吡啶羧酸配体配合物的合成、结构和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配位聚合物因其独特的结构可剪裁性、多样的拓扑结构以及在气体存储、催化、磁性等领域的潜在应用受到了人们的广泛关注。依据分子工程学原理,通过选择特定金属离子和适当的有机配体,可以在一定程度上实现新型功能材料的定向设计与合成。
     本论文利用三种新型吡啶羧酸类配体(3,5-二(吡啶-4-甲氧基)苯甲酸(HL1),3,4-二(吡啶-4-甲氧基)苯甲酸(HL2)和3,5-二(吡啶-3-甲氧基)苯甲酸)(HL3),在水热条件下得到了10种配合物。研究表明:配合物的结构受诸多因素的影响,如金属离子的配位模式与配位数、配体自身的性质、反应的酸碱度、溶剂及辅助配体等。此外,研究了部分配合物的固态荧光和热稳定性质。具体内容如下:
     1、合成了新型的吡啶羧酸类配体3,5-二(吡啶-4-甲氧基)苯甲酸(HL1),3,4-二(吡啶-4-甲氧基)苯甲酸(HL2)和3,5-二(吡啶-3-甲氧基)苯甲酸(HL3),其和刚性配体苯二酸与双核(或三核)金属镉簇次级结构单元结合形成三个新颖的(3,8)-连接配合物:[Cd2(L1)2(1,3-bdc)] (1), [Cd2(L2)2(1,4-bdc)]·3H2O (2), [Cd3(L3)2(1,3-bdc)2] (3)。配合物1和3呈现出新颖的(3,8)-连接网络结构,其拓扑是新颖的并且未曾被报道过,其拓扑符号分别为(42·6)2(44·622·82)和(42·5)2(44·56·610·75·82·9);配合物2的拓扑符号为(43)2(46·618·84),属于tfz-d型网络。
     2、利用3,5-二(吡啶-3-甲氧基)苯甲酸(HL3)与过渡金属在水热条件下反应,成功得到五个具有二维结构的配合物:[Cd(L3)2]·H2O (4), [Zn(L3)2] (5), [Co(L3)2] (6), [Ni(L3)2] (7), [Cu2(L3)2]·3H2O (8)。配合物4是一个(3,4)-连接的二维层状结构,其拓扑符号为(63)(66)。配合物5~7是异质同构体,在其结构中包含有Zn-L3配体的44元环状结构,这种环状结构形成单手性的螺旋层,由于层与层之间的手性相反,所以,配合物的整体是一个非手性结构。其结构可以描述为(4,4)-连接的拓扑,拓扑符号为(44·62)。配合物8是一价铜离子和L3配体构成(6,3)-连接的二维层状结构。
     3、利用3,5-二(吡啶-4-甲氧基)苯甲酸(HL1),3,4-二(吡啶-4-甲氧基)苯甲酸(HL2),共配体1,4-bdc和d10过渡金属在水热条件下,得到两个配合物:[Zn2(L1)2(1,4-bdc)] (9), [Zn3(HL2)(1,4-bdc)3] (10)。配合物9是由1,4-bdc配体柱撑Zn-L1二维层,形成具有四重互穿的(3,4)-连接网络结构。配合物10中,L2配体的羧基被质子化,形成5-连接二维层状结构。其拓扑符号为(33·44·53)。
Coordination polymer has attracted much more interests as its flexible tailoring, various topologies and potential applications in gas storage, catalysts and magnetism. According to the principle of molecular engineering, it is possible to realize rational design and synthesis of novel multifunctional materials by selecting certain metal ions and suitable organic ligands.
     In this dissertation, we have focused the influence of the metal ions, organic ligands and coligands on secondary building units and compound structures under hydrothermal condition. The synthetic conditions, topology of 10 compounds have been studied. Several factors influencing the final structures, such as the coordination modes of metal ions, the properties of organic ligands, pH value of reaction conditions were discussed. Furthermore, fluorescent property and the thermal stabilities have also been studied. The main contents are summarized as below:
     1. Three novel 3D (3,8)-connected compounds, [Cd2(L1)2(1,3-bdc)] (1), [Cd2(L2)2(1,4-bdc)]·3H2O (2), [Cd3(L3)2(1,3-bdc)2] (3), have been synthesized based on the combination of flexible HL1 (HL2 or HL3) ligand and rigid benzenedicarboxylate ligand with Cd2-based (or Cd3-based) SBUs under hydrothermal conditions. Compounds 1 and 3 present novel (3,8)-connected nets with unprecedented (42·6)2(44·622·82) and (42·5)2(44·56·610·75·82·9) topology notations; compound 2 is a tfz-d net with (43)2(46·618·84) topology symbol.
     2. Five new compounds, [Cd(L3)2]·H2O (4), [Zn(L3)2] (5), [Co(L3)2] (6), [Ni(L3)2] (7) and [Cu2(L3)2]·3H2O (8), have been hydrothermally synthesized on the basis of 3,5-bis(pyridin-3-ylmethoxy)benzoic acid (HL3) and d10 transition metal ions. Compound 4 is a binodal (3,4)-connected net with (63)(66) topology. Compounds 5-7 are isostructural, thus, only the structure of 5 is representatively described in detail here. In the crystal structure, the adjacent helical chains are linked by L3 ligands to generate a 2D rhombic structure involving 44-membered rings. With in the layer, all Zn-L3 helical chains display the same chirality, while those in adjacent layers display opposite chirality. Therefore, the overall structure of 5 is a racemic structure. The topology of 5 can be described by the uninodal (4,4)-connected net with (44·62) Schl?fli symbol. The structure of 8 is a 2D binodal (6,3)-connected net constructed by CuI and L3 ligand.
     3. Two new compounds, [Zn2(L1)2(1,4-bdc)] (9), [Zn3(L2)(1,4-bdc)3] (10), have been hydrothermally synthesized on the basis of 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL1) (or 3,4-bis(pyridin-4-ylmethoxy)benzoic acid (HL2), 1,4-benzenedicarboxylic acid and d10 transition metal ions. Compound 9 displays a 3D 4-fold interpenetrating (3,4)-connected net with (4·82)(4·85) topology. Compound 10 with the carboxybenzyloxyl group undeprotonation of L2 ligand, is a 2D 5-connected network with the (33·44·53) topology.
引文
[1] Bruser H J, Schwarzenbach D, Petter W, et al. The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3·xH2O[J]. Inorg Chem, 1977, 16: 2704-2710.
    [2] Champness N R, Schr?er M. Current Opinion in Solid State & Materials[J]. Science, 1998, 3: 419-424.
    [3] Hosking B F, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. J Am Chem Soc, 1989, 111: 5962-5964.
    [4] Farha O K, Mulfort K L, Thorsness A M, et al. Separating solids: Purification of metal-organic framework materials[J]. J Am Chem Soc. 2008, 130: 8598-8599.
    [5] Murugavel R, Bahet K, Anantharaman G. Reactions of 2-mercaptobenzoic acid with divalent alkaline earth metal ions: Synthesis, spectral studies, and single-crystal X-ray structures of calcium, strontium, and barium complexes of 2,2’-dithiobis(benzoic acid)[J]. Inorg Chem, 2001, 40: 6870-6878.
    [6] Farha O K, Malliakas C D, Kanatzidis M G, et al. Control over Catenation in Metal-Organic Frameworks via Rational Design of the Organic Building Block[J]. J Am Chem Soc, 2010, 132: 590-592.
    [7] Paz F A A, Klinowski J. Hydrothermal synthesis of a novel thermally stable three-dimensional ytterbium-organic framework[J]. Chem Commun, 2003, 1484-1485.
    [8] Ren Y P, Long L S, Mao B W, et al. Nanoporous lanthanide-copper(II) coordination polymers: Syntheses and crystal structures of [{M-2(Cu-3(iminodiacetate)6)}center dot 8H2O]n (M=La, Nd, Eu)[J]. Angew Chem Int Ed, 2003, 42: 532-535.
    [9] Li M X, Wang H, Liang S W, et al. Solvothermal Synthesis and Diverse Coordinate Structures of a Series of Luminescent Copper(I) Thiocyanate Coordination Polymers Based on N-Heterocyclic Ligands[J]. Cryst Growth Des, 2009, 9: 4626-4633.
    [10] Zhang L P, J F Ma, Yang J. Series of 2D and 3D Coordination Polymers Based on 1,2,3,4-Benzenetetracarboxylate and N-Donor Ligands: Synthesis, Topological Structures, and Photoluminescent Properties[J]. Inorg Chem, 2010, 49: 1535-1550.
    [11] Chen Z F, Xiong R G, Zheng J, et al. The first chiral 2-D molecular triangular grid[J]. J Chem Soc Dalton Trans, 2000, 4010-4012.
    [12] Liang Y C, Cao R, Su W P, et al. Syntheses, structures, and magnetic properties of two gadolinium(III)-copper(II) coordination polymers by a hydrothermal reaction[J]. Angew Chem Int Ed, 2000, 39: 3304-3307.
    [13] Wang Y T, Tang G M, Wei Y Q, et al. Two New Nonlinear Optical and Ferroelectric Three-Dimensional Metal-Organic Frameworks with an sqp-net[J]. Cryst Growth Des, 2010, 10: 25-28.
    [14] Almeida Paz F A, and Klinowski J. Supramolecular architecture of a novel salt of trimesic acid and 1,2-bis(4-pyridyl)ethane[J]. CrystEngComm, 2003, 5: 238-244.
    [15] Siemeling U, Scheppelmann I, Neumann B, et al. Spontaneous chiral solution of acoordination polymer with distorted helical structure consisting of achiral building blocks[J]. Chem Commun, 2003, 2236-2237.
    [16] Natarajan R, Savitha G, Dominiak P, et al. Corundum, Diamond, and PtS Metal-Organic Frameworks with a Difference: Self-Assembly of a Unique Pair of 3-Connecting D2d-Symmetric 3,3’,5,5’-Tetrakis(4-pyridyl)bimesityl[J]. Angew Chem Int Ed, 2005, 44: 2115-2119.
    [17] Yang Q F, Yu Y, Song T Y, et al. 2D and 3D networks of lanthanide with mixed dicarboxylate ligands: syntheses, crystal structures and photoluminescent properties[J]. CrystEngComm, 2009, 11: 1642-1649.
    [18] Zhang J J, Wojtas L, Larsen R W, et al. Temperature and Concentration Control over Interpenetration in a Metal-Organic Material[J]. J Am Chem Soc, 2009, 131: 17040-17041.
    [19] Xue X, Wang X S, Xiong R G, et al. A cluster rearrangement of an open cubane (Cu4Br4) to a prismane (Cu6Br6) in a copper(I)-olefin network[J]. Angew Chem Int Ed, 2002, 41: 2944-2946.
    [20] Kobayashi K, Sato A, Sakamoto S, et al. Solvent-induced polymorphism of three-dimensional hydrogen-bonded networks of hexakis(4-carbamoylphenyl) benzene [J]. J Am Chem Soc, 2003, 125: 3035-3045.
    [21] Ma, J F, Yang J, Zheng, G L, et al. A porous supramolecular architecture from a copper(II) coordination polymer with a 3D four-connected 8(6) net[J]. Inorg.Chem. 2003, 42: 7531-7534.
    [22] Li G, Yu W B, Cui Y. A homochiral nanotubular crystalline framework of metallomacrocycles for enantioselective recognition and separation[J]. J Am Chem Soc, 2008, 130: 4582-4583.
    [23] Mori W, Takamizawa S, Kato C N, et al. Molecular-level design of efficient microporous materials containing metal carboxylates: inclusion complex formation with organic polymer, gas-occlusion properties, and catalytic activities for hydrogenation of olefins[J]. Microporous Mesoporous Mater, 2004, 73: 31-46.
    [24] Forster P M, Cheetham A K. Hybrid Inorganic-Organic Solids: An Emerging Class of Nanoporous Catalysts[J]. Top Catal, 2003, 24: 79-86.
    [25] Lin W. Homochiral porous metal-organic frameworks: Why and how?[J]. J Solid State Chem, 2005, 178: 2486-2490.
    [26] Fujita M, Kwon YJ, Washizu S, et al. PREPARATION, CLATHRATION ABILITY, AND CATALYSIS OF A 2-DIMENSIONAL SQUARE NETWORK MATERIAL COMPOSED OF CADMIUM(II) AND 4,4'-BIPYRIDINE[J]. J Am Chem Soc, 1994, 116: 1151-1152.
    [27] Lee S J, Lin W B. Chiral Metallocycles: Rational Synthesis and Novel Applications[J]. Acc Chem Res, 2008, 41: 521-537.
    [28] Wang X Y, Wang L, Wang Z M, et al. Solvent-tuned azido-bridged Co2+ layers: square, honeycomb, and kagomé[J]. J Am Chem Soc, 2006, 128: 674-675.
    [29] Cheng X N, Xue W, Lin J B, et al. Porous ionic/molecular crystal composed ofhighly symmetric magnetic clusters[J]. Chem Commun, 2010, 46: 246-248.
    [30] Kondo M, Yoshitomi T, Seki K, et al. Three-Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4,4’-bpy)3(NO3)4]·xH2O}n(M = Co, Ni, Zn)[J]. Angew Chem Int Ed, 1997, 36: 1725-1727.
    [31] Millward A R, Yaghi O M. Metal.Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature[J]. J Am Chem Soc,2005,127: 17998-17999.
    [32] Devic T, Serre C, Audebrand N, et al. MIL-103, A 3-D Lanthanide-Based Metal Organic Framework with Large One-Dimensional Tunnels and A High Surface Area[J]. J Am Chem Soc, 2005, 127: 12788-12789.
    [33] Ma S Q, Zhou H C. A Metal-Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity [J]. J Am Chem Soc, 2006, 128: 11734-11735.
    [34] Dinc? M, Dailly A, Liu Y, et al. Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites[J]. J Am Chem Soc, 2006, 128: 16876-16883.
    [35] Murray L J, Dinc? M, Long J R. Hydrogen storage in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38: 1294-1314.
    [36] Suh M P, Cheon Y E, Lee E Y. Syntheses and functions of porous metallosupramolecular networks[J]. Coord Chem Rev, 2008, 252: 1007-1026.
    [37] Cahill C L, De Lill D T, Frisch M. Homo- and heterometallic coordination polymers from the F elements[J]. CrystEngComm, 2007, 9: 15-26.
    [38] Janiak C. Engineering coordination polymers towards applications[J]. Dalton Trans, 2003, 2781-2804.
    [39] Fang Q R, Zhu G S, Shi X, et al. Synthesis, structure and fluorescence of a novel three-dimensional inorganic-organic hybrid polymer constructed from trimetallic clusters and mixed carboxylate ligands[J]. J Solid State Chem, 2004, 177: 1060-1066.
    [40] Zhao B, Chen X, Cheng P, et al. Coordination Polymers Containing 1D Channels as Selective Luminescent Probes[J]. J Am Chem Soc, 2004, 126: 15394-15395.
    [41] Luo F, Che Y X, Zheng J M. Employing La2- (La = Eu, Tb, Pr) or Co3-Based Molecule Building Blocks To Construct 3,8-Connected Nets: Hydrothermal Synthesis, Structure, Luminescence, and Magnetic Properties [J]. Cryst Growth Des, 2008, 8: 2006-2010.
    [1] Batten S R, Robson R. Interpenetrating nets: Ordered, periodic entanglement[J]. Angew Chem Int Ed 1998, 37: 1460-1494.
    [2] Yaghi O M, O’Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423: 705-714.
    [3] James S L. Metal-organic frameworks[J]. Chem Soc Rev, 2003, 32: 276-288.
    [4] Huang X C, Lin Y Y, Zhang J P, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies[J]. Angew Chem Int Ed, 2006, 45: 1557-1559.
    [5] Kitagawa S, Kitaura R, Noro S I. Functional porous coordination polymers[J]. Angew Chem Int Ed, 2004, 43: 2334-2375.
    [6] Daniel M, Daniel R M, Jaume V. Old materials with new tricks: multifunctional open-framework materials[J]. Chem Soc Rev, 2007, 36: 770-818.
    [7] Zaworotko M J. Materials science-Designer pores made easy[J]. Nature, 2008, 451: 410-411.
    [8] Batten S R, Hoskins B F, Robson R. Interdigitation, interpenetration and intercalation in layered cuprous tricyanomethanide derivatives[J]. Chem Eur J, 2000, 6: 156-161.
    [9] Carlucci L, Cozzi N, Ciani G, et al. A three-dimensional nanoporous flexible network of‘square-planar’copper(II) centres with an unusual topology[J]. Chem Commun, 2002, 1354-1355.
    [10] Gudbjartson H, Biradha K, Poirier K M, et al. Novel nanoporous coordination polymer sustained by self-assembly of T-shaped moieties[J]. J Am Chem Soc, 1999, 121: 2599-2600.
    [11] Noro S I, Kitagawa S, Kondo M, et al. A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4’-bipyridine)2}n][J]. Angew Chem Int Ed, 2000, 39: 2081-2083.
    [12] Moulton B, Lu J J, Zaworotko M J. Periodic tiling of pentagons: The first example of a two-dimensional (5,(3)(4))-net[J]. J Am Chem Soc, 2001, 123: 9224-9225.
    [13] Chae H K, Kim J, Friedrichs O D, et al. Design of frameworks with mixed triangular and octahedral building blocks exemplified by the structure of [Zn4O(TCA)2] having the pyrite topology[J]. Angew Chem Int Ed, 2003, 42: 3907-3909.
    [14] Chen B L, Eddaoudi M, Hyde S T, et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J]. Science, 2001, 291, 1021-1023.
    [15] Dong Y B, Jiang Y Y, Li J, et al. Temperature-dependent synthesis of metal-organic frameworks based on a flexible tetradentate ligand with bidirectional coordination donors[J]. J Am Chem Soc, 2007, 129: 4520-4521.
    [16] Wang X L, Qin C, Wang E B, et al. Metal Nuclearity Modulated Four-, Six-, andEight-Connected Entangled Frameworks Based on Mono-, Bi-, and Trimetallic Cores as Nodes[J]. Chem Eur J, 2006, 12: 2680-2691.
    [17] Batten S R. Topology of interpenetration[J]. CrystEngComm, 2001, 3: 67-72.
    [18] Hill R J, Long D L, Turvey M S, et al. Unprecedented bilayer topologies in 5- and 6-connected framework polymers[J]. Chem Commun, 2004, 1792-1793.
    [19] Long D L, Hill R J, Blake A J, et al. Non-natural eight-connected solid-state materials: A new coordination chemistry[J]. Angew Chem Int Ed, 2004, 43: 1851-1854.
    [20] Luo T T, Tsai H L, Yang S L, et al. Crystal engineering: Toward intersecting channels from a neutral network with a bcu-type topology[J]. Angew Chem Int Ed, 2005, 44: 6063-6067.
    [21] Morris J J, Noll B C, Henderson K W. High-connectivity networks: characterization of the first uninodal 9-connected net and two topologically novel 7-connected nets[J]. Chem Commun, 2007, 5191-5193.
    [22] Wang X L, Qin C, Lan Y Q, et al. Metal-organic replica of gamma-Pu: the first uninodal 10-connected coordination network based on pentanuclear cadmium clusters[J]. Chem Commun, 2009, 410-412.
    [23] Zhang X M, Fang R Q, Wu H S. A twelve-connected Cu6S4 cluster-based coordination polymer[J]. J Am Chem Soc, 2005, 127: 7670-7671.
    [24] Li D, Wu T, Zhou X P, Zhou R, et al. Twelve-connected net with face-centered cubic topology: A coordination polymer based on [Cu-12(mu(4)-SCH3)(6)](6+) clusters and CN-linkers[J]. Angew Chem Int Ed, 2005, 44: 4175-4178.
    [25] Cairns A J, Perman J A, Wojtas L, et al. Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks based on a molecular cubohemioctahedron[J]. J Am Chem Soc, 2008, 130: 1560-1561.
    [26] Ma S Q, Zhou H C. A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity[J]. J Am Chem Soc, 2006, 128: 11734-11735.
    [27] Luo F, Che Y X, Zheng J M. Employing La-2-(La = Eu, Tb, Pr) or Co-3-based molecule building blocks to construct 3,8-connected nets: Hydrothermal synthesis, structure, luminescence, and magnetic properties[J]. Cryst Growth Des, 2008, 8: 2006-2010.
    [28] Fang Q R, Zhu G S, Xue M, et al. Structure, luminescence, and adsorption properties of two chiral microporous metal-organic frameworks[J]. Inorg Chem, 2006, 45: 3582-3587.
    [29] Garibay S J, Stork J R, Wang Z Q, et al. Enantiopure vs. racemic metalloligands: impact on metal-organic framework structure and synthesis[J]. Chem Commun, 2007, 4881-4883.
    [30] Chen P K, Che Y X, Zheng J M. A 3D heteropolynuclear network with 4,6-connected (4462)(48668) topology: Synthesis, structure, thermal and magnetic properties[J]. Inorg Chem Commun, 2007, 10: 187-190.
    [31] Ai W T, He H Y, Liu L J, et al. Synthesis, crystal structures and properties of three metal-organic supramolecular architectures based on mixed organic ligands[J].CrystEngComm, 2008, 10: 1480-1486.
    [32] Zou R Q, Zhong R Q, Du M, et al. Highly-thermostable metal-organic frameworks (MOFs) of zinc and cadmium 4,4’-(hexafluoroisopropylidene)diphthalates with a unique fluorite topology[J]. Chem Commun, 2007, 2467-2469.
    [33] Li S L, Lan Y Q, Qin J S, et al. A (4,8)-connected fluorite topology framework based on mononuclear and dinuclear metal centers[J]. Cryst Growth Des, 2008, 8: 2055-2057.
    [34] Zhang X M, Zheng Y Z, Li C R, et al. Unprecedented (3,9)-connected (42·6)3(46·621·89) net constructed by trinuclear mixed-valence cobalt clusters[J]. Cryst Growth Des, 2007, 7: 980-983.
    [35] Zou W Q, Wang M S, Li Y, et al. Unprecedented (3,10)-connected 2-D metal-organic framework constructed from octanuclear cobalt(II) clusters and a new bifunctional ligand[J]. Inorg Chem, 2007, 46: 6852-6854.
    [36] Lan Y Q, Li S L, Shao K Z, et al. A (3,12)-connected 3D metal-organic framework based on nanosized octanuclear zinc clusters[J]. Cryst Growth Des, 2008, 8: 3490-3492.
    [37] Burgstein M R, Gamer M T, Roesky P W. Nitrophenolate as a building block for lanthanide chains, layers, and clusters[J]. J Am Chem Soc, 2004, 126: 5213-5218.
    [38] Wang X L, Qin C, Wang E B, et al. Self-assembly of nanometer-scale [Cu24I10L12]14+ cages and ball-shaped Keggin clusters into a (4,12)-connected 3D framework with photoluminescent and electrochemical properties[J]. Angew Chem Int Ed, 2006, 45: 7411-7414.
    [39] Ashiry K O, Zhao Y H, Shao K Z, et al. Syntheses and characterizations of three coordination polymers based on dipyridylbenzoates and 1,4-bezenedicarboxylate[J]. Polyhedron, 2009, 28: 975-979.
    [40] Wang R H, Hong M C, Luo J H, et al. A new type of three-dimensional framework constructed from dodecanuclear cadmium(II) macrocycles[J]. Chem Commun, 2003, 1018-1019.
    [41] Paz F A A, Klinowski J. Synthesis and characterization of a novel cadmium-organic framework with trimesic acid and 1,2-bis(4-pyridyl)ethane[J]. Inorg Chem, 2004, 43: 3948-3954.
    [42] Zou R Q, Bu X H, Zhang R H. Novel eclipsed 2D cadmium(II) coordination polymers with open-channel structure constructed from terephthalate and 3-(2-pyridyl)pyrazole: Crystal structures, emission properties, and inclusion of guest molecules[J]. Inorg Chem, 2004, 43: 5382-5386.
    [43] Wells A F. Three-Dimensional Nets and Polyhedra[M]. Wiley, New York, 1977.
    [44] Baburin I A, Blatov V A, Carluccib L, et al. Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II. Analysis of the Inorganic Crystal Structure Database (ICSD)[J]. J Solid State Chem, 2005, 178: 2452-2474.
    [45] Bucknum M J, Castro E A. Moravia: A 3-,8-connected cubic structural pattern inspace group Pm3m[J]. Cent Eur J Chem, 2005, 3: 169-173.
    [46] DincǎM, Dailly A, Liu Y, et al. Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites[J]. J Am Chem Soc, 2006, 128: 16876-16883.
    [47] Choi S B, Seo M J, Cho M, et al. A porous and interpenetrated metal-organic framework comprising tetranuclear iron(III)-Oxo clusters and tripodal organic carboxylates and its implications for (3,8)-coordinated networks[J]. Cryst Growth Des, 2007, 7: 2290-2293.
    [48] Wang S N, Bai J F, Li Y Z, et al. Synthesis, structures and properties of nickel(II) and cobalt(II) metal organic frameworks based on a flexible tricarboxylate ligand H(3)TTG and different pyridyl-containing ligands[J]. CrystEngComm, 2007, 9: 1084-1095.
    [49] Xie L H, Liu S X, Gao C Y, et al. Mixed-valence Iron(II, III) trimesates with open frameworks modulated by solvents[J]. Inorg Chem, 2007, 46: 7782-7788.
    [50] S. N. Wang, H. Xing, Y. Z. Li, J. F. Bai, Y. Pan, M. Scheer and X. Z. You, Eur. J. Inorg. Chem, 2006, 3041.
    [51] Friedrichs O D, O’Keeffe M, Yaghi O M. Three-periodic nets and tilings: regular and quasiregular nets[J]. Acta Cryst, 2003, A59, 22-27.
    [52] O’Keeffe M, Peskov M A, Ramsden S J, et al. The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets[J]. Acc Chem Res, 2008, 41: 1782-1789.
    [53] O’Keeffe M, Hyde B G. Crystal Structures: I. Patterns and Symmetry, Mineralogical Society of America[M]. Washington, DC, 1996.
    [54] Carlucci L, Ciani G, Proserpio D M, et al. Coordination networks from the self-assembly of silver salts and the linear chain dinitriles NC(CH2)(n)CN (n = 2 to 7): a systematic investigation of the role of counterions and of the increasing length of the spacers[J]. CrystEngComm, 2002, 413-425.
    [55] Carlucci L, Ciani G, Proserpio D M, et al. Three novel interpenetrating diamondoid networks from self-assembly of 1,12-dodecanedinitrile with silver(I) salts[J]. Chem Eur J, 2002, 8: 1519-1526.
    [56] Wang X L, Qin C, Wang E B, et al. Syntheses, structures, and photoluminescence of a novel class of d10 metal complexes constructed from pyridine-3,4-dicarboxylic acid with different coordination architectures[J]. Inorg Chem, 2004, 43: 1850-1586.
    [57] Chen Z L, Su Y, Xiong W, et al. Controlling the dimensionalities and structures of homochiral ZnII and CdII compounds of N-(p-tosyl)-S-carboxymethyl-L-cysteine via tuning the connecting modes of metal ions and chiral linkers by different kinds of ancillary ligands[J]. CrystEngComm, 2009, 11: 318-328.
    [58] Shao K Z, Zhao Y H, Xing Y, et al. Assembly of a chiral bikitaite zeolite metal-organic framework based on the asymmetrical tetrahedral building blocks[J]. Cryst Growth Des, 2008, 8: 2986-2989.
    [1] Liang Y C, Cao R, Su W P, et al. Syntheses, structures, and magnetic properties of two gadolinium(III)-copper(II) coordination polymers by a hydrothermal reaction[J]. Angew Chem Int Ed, 2000, 39: 3304-3307.
    [2] Tong M L, Kitagawa S, Chang H C, et al. Temperature-controlled hydrothermal synthesis of a 2D ferromagnetic coordination bilayered polymer and a novel 3D network with inorganic CO3(OH)2 ferrimagnetic chains[J]. Chem Commun, 2004, 418-419.
    [3] Wei Y L, Hou H W, Li L K, et al. From dicarboxylic acid to tetranuclear metallamacrocyclic complex and 1D and 2D polymers[J]. Cryst Growth Des, 2005, 5: 1405-1413.
    [4] Wang X L, Qin C, Wang E B, et al. Syntheses, structures, and photoluminescence of a novel class of d(10) metal complexes constructed from pyridine-3,4-dicarboxylic acid with different coordination architectures[J]. Inorg Chem, 2004, 43: 1850-1856.
    [5] Ghosh S K, Bharadwaj P K. Coexistence of water dimer and hexamer clusters in 3D metal-organic framework structures of Ce(III) and Pr(III) with pyridine-2,6-dicarboxylic acid[J]. Inorg Chem, 2003, 42: 8250-8254.
    [6] Ghosh S K, Bharadwaj P K. Self-assembly of lanthanide helicate coordination polymers into 3D metal-organic framework structures[J]. Inorg Chem, 2004, 43: 2293-2298.
    [7] Ghosh S K, Ribas J, Bharadwaj P K. Metal-organic framework structures of Cu(II) with pyridine-2,6-dicarboxylate and different spacers: identification of a metal bound acyclic water tetramer[J]. CrystEngComm, 2004, 6: 250-256.
    [8] Zhao B, Cheng P, Dai Y, et al. A nanotubular 3D coordination polymer based on a 3D-4f heterometallic assembly[J]. Angew Chem Int Ed, 2003, 42: 934-936.
    [9] Tong M L, Wang J, Hu S, et al. A new (3,4)-connected three-dimensional anionic porous coordination net templated by Me4N+ cations[J]. Inorg Chem Commun, 2005, 8: 48-51.
    [10] Wang X L, Qin C, Wang E B, et al. Designed double layer assembly: a three-dimensional open framework with two types of cavities by connection of infinite two-dimensional bilayer[J]. Chem Commun, 2004, 378-379.
    [11] Eubank J F, Walsh R D, Poddar P, et al. Metal-organic framework diversity via heterocoordination of a multifunctional ligand: SrAl2 and a novel (3,4)-connected network[J]. Cryst Growth Des, (2006) 6: 1453-1457.
    [12] Min D W, Yoon S S, Jung D Y, et al. One-dimensional copper-pyridinedicarboxylate polymer containing square-planar Cu(II) centers exhibiting antiferromagnetic coupli[J]. Inorg Chim Acta, 2001, 324: 293-299.
    [13] García-Zarracino R, H?pfl H. A 3D hybrid network containing large spherical cavities formed through a combination of metal coordination and hydrogen bonding[J]. Angew Chem Int Ed, 2004, 43: 1507-1511.
    [14] Humphrey S M, Wood P T. Multiple areas of magnetic bistability in the toplogical ferrimagnet [Co3(NC5H3(CO2)2-2,5)2(μ3-OH)2(OH)2][J]. J Am Chem Soc, 2004, 126: 13236-13237.
    [15] Liu Y L, Kravtsov V C, Beauchamp D A, et al. 4-connected metal-organic assemblies mediated via heterochelation and bridging of single metal ions: Kagome lattice and the M6L12 octahedron[J]. J Am Chem Soc, 2005, 127: 7266-7277.
    [16] Qin C, Wang X L, Wang E B, et al. A series of three-dimensional lanthanide coordination polymers with rutile and unprecedented rutile-related topologies[J]. Inorg Chem, 2005, 44: 7122-7129.
    [17] Lu Y L, Wu J Y, Chan M C, et al. Influence of water content on the self-assembly of metal-organic frameworks based on pyridine-3,5-dicarboxylate[J]. Inorg Chem, 2006, 45: 2430-2437.
    [18] Ma C L, Li J K, Zhang R F. Syntheses and crystal structures of polymeric ionic triorganotin esters of 3,5-pyridinedicarboxylic acid and 5-nitroisophthalic acid[J]. J Coord Chem, 2006, 59: 1891-1904.
    [19] Min D, Lee S W. Terbium-oxalate-pyridinedicarboxylate coordination polymers suggesting the reductive coupling of carbon dioxide (Co2(C2O42-): [Tb2(3,5-PDC)2(H2O)4(C2O4)]·2H2O and [Tb(2,4-PDC)(H2O)(C2O4)0.5] (PDC = pyridinedicarboxylate)[J]. Inorg Chem Commun, 2002, 5: 978-983.
    [20] Min D W, Yoon S S, Lee J H, et al. A three-dimensional cobalt(II)-coordination polymer based on 3,5-pyridinedicarboxylate[J]. Inorg Chem Commun, 2001, 4: 297-300.
    [20] Zhao Y H, Su Z M, Fu Y M, et al. Syntheses and characterizations of four metal coordination polymers constructed by the pyridine-3,5-dicarboxylate ligand[J]. Polyhedron, 2008, 27: 583-592.
    [22] Carty A J, Taylor N J. Binding of heavy-metals at biologically important sites-synthesis and molecular-structure of aquo(bromo)-DL-penicillaminatocadmium(II) dihydrate[J]. Inorg Chem, 1977, 16: 177-181.
    [23] Dai J C, Wu X T, Fu Z Y,et al. Synthesis, structure, and fluorescence of the novel cadmium(II)-trimesate coordination polymers with different coordination architectures[J]. Inorg Chem, 2002, 41: 1391-1396.
    [24] Luan X J, Cai X H, Wang Y Y, et al. An investigation of the self-assembly of neutral, interlaced, triple-stranded molecular braids[J]. Chem Eur J, 2006, 12: 6281-6289.
    [25] Paz F A A, Klinowski J. Synthesis and characterization of a novel cadmium-organic framework with trimesic acid and 1,2-bis(4-pyridyl)ethane[J]. Inorg Chem, 2004, 43: 3948-3954.
    [26] Zou R Q, Bu X H, Zhang R H. Novel eclipsed 2D cadmium(II) coordination polymers with open-channel structure constructed from terephthalate and 3-(2-pyridyl)pyrazole: Crystal structures, emission properties, and inclusion of guest molecules[J]. Inorg Chem, 2004, 43: 5382-5386.
    [27] Lan Y Q, Li S L, Fu Y M, et al. d(10)-Metal coordination polymers based on analogue di(pyridyl) imidazole derivatives and 4,4’-oxydibenzoic acid: influence of flexible and angular characters of neutral ligands on structural diversity[J]. Dalton Trans, 2008, 6796-6807.
    [28] Zhang X M, Tong M L, Gong M L, et al. Supramolecular organisation of polymeric coordination chains into a three-dimensional network with nanosized channels that clathrate large organic molecules[J]. Eur J Inorg Chem, 2003, 138-142.
    [29] Burrows A D, Harrington R W, Mahon M F, et al. The influence of functional group orientation on the structure of zinc 1,1,4-trimethylthiosemicarbazide dicarboxylates: Probing the limits of crystal engineering strategies[J]. Eur J Inorg Chem, 2003, 766-776.
    [30] Liu Y Y, Ma J F, Yang J, et al. Structures of metal-organic networks based on flexible 1,1’-(1,4-butanediyl) bis(imidazole-2-phenyl) ligand[J]. CrystEngComm, 2008, 10: 565-572.
    [31] Shao K Z, Zhao Y H, Xing Y, et al. Assembly of a chiral bikitaite zeolite metal-organic framework based on the asymmetrical tetrahedral building blocks[J]. Cryst Growth Des, 2008, 8: 2986-2989.
    [32] Uemura K, Maeda A, Kita H. Syntheses and crystal structures of straight or zigzagone-dimensional coordination polymers based on Cu(II) square pyramidal or Cu(I) tetrahedral coordination environments[J]. Polyhedron, 2008, 27: 2939-2942.
    [33] Liang X Q, Xiao H P, Liu B L, et al. Syntheses, structures and luminescent properties of four d(10)-metal coordination polymers based on the 2,4,5-tri(4-pyridyl)-imidazole ligand[J]. Polyhedron, 2008, 27: 2494-2500.
    [34] Liang S W, Li M X, Shao M, et al. Synthesis, crystal structure and fluorescent property of two-dimensional Cu(I) coordination polymers with cyanide, thiocyanate and triazole bridges[J]. J Mol Struct, 2008, 875: 17-21.
    [35] Liu G F, Zhang W H, Chen Y, et al. Solvothermal synthesis and crystal structure of a luminescent 2D copper(I) coordination polymer with a (3,4)-connected net[J]. Inorg Chem Commun, 2007, 10: 1049-1053.
    [36] Hoskins B F, Robson R. INFINITE POLYMERIC FRAMEWORKS CONSISTING OF 3 DIMENSIONALLY LINKED ROD-LIKE SEGMENTS[J]. J Am Chem Soc, 1989, 111: 5962-5964.
    [37] Fang Q R, Zhu G S, Xue M, et al. Structure, luminescence, and adsorption properties of two chiral microporous metal-organic frameworks[J]. Inorg Chem, 2006, 45: 3582-3587.
    [1] Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers[J]. Angew Chem Int Ed, 2004, 43: 2334-2375.
    [2] Rao C N R, Natarajan S, Vaidhyanathan R. Metal Carboxylates with Open Architectures[J]. Angew Chem Int Ed, 2004, 43: 1466-1496.
    [3] I.A. Baburin, V.A. Blatov, L. Carlucci, G. Ciani, D.M. Proserpio, J. Solid State Chem. 178 (2005) 2452.
    [4] Hong X-L, Bai J, Song Y. et al. Luminescent open-framework antiferromagnet– hydrothermal syntheses, structures, and luminescent and magnetic properties of two novel coordination polymers: [Zn(pdoa)(bipy)]n and {[Mn(pdoa)(bipy)](bipy)}n [pdoa = 2,2’-(1,3-phenylenedioxy)bis(acetate); bipy = 4,4’-bipyridine][J]. Eur J Inorg Chem, 2006, 3659-3666.
    [5] Cui Y, Lee S J, Lin W. Interlocked chiral nanotubes assembled from quintuple helices[J]. J Am Chem Soc, 2003, 125: 6014-6015.
    [6] Zang S, Su Y, Li Y, et al. One dense and two open chiral Metal-Organic Frameworks: Crystal structures and physical properties[J]. Inorg Chem, 2006, 45: 2972-2978.
    [7] Zhang J P, Lin Y Y, Huang X C, et al. Molecular chairs, zippers, zigzag and helical chains: chemical enumeration of supramolecular isomerism based on a predesigned metal-organic building-block[J]. Chem Common, 2005, 1258-1260.
    [8] Niu Y, Song Y, Zhang N, et al. Reactivity of polyiodides towards 1,3-bis(4-pyridyl)propane (bpp): A new CuI cluster polycatenane framework and a novel 2D AgI cluster motif[J]. Eur J Inorg Chem, 2006, 2259-2268.
    [9] Hosseini M W. Molecular tectonics: From simple tectons to complex molecular networks[J]. Acc Chem Res, 2005, 38: 313-323.
    [10] Shao K Z, Zhao Y H, Xing Y, et al. Assembly of a chiral bikitaite zeolite metal-organic framework based on the asymmetrical tetrahedral building blocks[J]. Cryst Growth Des, 2008, 8: 2986-2989.
    [11] Luo F, Che Y X, Zheng J M. A ternary metal-organic framework built on triangular organic spacers, square and tetrahedral Co-2 secondary building units[J]. Cryst Growth Des, 2008, 8: 176-178.
    [12] Luo F, Zheng J M, Batten S R. Unprecedented (3,4)-connected metal-organic frameworks (MOFs) with 3-fold interpenetration and considerable solvent-accessible void space[J]. Chem Commun, 2007, 3744-3746.
    [13] Hong S, Zou Y, Moon D, et al. An unprecedented twofold interpenetrating (3,4)-connected 3-D metal-organic framework[J]. Chem Commun, 2007, 1707-1709.
    [14] Williams C A, Blake A J, Hubberstey P, et al. A unique example of a 3(6) tessellated 2-D net based on a tri-nuclear zinc(II)-1,4-benzenedicarboxylate framework[J]. Chem Commun, 2005, 5435-5437.
    [15] Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38: 1294-1314.
    [16] Zaworotko M J. Materials science-Designer pores made easy[J]. Nature, 2008, 451: 410-411.
    [17] Dolomanov O V, Blake A J, Champness N R, et al. OLEX: new software for visualization and analysis of extended crystal structures[J]. J Appl Cryst, 2003, 36: 1283-1284.
    [18] Baburin I A, Blatov V A, Carlucci L, et al. Interpenetrated three-dimensional networks of hydrogen-bonded organic species: A systematic analysis of the Cambridge Structural Database[J]. Cryst Growth Des, 2008, 8: 519-539.
    [19] Prescott H A, Troyanov S I, Feist M, et al. Synthesis and crystal structures of hydrogen monofluorophosphates with N-containing organic cations. The influence of fluorine on their hydrogen bond systems[J]. Z Anorg Allg Chem, 2002, 628: 1749-1755.
    [20] Wang X L, Qin C, Wang E B, et al. Metal nuclearity modulated four-, six-, and eight-connected entangled frameworks based on mono-, Bi-, and trimetallic cores as nodes[J]. Chem Eur J, 2006, 12: 2680-2691.
    [21] Hong S, Zou Y, Moon D, et al. An unprecedented twofold interpenetrating (3,4)-connected 3-D metal-organic framework[J]. Chem Commun, 2007, 1707-1709.
    [22] Fang Q R, Zhu G S, Xue M, et al. Structure, luminescence, and adsorption properties of two chiral microporous metal-organic frameworks[J]. Inorg Chem, 2006, 45: 3582-3587.
    [23] Wang Z Q, Kravtsov V C, Zaworotko M J. Ternary nets formed by self-assembly of triangles, squares, and tetrahedra[J]. Angew Chem Int Ed, 2005, 44: 2877-2880.
    [24] Long D L, Blake A J, Champness N R, et al. Lanthanum coordination networks based on unusual five-connected topologies[J]. J Am Chem Soc, 2001, 123: 3401-3402.
    [25] Hill R J, Long D L, Turvey M S, et al. Unprecedented bilayer topologies in 5- and 6-connected framework polymers[J]. Chem Commun, 2004, 1792-1793.
    [26] Pan L, Ching N, Huang X Y, et al. An unprecedented two-fold interpenetrated heterometallic 4(6)6(4) network constructed by five-connected copper metal nodes[J]. Chem Commun, 2001, 1064-1065.
    [27] Wang X W, Dong Y R, Zheng Y Q, et al. A novel five-connected BN topological network metal-organic framework Mn(II) cluster complex[J]. Cryst Growth Des, 2007, 7: 613-615.
    [28] Hill R J, Long D L, Hubberstey P, et al. Lanthanide co-ordination frameworks: Opportunities and diversity[J]. J Solid State Chem, 2005, 178: 2414-2419.
    [29] Y.Y. Qin, J. Zhang, Z.J. Li, L. Zhang, X.Y. Cao, Y.G. Yao, Chem. Commun. (2008) 2532;
    [30] Su Z, Xu J, Fan J, et al. Synthesis, Crystal Structure, and Photoluminescence of Coordination Polymers with Mixed Ligands and Diverse Topologies[J]. Cryst Growth Des, 2009, 9: 2801-2811.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700