickemeyer J. A fast, two-point, three-dimensional ray tracing algorithm using a simplex step search method. Bull. Seism. Soc. Amer., 1988, 78: 1190~1198
    [42] Sadegi H., Suzuki S., Takenaka H. A twopoint, three-dimensional seismic ray tracing using genetic algorithms, Phys. Earth Planet. Inter., 1999, 113: 355~365
    [43] Vidale J. Finite-difference traveltime calculation, Bull. Seism. Soc. Amer., 1988, 78: 2062~2076
    [44] Vidale J. Finite-difference calculation of traveltime in three dimensions. Geophyscis, 1990, 55: 521~526
    [45] Podvin P., Lecomte I. Finite-difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophys. J. Int., 1991, 105: 271~284
    [46] Coultrip R. High-accuracy wavefront tracing traveltime calculation. Geophysics, 1993, 58: 284~292
    [47] 朱金明, 王丽燕. 地震波走时的有限差分法. 地球屋里学报, 1992, 35(1): 86~92
    [48] 刘清林. 地震初至波射线路径的追踪. 石油物探, 1993, 32(2): 14~20
    [49] 张霖斌, 姚振兴, 纪晨. 地震初至波走时的有限差分计算. 地球物理学进展, 1996, 11(4): 47~52
    [50] 赵改善, 郝守玲, 杨尔皓, 等. 基于旅行时线性差值的地震射线追踪方法. 石油物探, 1998, 37(2): 14~24
    [51] 王华忠, 方正茂, 徐兆淘, 等. 地震波旅行时计算, 1999, 34(2): 155~163
    [52] Nowack R. L., Psencik I. Perturbation from isotropic to anisotropic heterogeneous media in the ray approximation. Geophys. J. Int., 1991, 106: 1~10
    [53] Psencik I., Green functions for inhomogeneous weakly anisotropic media. Geophys. J. Int., 1998, 135: 279~288
    [54] 王家映. 地球物理反演理论(第二版). 北京:高等教育出版社, 2002
    [55] Nolet G. Solving or resolving inadequate and noisy tomographic systems. J. Comput. Phys., 1985, 61: 463~482
    [56] Spakman W., Nolet G. Imaging algorithms, accuracy and resolution in delay time tomography, in Mathematical Geophysics, edited by N. J. Vlaar, G. Nolet, M.J.R. Wortel, and S.A.P.L., Cloetingh, pp. 155~187, Norwell, 1988
    [57] Lees J M., Crosson R S. Tomographic inversion for three-dimensional velocity structure at Mount St. Helens using earthquake data. J. Geophy. Res., 1989, 94: 5716~5729
    [58] Ammon C., Vidale J. Tomography without rays. Bull. Seism. Soc. Amer., 1993, 83: 509~528
    [59] Steck L. Simulated annealing inversion of teleseismic P-wave slowness and azimuth forcrustal velocity structure at Long Valley caldera. Geophys. Res. Lett., 1995, 22: 497~500
    [60] Backus G., Gilbert F. The resolving power of gross Earth data. Geophysical Journal of the Royal Astronomical Society, 1968, 16: 169~205
    [61] 刘伊克, 常旭. 地震层析成像反演中解的定量评价及其应用. 地球物理学报, 2000, 43(2): 251~256
    [62] Humphreys E R., Clayton R W. Adaptation of back projection tomography to seismic travel time problems. J. Geophys. Res., 1988, 93: 1073~1085
    [63] Leveque J., Rivera L., Wittlinger G. On the use of the checker-board test to assess the resolution of tomographic inversions. Geophys. J. Int., 1993, 115: 313~318
    [64] Anderson A.H., Kak A C. Simutanous algebraic reconstruction. Ultrasonic imaging, 1984, 6: 81~94
    [65] Zhang J., McMechan G. Estimation of resolution and covariance for large matrix inversions. Geophys. J. Int., 1995, 121: 409~426
    [66] Nolet G., Montelli R., Virieux J. Explicit, approximate expressions for the resolution and a posteriori covariance of massive tomographic systems. Geophys. J. Int., 1999, 138: 36~44
    [67] Yao Z., Roberts R., Tryggvason A. Calculating resolution and covariance matrices for seismic tomography with the LSQR method. Geophys. J. Int., 1999, 138: 886~894
    [68] Fan G., Wallace T., Zhao D. Tomographic imaging of deep velocity structure beneath the eastern and southern Carpathians, Romania: Implications for continental collision, J. Geophys. Res., 1998, 103: 2705~2723
    [69] Di Stefano R., Chiarabba C. Active source tomography at Mt. Vesuvius: Constraints for the magmatic system. J. Geophys. Res., 2002, 107, doi:10.1029/2001JB000792
    [70] Serrano I., Zhao D., Morales J., et al. Seismic tomography from local crustal earthquakes beneath eastern Rif Mountains of Morocco. Tectophysics, 2003, 367: 187~201
    [71] 郭飚, 刘启元, 陈九辉, 等. 青藏高原东北缘-鄂尔多斯地壳上地幔地震层析成像研究. 地球物理学报, 2004, 47: 790~797
    [72] Huang J., Zhao D. Crustal heterogeneity and seismotectonics of the region around Beijing, China. Tectophys., 2004, 385: 159~180
    [73] Zhao D., Todo S., Lei J. Local earthquake reflection tomography of the Landers aftershock area. Earth Planet. Sci. Lett., 2005, 235: 623~631
    [74] Mukhopadhyay S., Mishra O P., Zhao D., et al. 3-D Seismic structure of the source area of the 1993 Latur, India, earthquake and its implications for rupture nucleations. Tectophys, 2006, 415: 1~16
    [75] Wang Z., Zhao D. Seismic evidence for the influence of fluids on the 2005 west off Fukuoka prefecture earthquake in southwest Japan. Phys. Earth Planet. Inter., 2006, 155: 313~324
    [76] Lei J., Zhao D. A new insight into the Hawaiian plume. Earth Planet. Sci. Lett., 2006, 241: 438~453
    [77] Zhao D., Lei J., Inoue T., et al. Deep structure and origin of the Baikal rift zone. Earth Planet. Sci. Lett., 2006, 243: 681~691
    [78] Zhao D., Yamada A., Ohta Y. Precisely measured travel times of mantle body waves: Implications for mantle heterogeneity and tomography. Earth Sci. Front., 2006, 13: 37~47
    [79] 田有, 赵大鹏, 孙若昧, 等. 1992 年美国加州兰德斯地震:地壳结构不均匀性对地震发生的影响. 地球物理学报, 2007, 50: 1488~1496
    [80] Zhao D., Maruyama S., Omori S. Mantle dynamics of Western Pacific and East Asia: Insight from seismic tomography and mineral physics. Gondwana Res., 2007, 11: 120~131
    [81] Zhao D. Seismic images under 60 hotspots: Search for mantle plumes. Gondwana Res., 2007, 12: 335~355
    [82] Zhao D. A tomographic study of seismic velocity structure of the Japan Island: (Ph. D. Thesis). Sendai, Japan: Tohoku University, 1991
    [83] Cerveny V., Molotkov I A., Psencik I. Ray method in seismology, Univ. Karlova Press, Prague, Czechoslovakia, p: 214, 1977
    [84] Steblov G.M., Kogan M G., King R W., et al. Imprint of the North American plate in Siberia revealed by GPS. Geophys. Res. Lett., 2003, 30, doi:10.1029/2003GL017805
    [85] Honthaas C., Bellon H., Kepezhinskas P K., et al. New 40K-40Ar dates for the Cretaceous-Quaternary magmatism of Northern Kamchatka (Russia). C. R. Acad. Sci. Paris Serie (II), 1995, 320: 197~204
    [86] Braitseva O.A., Melekestsev I V., Ponomareva V V., et al. Ages of calderas, large explosive craters and active volcanoes in the Kuril~Kamchatka region, Russia. Bull. Volcanol., 1995, 57: 383~402
    [87] Gorbatov A., Domínguez J., Suárez G., et al. Tomographic imaging of the P-wave velocitystructure beneath the Kamchatka peninsula. Geophys. J. Int., 1999, 137: 269~279
    [88] Gorbatov A., Widiyantoro S., Fukao Y., et al. Signature of remnant slabs in the North Pacific from P-wave tomography. Geophys. J. Int., 2000, 142: 27~36
    [89] Gordon R G., Jurdy D N. Cenozoic global plate motions. J. Geophys. Res., 1986, 91: 12389~12406
    [90] Bazhenov M L., Burtman V S., Krezhovskikh O A., et al. Paleotectonic reconstruction of the Aleutian Arc~Kamchatka convergence zone. Geotectonics , 1991, 25: 244~256
    [91] Parfenov L M., Natal’in B A. Mesozoic accretion and collision tectonics of northeastern Asia, in Tectonostratigraphic Terranes of the Circum-Pacific Region. In: Howell D G, eds. Circum-Pacific Council. Houston, TX., 1985, 363~373
    [92] Lees J M., Brandon M., Park J., et al. Kamchatka: Edge of the Plate. IRIS newsletter, 2000, 1: 17~19
    [93] Paige C., Saunders M. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw., 1982, 8: 43~71
    [94] Lei J., Zhao D. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics, 2005, 397: 281~ 295
    [95] Montelli R., Nolet G., Dahlen F A., et al. A catalogue of deep mantle plumes: New results from finite~frequency tomography. Geochem. Geophys. Geosyst., 2006, 7, Q11007, doi:10.1029/2006GC001248
    [96] Levin V., Park J., Brandon M., et al. Crust and upper mantle of Kamchatka from teleseimic receiver function. Tectonophysics, 2002, 358: 233~265
    [97] Laske G., Masters G., Reif C. CRUST2.0: A new global crustal model at 2×2 degrees. http://mahi.ucsd.edu/Gabi/rem.dir/crust/crust2.html
    [98] Mooney W., Laske G., Masters G. CRUST5.1: a global crustal model at 5×5 degrees. J. Geophys. Res., 1998, 103: 727~747
    [99] Engdahl E R., van der Hilst R., Buland R. Global teleseismic earthquake location with improved travel times and procedure for depth determination. Bull. Seismol. Soc. Am., 1998, 88: 722~743
    [100] Lucente F P., Chiarabba C., Cimini G B., et al. Tomographic constraints on the geodynamic evolution of the Italian region. J. Geophys. Res., 1999, 104: 20307~20327
    [101] Wortel M J R., Spakman W. Subduction and slab detachment in the Mediterranean-Carpathian region. Science, 2000, 290: 1910~1917
    [102] Park J., Levin V., Brandon M., et al. A dangling slab, amplified arc volcanism, mantle flow and seismic anisotrophy in the Kamchatka plate corner. Geodynamics Series, 2002, 30, doi: 10/1029/030GD18
    [103] Watson B F., Fujita K. Tectonic evolution of Kamchatka and Sea of Okhotsk and implication for the pacific basin. In Tectonostratigraphic Terranes of the Circum-Pacific Region. In: Howell D G., eds. Circum~Pacific Counsil. Houston, TX., 1985, 333~348
    [104] Hochstaedler A G., Kepezhinskas P K., Defan M J., et al. On the tectonic significance of arc volcanism in northern Kamchatka. J. Geology, 1994. 102: 639~654
    [105] Jarrard R D. Relations among subduction parameters. Rev. Geophys., 1986, 24: 217~284
    [106] Matsuzawa T., Kono T., Hasegawa A., et al. Subducting plate boundary beneath the northeastern Japan arc estimated from SP converted waves. Tectonophysics, 1990, 181: 123~133
    [107] Okada H. Forerunners of ScS waves from nearby deep earthquakes and upper mantle structure in Hokkaido (in Japanese). J. Seism. Soc. Jpn., 1971, 24: 228~239
    [108] Okada H. New evidence of the discontinuous structure of the descending lithosphere as revealed by ScSp phase. J. Phys. Earth, 1979, 27 Suppl.: S53~S64
    [109] Hasegawa A., Umino N., Takagi A. Double-planed deep seismic zone and upper-mantle structure in the northeastern Japan arc. Geophys. J. R. Astron. Soc., 1978, 54: 281~296
    [110] Nakanishi I., Suyehiro K., Yokota T. Regional variations of amplitudes of ScSp phases observed in the Japanese islands. Geophys. J. R. Astron. Soc., 1981, 67: 615~634
    [111] Matsuzawa T., Umino N., Hasegawa A., et al. Upper mantle velocity structure estimated from PS~converted wave beneath the northeastern Japan arc. Geophys. J. R. Astron. Soc., 1986, 86: 767~787
    [112] Zhao D., Matsuzawa T., Hasegawa A. Morphology of the subducting slab boundary in the northeastern Japan arc. Phys. Earth Plane. Int., 1997, 102: 89~104
    [113] Liu L. Phase transformations, earthquakes and the descending lithosphere. Phys. Earth Plane. Int., 1983, 32: 226~240
    [114] Ringwood A E. Phase transformations in descending plates and implications for mantledynamics. Techtonophysics, 1976, 32: 129~143
    [115] Umino N., Matsuzawa T., Hasegawa A. X phases after P arrivals from deep earthquakes beneath northeastern Japan arc. Programme and abstracts, Seismol. Soc. Jpn. (in Japanese), 1990, 2, p. 200
    [116] Hiyoshi T., Yoshioka S. An attempt to detect reflected waves from the lower boundary of a descending slab. Phys. Earth Planet. Inter., 1997, 104: 331–344
    [117] Yamasaki T., Seno T. Double seismic zone and dehydration embrittlement of the subducting slab. J. Geophys. Res., 2003, doi:10.1029/2002JB001918
    [118] Peacock S.M., Wang K. Seismic consequences of warm versus cool subduction metamorphism: examples from southwest and northeast Japan. Science, 1999, 286: 937~939
    [119] Zhao D., Hasegawa A. P wave tomographic imaging of the crust and upper mantle beneath the Japan Islands. J. Geophys. Res., 1993, 98: 4333~4353
    [120] Zhao D., Horiuchi S., Hasegawa A. Seismic velocity structure of the crust beneath the Japan Islands. Tectonophysics, 1992, 212: 289~301
    [121] Huang J., Zhao D. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res., 2006, 111, doi:10.1029/2005JB004066
    [122] Zhao D., Kayal J R. Impact of seismic tomography on Earth sciences. Current Science, 2000, 79: 1208~1214
    [123] Zhao D., Kanamori H., Negishi H., et al. Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter? Science, 1996, 274: 1891~1894
    [124] Zhao D., Negishi H. The 1995 Kobe earthquake: Seismic image of the source zone and its implications for the rupture nucleation. J. Geophys. Res., 1998, 103: 9967~9986
    [125] Kayal J R., Zhao D., Mishra O P., et al. The 2001 Bhuj earthquake: Tomographic evidence for fluids at the hypocenter and its implications for rupture nucleation. Geophys. Res. Lett., 2002, 29, dio: 10.1029/2002GL015177
    [126] Nakamura A., Hasegawa A., Ito A., et al. P-wave velocity structure of the crust and its relationship to the occurrence of the 1999 Izmit, Turkey, earthquake and aftershocks. Bull. Seismol. Soc. Amer., 2002, 92: 330~338
    [127] Mishra O P., Zhao D. Crack density, saturation rate and porosity at the 2001 Bhuj, India, earthquake hypocenter: A fluid driven earthquake? Earth Planet. Sci. Lett., 2003, 212:393~405
    [128] Zhao D. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys. Earth Planet. Inter., 2004, 146: 3~34
    [129] Peacock S.M. Thermal and petrologic structure of subduction zones, in Subduction: Top to Bottom. Geophys. Monogr. Ser., 1996, 96: 119~133
    [130] Hubbert M K., Rubey W W. Role of fluid pressure in mechanics of overthrust faulting, 1, Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol. Soc. Am. Bull., 1959, 70: 115~166
    [131] Shimamura H., Asada T. Apparent velocity measurements on an oceanic lithosphere. Phys. Earth Planet Inter., 1976, 13: 15~22
    [132] Suyehiro K., Sacks I S. P- and S-wave velocity anomalies associated with the subducting lithosphere determined from travel~time residuals in the Japan region. Bull. Seismol. Soc. Ame., 1979, 69: 97~114
    [133] Ando M., Kanishima S., Ohtaki T., et al. S to P converted phase from the lower plane of the double-planed deep-seismic zone. Eos. (Trans. Am. Geophys. Union), 1989, Oct. 24, 70, PP. 1228
    [134] Matsuzawa T., Umino T., Hasegawa A., et al. Estimation of thickness of a low-velocity layer at the surface of the descending oceanic plate beneath the northeastern Japan arc by using synthesized PS-wave. Sci. Rep. Tohoku Univ. Ser., 1987, 31: 19~28
    [135] Hacker B R., Peacock S M., Abers G A., et al. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res., 2003, 108: 2030~2045
    [136] Zhang J F., Green II H W., Bozhilov K., et al. Faulting induced by precipitation of water at grain boundaries in hot sunducting oceanic crust. Nature, 2004, 428: 633~636
    [137] 张克亮, 魏东平. 环太平洋俯冲带内双地震带及其成因机制研究进展. 地球物理学进展, 2008, 23(1): 31~39
    [138] Seno T., Zhao D., Kobayashi Y., et al. Dehydration of serpentinized slab mantle: seismic evidence from southwest Japan. Earth Planets Space, 2001, 53: 861~871
    [139] Yamasaki T., Seno T. Double seismic zone and dehydration embrittlement of subducting slab. J. Geophys. Res., 2003, 108: 2212~2232
    [140] Kirby S H., Durham W.B., Stern L A. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science, 1991, 252: 216~225
    [141] Raleigh C B., Paterson M S. Experimental deformation of serpentinite and its tetonics implications. J. Geophys. Res., 1965, 70: 3965~3985
    [142] Kirby S H. Intraslab earthquakes and phase changes in subducting lithosphere. Rev. Geophys., 1995, 33: 287~297
    [143] Schmidt M W., Poli S. The stability of lawsonite and zoisite at high pressures: Experiments in CASH to 92 kbar and implications for presence of hydrous phases in subducted lithosphere. Earth Planet. Sci. Lett., 1994, 124: 105~118
    [144] Ulmer P., Trommsdorff V. Serpentine stability to mantle depths and subduction-related magmatism. Science, 1995, 26: 858~861
    [145] Hobbs B E., Ord A. Plastic instabilities: implication for the origin of intermediate and deep focus earthquakes. J. Geophys. Res., 1988, 93: 10521~10540
    [146] Karato S., Riedel M R., Yuen D A. Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Phys. Earth Planet. Inter., 2001, 127: 83~108
    [147] Green ⅡH W., Burnley P C. A new self-organizing mechanism for deep-focus earthquakes. Nature, 1989, 341: 733–737
    [148] Green II H W., Houston H. The mechanisms of deep earthquakes. Annu. Rev. Earth Planet. Sci., 1995, 23: 169–213
    [149] Guest A., Schubert G., Gable C W. Stress along the metastable wedge of olivine in a subducting slab: possible explanation for the Tonga double seismic layer. Phys. Earth Planet. Inter., 2004, 141: 253~267
    [150] Bina C R. Phase transition buoyancy contributions to stresses in subducting lithosphere. Geophys. Res. Lett., 1996, 23: 3563~3566
    [151] Bina C R. Patterns of deep seismicity reflect buoyancy stresses due to phase transitions. Geophys. Res. Lett., 1997, 24: 3301~3304
    [152] Turcotte D L., Schubert G. Structure of the olivine-spinel boundary in the subducting lithosphere. J. Geophys. Res., 1971, 76: 7980~7987
    [153] Silver P., Carlson R W., Olson P. Deep slabs, geochemical heterogeneity, and the large~scalestructure of mantle convection. Annu. Rev. Earth Planet. Sci., 1988, 16: 477~541
    [154] Jordan T H. Lithospheric slab penetration into the lower mantle beneath the Sea of Okhotsk. J. Geophys., 1977, 43: 473~496
    [155] Creager K C., Jordan T H. Slab penetration into the lower mantle. J. Geophys. Res., 1984, 89: 3031~3049
    [156] Creager K C., Jordan T H. Slab penetration into the lower mantle beneath the Mariana and other island arcs of the northwest Pacific. J. Geophys. Res., 1986, 91: 3573~3589
    [157] Fischer K M., Jordan T H., Creager K C. Seismic constraints on the morphology of deep slabs. J. Geophys. Res., 1988, 93: 4773~4784
    [158] van der Hilst R., Engdahl R., Spakman W., et al. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature, 1991, 353: 37~43
    [159] Fukao Y., Obayashi M., Inoue H. Subducting slabs stragnant in the mantle transition zone. J. Geophys. Res., 1992, 97: 4809~4822
    [160] Grand S P. Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 1994, 99: 11591~11621
    [161] Engdahl E R., van der Hilst R.D., Berrocal J. Imaging of subducted lithosphere beneath South America. Geophys. Res. Lett., 1995, 22: 2317~2320
    [162] Widiyantoro S., van der Hilst R. The slab of subducted lithosphere beneath the Sunda arc, Indonesia. Science, 1996, 271: 1566~1570
    [163] Bina C R., Stein S., Marton F C., et al. Implications of slab mineralogy for subduction dynamics. Phys. Earth Planet. Inter., 2001, 127: 51~66
    [164] Minear J., Toks?z M N. Thermal regime of a downgoing slab and new global tectonics. J. Geophys. Res., 1970, 75: 1379~1419
    [165] Toks?z M N., Sleep N H., Smith A T. Evolution of the downgoing lithosphere and the mechanisms of deep focus earthquakes. Geophys. J.R. Astrol. Soc., 1973, 35: 285~310
    [166] Stein C A., Stein S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 1992, 359: 123~129
    [167] Dziewonski A M., Hales, A L., Lapwood, E R. Parametrically simple Earth models consistent with geophysical data. Phys. Earth Planet. Int., 1975, 10: 12~48
    [168] Ringwood A E. Phase transformations and differentiation in subducted lithosphere:implications for mantle dynamics, basalt petrogenesis, and crustal evolution. J. Geol., 1982, 90: 611~643
    [169] Bina C R. Free energy minimization by simulated annealing with applications to lithospheric slabs and mantle plumes. Pure Appl. Geophys., 1998, 151: 605~618
    [170] Fei Y., Mao H -K., Mysen B O. Experimental determination of element partitioning and calculation of phase relations in the MgO-FeO-SiO2 system at high-pressure and high temperature. J. Geophys. Res., 1991, 96: 2157~2170
    [171] Iidaka T., Furukawa Y. Double Seismic Zone for Deep Earthquakes in the Izu-Bonin Subduction Zone. Science, 1994,263: 1116~1118
    [172] Burnley P C., Green II H W. Stress dependence of the mechanism of the olivine~spinel transformation. Nature, 1989, 338: 753~756
    [173] Fletcher R C., Pollard D D. Anticrack model for pressure solution surfaces. Geology, 1981, 9: 419~424
    [174] Riedel M R., Karato S. Grain-size reduction in subducted oceanic lithosphere associated with the olivine-spinel transformation and its effects on rheology. Earth Planet. Sci. Lett., 1997, 148: 27~43
    [175] Fukao Y., Widiyantoro S., Obayashi M. Stagnant slabs in the upper and lower mantle transition region. Rev. Geophys., 2001, 39: 291~323
    [176] Koper K D., Wiens D A., Dorman L M., et al. Modeling the Tonga slab: can travel time data resolve a metastable olivine wedge? J. Geophys. Res., 1998, 103: 30079~30100
    [177] Yoshioka S., Murakami T. The effects of metastable olivine (α) wedge in subducted slabs on theoretical seismic waveforms of deep earthquakes. J. Geophys. Res., 2002, 107, doi: 10.1029/2001JB001223
    [178] Devaux J P., Schubert G. Formation of a metastable olivine wedge in a descending slab. J. Geophys. Res., 1997, 102: 24627~24637
    [179] Mosenfelder J L., Marton F C., Ross II C R., et al. Experimental constrains on the depth of olivine metastability in subducting lithosphere. Phys. Earth Planet. Inter., 2001, 127: 165~180
    [180] Wiens D.A., McGuire J J., Shore P J. Evidence for transformational faulting from a deep double seismic zone in Tonga. Nature, 1993, 364: 790~793
     [181] Waldhauser F., Ellsworth W L. A double-difference earthquake location algorithm: Method and application to the Northern Hayward Fault, California. Bull. Seism. Soc. Amer., 2000, 90: 1353~1368

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700