耐辐射球菌deinoxanthin代谢关键酶CrtI和逆境压力保护蛋白Dps-2鉴定与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐辐射球菌(Deinococcus radiodurans,简称DR)是地球上辐射抗性最强的生物之一,它以对电离辐射和干燥等表现强耐受力而著称。已有研究显示,DR菌极端生存能力是其保护、耐受和修复三方面协同作用的结果,而高效的抗氧化机制和DNA损伤修复是当前研究热点。最新研究认为,电离辐射产生的DNA损伤约80%由辐射水解产生的活性氧自由基(reactive oxygen species,ROS)攻击而间接导致,这表明抗氧化损伤保护机制在DR菌中可能扮演重要角色。因此,鉴定和研究DR菌中高效抗氧化物质,对阐明抗氧化保护机制在DR菌中的贡献及解释其极端抗性机制具有重要意义。
     类胡萝卜素能高效猝灭单线态氧(~1O_2),并清除多种ROS对生物体造成的伤害。DR菌体内大量合成以deinoxanthin为主要产物的类胡萝卜素,但至今尚缺乏对它们在DR菌中的功能及其代谢的分子机理进行深入的研究。本文主要对deinoxanthin等类胡萝卜素功能及其合成酶CrtI进行鉴定和分析。研究结果如下:
     1.以高效液相色谱(HPLC)和薄层层析(TLC)方法分离获得高纯度deinoxanthin色素。化学发光法和体外Fenton反应分析deinoxanthin抗氧化能力,结果表明deinoxanthin具有比lycopene和β-carotene更高效的~1O_2和H_2O_2清除能力,能有效保护质粒DNA并降低其氧化损伤程度。
     2.生物信息学方法筛选基因组获得控制deinoxanthin合成的关键蛋白DR0861,蛋白N-端和C-端分别具有保守βαβ折叠Motif和八氢番茄红素脱氢酶(PDS)信号序列。DR0861全基因敲除和N-端功能域(19-69aa)缺失均导致红色DR菌变为无色菌株,HPLC显示DR菌deinoxanthin等类胡萝卜素随DR0861突变而消失,而欧文氏菌(E.uredovora)crtI基因补偿可以使无色突变株恢复颜色。表明DR0861基因参与了DR菌中deinoxanthin的代谢路径,具有催化合成有色类胡萝卜素功能。DR0861缺失影响突变株对γ射线和H_2O_2抗性,导致细胞提取物对~1O_2和H_2O_2清除能力降低。表明DR0861蛋白催化合成的类胡萝卜素参与了DR菌体内的抗氧化保护体系,可能对其极端抗性机制有重要贡献。
     3.大肠杆菌(E.coli)过表达和纯化获得DR0861蛋白,体内和体外生化反应产物HPLC分析显示,DR0861能通过多步脱氢反应,催化无色八氢番茄红素(phytoene)底物生成红色的番茄红素(lycopene)产物,表明DR菌DR0861基因编码CrtI类型而非CrtP/Q型PDS。通过对E.coli色素工程菌研究还发现,lycopene等类胡萝卜素的生成可使E.coli产生浅红色,并明显提高E.coli对低剂量电离辐射和H_2O_2抗性。
     除研究非酶类抗氧化物(类胡萝卜素)之外,我们还对DR菌抗氧化体系重要组成部分——抗氧化功能蛋白Dps-2进行鉴定和研究。Dps-2(DRB0092)序列含多个赖氨酸保守位点,其N-端前沿包含一段特殊信号肽序列,C-端存在保守亚铁氧化酶(ferroxidase)功能域。dps-2全基因缺失导致DR菌生长受到明显影响,而且细胞对电离辐射、紫外线、干燥和H_2O_2等均表现敏感,并导致蛋白提取物对自由基清除能力降低。E.coli表达和纯化分别获得Dps-2完整蛋白WDps、N-端信号肽突变蛋白N_(30)Dps和C-端ferroxidase突变蛋白C_(20)Dps。SDS-PAGE结果表明,三种蛋白均能形成多聚体,但产生高聚体的比例受盐离子浓度等影响;信号肽突变提高N_(30)Dps对不同温度(37-60℃)的热稳定性,而C-端结构域缺失导致C_(20)Dps蛋白活性对温度异常敏感。Native-PAGE活性染色和亚铁氧化动力学结果表明,WDps和N_(30)Dps蛋白具有催化Fe~(2+)生成Fe~(3+)功能,而C_(20)Dps亚铁氧化酶活性完全丧失。体外DNA结合和Fenton反应结果显示,突变蛋白C_(20)Dps不具有DNA结合功能,不能保护DNA免受自由基攻击;而N_(30)Dps具有结合DNA的能力,它和WDps均能降低Fenton反应自由基攻击导致的DNA氧化损伤。
     综上所述,耐辐射球菌DR0861基因编码CrtI类型PDS,它以phytoene为底物,在DR菌体内参与催化合成deinoxanthin。抗氧化保护蛋白Dps-2具有亚铁氧化酶活性和非特异DNA结合等功能,催化毒性Fe~(2+)生成无害Fe~(3+)并能结合生成的Fe~(3+),降低细胞内环境毒性,并与染色体形成致密Dps-DNA复合体,保护DNA降低自由基损伤程度,它与类胡萝卜素等物质共同参与了DR菌体内抗氧化体系,对该菌的极端抗性机制具有重要贡献。
Deinococcus radiodurans is one of the most radiation-resistant organisms on the earth. This bacterium is famous for its extraordinary tolerance toγ-ray, oxidizing agents and desiccation. The remarkable capability of D. radiodurans to survive the harmful damage was attributed to three mechanisms: protection, tolerance and repair. The current research focus on its highly efficient anti-oxidative effect and the complex network of DNA repair mechanism. Although the mechanisms underlying the extraordinary resistance of this bacterium are still poorly understood, it was figured out that about 80% of DNA damage is caused indirectly by irradiation-induced reactive oxygen species (ROS), the remaining~20% by direct interaction betweenγ-photons and DNA. It shows that anti-oxidative and protective mechanism may act on a very important role in D. radiodurans. Therefore, it's essential to identify and demonstrate the protective character of these antioxidative metabolite and functional proteins which involve in DNA protection and response to environmental stress in D. radiodurans for understanding of the extreme radiation-resistant mechanism.
     Carotenoids are well known for their single oxygen (~1O_2) and free radical scavenging activities. The protective role of carotenoids against oxidative damage is essential to various organisms. D. radiodurans R1 was reported to synthesize a unique carotenoid that was identified as deinoxanthin. However, no investigations concerning the antioxidant effects of deinoxanthin have been done so far, and its biosynthetic pathway remained unclear. In the present study, detailed analysis of the function of deinoxanthin in D. radiodurans and identification of the pivotal gene involved in deinoxanthin synthesis were carried out.
     1. The main product of carotenoid (deinoxanthin) in D. radiodurans was separated and purified by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). The deinoxanthin was evaluated on its ROS scavenging activity using chemiluminescence method in vitro and agarose gel electrophoresis analysis after Fenton reaction induced DNA damage. Results showed purified deinoxanthin could quench most of singlet oxygen (~1O_2) and peroxide hydrogen (H_2O_2) rapidly, and showed more obviously effective protection to plasmid DNA than well-known antioxidants lycopene andβ-carotene.
     2. On the basis of sequence alignment and conserved amino acid analysis, DR0861 exhibited the highest similarity to the sequence of phytoene desaturase from the cyanobacterium Gloeobacter violaceus. Two highly conserved regions, the putative dinucleotide-binding motif (βαβfold) at N-terminus and the 'bacterial-type phytoene desaturase signature' at C-terminus were detected in DR0861. Using gene inactivation strategy and in vivo complementation, we found that D. radiodurans lost its red pigment after DR0861 deletion (M61) or N-terminal domain mutation (MD61), and HPLC results exhibited that most carotenoids including deinoxanthin in mutant were disappeared, while complementation of DR0861 or crtI from Erwinia uredovora could resort its carotenoids component. The M61 and MD61 mutant became more sensitive than wild-type strain after exposed toγ-ray and H_2O_2. Furthermore, the ROS scavenging activity of cellular extraction from M61 decreased obviously compared with R1 strain. These results indicated that DR0861 worked as a key enzyme involved in deinoxanthin biosynthesis in D. radiodurans.
     3. Purified DR0861 protein was obtained after gene heterologous expression in E. coli. Based on in vitro and in vivo enzyme activity assays, followed by HPLC analysis, the results showed that DR0861 could catalyze the substrate 15, 15'-cis-phytoene to lycopene both in vivo and in vitro. Moreover, lycopene generated in E. coli transformant could convert the colorless cells to pink, and the amount of carotenoids in the transformant was also determined. The accumulated carotenoid showed obviously protective effect against oxidative damage and led to a significant enhancement of its resistance to H_2O_2 andγ-ray. Based on these observations, it was obviously that DR0861 gene function as a typical bacterial-type phytoene desaturase (CrtI), which catalyzed the colorless phytoene to pigmented lycopene through four-step desaturation reaction.
     Furthermore, we identified and analyzed the function of the stress tolerance and antioxidative protein Dps-2 (DRB0092) in D. radiodurans. Based on bioinformatics methods, it was found that Dps-2 had a unique signal peptide in its forefront and contained multi-lysine residues in N-terminal region which was assumed to be involved in DNA binding, and a conserved ferritin-like domain constituted by several positive glutamic acid and aspartic acid appeared in its C-terminus. The dps-2 deletion mutant M92 was constructed by replacing the target gene with kanamycin resistance cassette. The results showed that the growth curve of M92 was influenced obviously in normal condition, and the survival rate of the mutant was greatly decreased after exposure toγ-ray, UV, desiccation and H_2O_2. The ROS scavenging activity of whole cellular extraction from M92 was reduced evidently compared with wild-type R1. These phenomena demonstrated that dps-2 take a protective role in D. radiodurans under different environmental stress.
     The purified Dps-2 whole protein WDps, N-terminal singal peptide deleted protein N_(30)Dps and C-terminal ferroxidase domin deleted protein C_(20)Dps was obtained by over-expression in E. coli. SDS-PAGE showed that C_(20)Dps is sensitive to temperature while N_(30)Dps exhibited thermal stability from 42℃to 60℃. Native-PAGE demonstrated that WDps monomer could assembled to different conformation of polymers, N-terminal or C-terminal deletion didn't influence polymerization of N_(30)Dps and C_(20)Dps. However the ratio of high polymers in solution was affected by the concentration of sodium chloride. Based on Native-PAGE, iron staining and spectroscopic analysis, we found that WDps and N_(30)Dps could catalyze Fe~(2+) to Fe~(3+), while C_(20)Dps didn't show ferroxidase activity. Dps-2 monomer could not interact with plasmid DNA while polymer Dps-2 showed linear and supercoiled DNA binding activity. N_(30)Dps exhibited prominent DNA binding activity as WDps protein and protected DNA against hydroxyl radical-mediated DNA cleavage caused by Fenton reaction in vitro. However, C-terminal deleted protein C_(20)Dps didn't show any DNA binding ability or protective ability to plasmid DNA against Fenton reaction.
     In conclusion, our results demonstrated that carotenoid (deinoxanthin) synthesis pathway contributed to the radioresistance and oxidative stress tolerance of D. radiodurans, and its biosynthesis is controlled by a pivotal enzyme DR0861 which acts as a bacterial-type phytoene desaturase (CrtI). Dps-2 is a multi-functional protein which has the capacity of DNA binding, iron binding and DNA protection that involved in protecting cell from multiple stresses. Both of the carotenoid metabolite and functional protein Dps-2 play a significant role in antioxidant and protection system in D. radiodurans, which may contribute a great deal to its extremely resistant mechanism.
引文
1.Battista, J.R. Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol. 1997,51:203-24.
    
    2.Lange, C.C., L.P. Wackett, K.W. Minton, and M.J. Daly. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol. 1998, 16(10):929-33.
    
    3.Brim, H., S.C. McFarlan, J.K. Fredrickson, K.W. Minton, M. Zhai, L.P. Wackett, and M.J. Daly. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol. 2000, 18(1):85-90.
    
    4.Stahl, W., A. Junghans, B. de Boer, E.S. Driomina, K. Briviba, and H. Sies. Carotenoid mixtures protect multilamellar liposomes against oxidative damage: synergistic effects of lycopene and lutein. FEBS Lett. 1998, 427(2):305-8.
    
    5.Van Dien, S.J., C.J. Marx, B.N. O'Brien, and M.E. Lidstrom. Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM 1 and isolation of a colorless mutant. Appl Environ Microbiol. 2003, 69(12):7563-6.
    
    6.Martinez, A. and R. Kolter. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol. 1997, 179(16):5188-94.
    7. Carrondo, M.A. Ferritins, iron uptake and storage from the bacterioferritin viewpoint. Embo J. 2003, 22(9): 1959-68.
    
    8. Almiron, M., A.J. Link, D. Furlong, and R. Kolter. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev. 1992, 6(12B):2646-54.
    
    9. Battista, J.R., A.M. Earl, and M.J. Park. Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol. 1999, 7(9):362-5.
    
    10. Anderson, A., H. Nordan, R. Cain, G Parrish, and D. Duggan. Studies on a radoresistant micrococcus. I. Isolation, morphology, cultural charchteristoics, and resistance to gamma radiation. Food Technol. 1956,10:575-578.
    
    11. Embley, T.M., D.A. G, W. R, and R. J. Lipid and cell wall amino acid composition in the lassification of members of the genus Deinococcus. Syst. Appl. Microbiol. 1987,10:20-27.
    
    12. Thompson, B.G and R.G Murray. Isolation and characterization of the plasma membrane and the outer membrane of Deinococcus radiodurans strain Sark. Can J Microbiol. 1981,27(7):729-34.
    
    13. Baumeister, W., M. Barth, R. Hegerl, R. Guckenberger, M. Hahn, and W.O. Saxton. Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. J Mol Biol. 1986, 187(2):241-50.
    
    14. Sleytr, U.B., M. Kocur, A.M. Glauert, and M.J. Thornley. A study by freeze-etching of the fine structure of Micrococcus radiodurans. Arch Mikrobiol. 1973, 94(1):77-87.
    
    15. Thornley, M.J., R.W. Horne, and A.M. Glauert. The fine structure of Micrococcus radiodurans. Arch Mikrobiol. 1965, 51 (3):267-89.
    
    16. Quintela, J.C., F. Garcia-del Portillo, E. Pittenauer, G. Allmaier, and M.A. de Pedro. Peptidoglycan fine structure of the radiotolerant bacterium Deinococcus radiodurans Sark. J Bacteriol. 1999, 181(1):334-7.
    
    17. Schleifer, K..H. and O. Kandler. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972,36(4):407-77.
    
    18. Anderson, R. and K. Hansen. Structure of a novel phosphoglycolipid from Deinococcus radiodurans. J Biol Chem. 1985,260(22): 12219-23.
    
    19. White, O., J.A. Eisen, J.F. Heidelberg, E.K. Hickey, J.D. Peterson, R.J. Dodson, D.H. Haft, M.L. Gwinn, W.C. Nelson, D.L. Richardson, K.S. Moffat, H. Qin, L. Jiang, W. Pamphile, M. Crosby, M. Shen, J.J. Vamathevan, P. Lam, L. McDonald, T. Utterback, C. Zalewski, K.S. Makarova, L. Aravind, M.J. Daly, K.W. Minton, R.D. Fleischmann, K.A. Ketchum, K.E. Nelson, S. Salzberg, H.O. Smith, J.C. Venter, and CM. Fraser. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science. 1999, 286(5444): 1571-7.
    
    20. Makarova, K.S., L. Aravind, Y.I. Wolf, R.L. Tatusov, K.W. Minton, E.V. Koonin, and M.J. Daly. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev. 2001, 65(1):44-79.
    
    21. Narumi, I., K. Cherdchu, S. Kitayama, and H. Watanabe. The Deinococcus radiodurans uvr A gene: identification of mutation sites in two mitomycin-sensitive strains and the first discovery of insertion sequence element from deinobacteria. Gene. 1997, 198(1-2): 115-26.
    
    22. Omelchenko, M.V., Y.I. Wolf, E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, M.J. Daly, E.V. Koonin, and K.S. Makarova. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BMC Evol Biol. 2005, 5:57.
    
    23. Liu, Y, J. Zhou, M.V. Omelchenko, A.S. Beliaev, A. Venkateswaran, J. Stair, L. Wu, D.K. Thompson, D. Xu, I.B. Rogozin, E.K. Gaidamakova, M. Zhai, K.S. Makarova, E.V. Koonin, and M.J. Daly. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci U S A. 2003,100(7):4191-6.
    
    24. Tanaka, M, 1. Narumi, T. Funayama, M Kikuchi, H. Watanabe, T. Matsunaga, O. Nikaido, and K. Yamamoto. Characterization of pathways dependent on the uvsE, uvrA1, or uvrA2 gene product for UV resistance in Deinococcus radiodurans. J Bacteriol. 2005, 187(11):3693-7.
    
    25. Heller, M.J. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng. 2002, 4:129-53.
    
    26. Blackstock, W.P. and M.P. Weir. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 1999,17(3):121-7.
    
    27. Pandey, A. and M. Mann. Proteomics to study genes and genomes. Nature. 2000,405(6788):837-46.
    
    28. Gevaert, K. and J. Vandekerckhove. Protein identification methods in proteomics. Electrophoresis. 2000, 21(6): 1145-54.
    
    29. Tanaka, A., H. Hirano, M. Kikuchi, S. Kitayama, and H. Watanabe. Changes in cellular proteins of Deinococcus radiodurans following gamma-irradiation. Radiat Environ Biophys. 1996, 35(2):95-9.
    
    30. Lipton, M.S., L. Pasa-Tolic, GA. Anderson, D.J. Anderson, D.L. Auberry, J.R. Battista, M.J. Daly, J. Fredrickson, K.K. Hixson, H. Kostandarithes, C. Masselon, L.M. Markillie, R.J. Moore, M.F. Romine, Y. Shen, E. Stritmatter, N. Tolic, H.R. Udseth, A. Venkateswaran, K.K. Wong, R. Zhao, and R.D. Smith. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc Natl Acad Sci USA. 2002, 99(17):11049-54.
    
    31. Zhang, C, J. Wei, Z. Zheng, N. Ying, D. Sheng, and Y. Hua. Proteomic analysis of Deinococcus radiodurans recovering from gamma-irradiation. Proteomics. 2005, 5(1):138-43.
    
    32. Hansen, M.T. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J Bacteriol. 1978, 134(1):71-5.
    
    33. Mortimer, R.K. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat Res. 1958, 9(3):312-26.
    
    34. Krasin, F. and F. Hutchinson. Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J Mol Biol. 1977,116(1):81-98.
    
    35. Levin-Zaidman, S., J. Englander, E. Shimoni, A.K. Sharma, K.W. Minton, and A. Minsky. Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science. 2003, 299(5604):254-6.
    
    36. Zimmerman, J.M. and J.R. Battista. A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol. 2005,5(1): 17.
    
    37. Moseley, B.E. and H.J. Copland. The rate of recombination repair and its relationship to the radiation-induced delay in DNA synthesis in Micrococcus radiodurans. J Gen Microbiol. 1976, 93(2):251-8.
    
    38. Hariharan, P.V. and P.A. Cerutti. Formation and repair of gamma-ray induced thymine damage in Micrococcus radiodurans. J Mol Biol. 1972, 66(1):65-81.
    
    39. Iliakis, G. The role of DNA double strand breaks in ionizing radiation-induced killing of eukaryotic cells. Bioessays. 1991, 13(12):641-8.
    
    40. Weber, K.J. and M. Flentje. Lethality of heavy ion-induced DNA double-strand breaks in mammalian cells. Int J Radiat Biol. 1993, 64(2): 169-78.
    
    41. Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev. 1999, 63(4):751-813, table of contents.
    42. Daly, M.J. and K.W. Minton. An alternative pathway of recombination of chromosomal fragments precedes rec A-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol. 1996,178(15):4461-71.
    
    43. Narumi, I., K. Satoh, S. Cui, T. Funayama, S. Kitayama, and H. Watanabe. PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol. 2004, 54(1):278-85.
    
    44. Kim, J.I. and MM. Cox. The RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways. Proc Natl Acad Sci U S A. 2002,99(12):7917-21.
    
    45. Haruta, N., X. Yu, S. Yang, E.H. Egelman, and M.M. Cox. A DNA pairing-enhanced conformation of bacterial RecA proteins. J Biol Chem. 2003,278(52):52710-23.
    
    46. Cox, M.M. and J.R. Battista. Deinococcus radiodurans - the consummate survivor. Nat Rev Microbiol. 2005, 3(11):882-92.
    
    47. Gillen, J.R., D.K. Willis, and A.J. Clark. Genetic analysis of the RecE pathway of genetic recombination in Escherichia coli K-12. J Bacteriol. 1981, 145(1):521 -32.
    
    48. Zablocka, A. and M. Janusz. The two faces of reactive oxygen species. Postepy Hig Med Dosw (Online). 2008,62:118-24.
    
    49. Tian, B., Y. Wu, D. Sheng, Z. Zheng, G Gao, and Y. Hua. Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans. Luminescence. 2004, 19(2):78-84.
    
    50. Markillie, L.M., S.M. Varnum, P. Hradecky, and K.K. Wong. Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol. 1999,181(2):666-9.
    
    51. Zheng, H., X. Lu, R.Y. Xing, P. Lu, and Q.Z. Yao. Deinococcus radiodurans CatB Gene Cloning and Expression in Escherichia coli. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2000, 32(4):417-420.
    
    52. Song, D., H. Li, J. Wang, J. Yao, and Z. Yu. [The effect of N+ implantation on SOD activity of Deinococcus radiodurans and induction of Mn-SOD]. Wei Sheng Wu Xue Bao. 1999, 39(4):362-6.
    
    53. Misra, H.S., N.P. Khairnar, A. Barik, K. Indira Priyadarsini, H. Mohan, and S.K. Apte. Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria. FEBS Lett. 2004, 578(1-2):26-30.
    
    54. Daly, M.J., E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, A. Venkateswaran, M. Hess, M.V. Omelchenko, H.M. Kostandarithes, K.S. Makarova, L.P. Wackett, J.K. Fredrickson, and D. Ghosal. Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science. 2004, 306(5698): 1025-8.
    
    55. Ghosal, D., M.V. Omelchenko, E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, A. Venkateswaran, M. Zhai, H.M. Kostandarithes, H. Brim, K.S. Makarova, L.P. Wackett, J.K. Fredrickson, and M.J. Daly. How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol Rev. 2005, 29(2):361-75.
    
    56. Carbonneau, M.A., A.M. Melin, A. Perromat, and M. Clerc. The action of free radicals on Deinococcus radiodurans carotenoids. Arch Biochem Biophys. 1989, 275(1 ):244-51.
    
    57. Rew, D.A. Deinococcus radiodurans. Eur J Surg Oncol. 2003, 29(6):557-8.
    
    
    1.Sies, H., W. Stahl, and A.R. Sundquist. Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids. Ann N Y Acad Sci. 1992, 669:7-20.
    
    2.Johnson, E.J. The role of carotenoids in human health. Nutr Clin Care. 2002, 5(2):56-65.
    
    3.Gollnick, H.P. and C. Siebenwirth. Beta-carotene plasma levels and content in oral mucosal epithelium is skin type associated. Skin Pharmacol Appl Skin Physiol. 2002,15(5):360-6.
    
    4.Gale, C.R., N.F. Hall, D.I. Phillips, and C.N. Martyn. Plasma antioxidant vitamins and carotenoids and age-related cataract. Ophthalmology. 2001, 108(11):1992-8.
    
    5.Gireesh, T., P.P. Nair, and P.R. Sudhakaran. Studies on the bioavailability of the provitamin A carotenoid, beta-carotene, using human exfoliated colonic epithelial cells. Br J Nutr. 2004, 92(2):241-5.
    
    6.Weimann, B.J. and H. Weiser. Effects of antioxidant vitamins C, E, and beta-carotene on immune functions in MRL/lpr mice and rats. Ann N Y Acad Sci. 1992,669:390-2.
    
    7.Goralczyk, R., K. Wertz, B. Lenz, G. Riss, P. Buchwald Hunziker, B. Geatrix, C.P. Aebischer, and H. Bachmann. Beta-carotene interaction with NNK in the AJ-mouse model: effects on cell proliferation, tumor formation and retinoic acid responsive genes. Biochim Biophys Acta. 2005, 1740(2): 179-88.
    
    8.李琳.番茄红素的研究进展.2000,21(5):8-11.
    
    9.成坚和曾庆孝.番茄红素的性质及生理功能研究进展.2000,26(2):75-79.
    
    10.Di Mascio, P., S. Kaiser, and H. Sies. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989, 274(2):532-8.
    
    11.Clinton, S.K. Lycopene: chemistry, biology, and implications for human health and disease. Nutr Rev. 1998, 56(2 Pt 1):35-51.
    
    12.谭新平.番茄红素与癌.天然产物研究与开发.2001,13(4):71-74.
    
    13.Hwang, E.S. and P.E. Bowen. Effects of tomato paste extracts on cell proliferation, cell-cycle arrest and apoptosis in LNCaP human prostate cancer cells. Biofactors. 2005,23(2):75-84.
    
    14.Bowen, P.E. Selection of surrogate endpoint biomarkers to evaluate the efficacy of lycopene/tomatoes for the prevention/progression of prostate cancer. J Nutr. 2005, 135(8):2068S-70S.
    
    15.徐伟.番茄红素对人体健康的潜在作用.国外医学卫生学分册.1998,25(12):81-84.
    
    16.孙庆杰和丁霄霖.番茄红素的保健作用与开发.1997,23(4):72-75.
    
    17.Pathak, S.K., R.A. Sharma, and J.K. Mellon. Chemoprevention of prostate cancer by diet-derived antioxidant agents and hormonal manipulation (Review). Int J Oncol. 2003,22(1):5-13.
    
    18.Kohlmeier, L., J.D. Kark, E. Gomez-Gracia, B.C. Martin, S.E. Steck, A.F. Kardinaal, J. Ringstad, M. Thamm, V. Masaev, R. Riemersma, J.M. Martin-Moreno, J.K. Huttunen, and F.J. Kok. Lycopene and myocardial infarction risk in the EURAMIC Study. Am J Epidemiol. 1997,146(8):618-26.
    
    19.Nelson, J.L., P.S. Bernstein, M.C. Schmidt, M.S. Von Tress, and E.W. Askew. Dietary modification and moderate antioxidant supplementation differentially affect serum carotenoids, antioxidant levels and markers of oxidative stress in older humans. J Nutr. 2003, 133(10):3117-23.
    
    20.Arab, L. and S. Steck. Lycopene and cardiovascular disease. Am J Clin Nutr. 2000, 71(6 Suppl):1691S-5S; discussion 1696S-7S.
    
    21.Stahl, W., A. Junghans, B. de Boer, E.S. Driomina, K. Briviba, and H. Sies. Carotenoid mixtures protect multilamellar liposomes against oxidative damage: synergistic effects of lycopene and lutein. FEBS Lett. 1998,427(2):305-8.
    
    22.Fuhrman, B., N. Volkova, M. Rosenblat, and M. Aviram. Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, camosic acid, or garlic. Antioxid Redox Signal. 2000,2(3):491-506.
    
    23.Hoffmann, I. and J.H. Weisburger. International symposium on the role of lycopene and tomato products in disease prevention. Cancer Epidemiol Biomarkers Prev. 1997,6(8):643-5.
    
    24.Ouchane, S., M. Picaud, C. Vernotte, and C. Astier. Photooxidative stress stimulates illegitimate recombination and mutability in carotenoid-less mutants of Rubrivivax gelatinosus. Embo J. 1997, 16(15):4777-87.
    
    25.Sandmann, G. Carotenoid biosynthesis in microorganisms and plants. Eur J Biochem. 1994, 223(1):7-24.
    
    26.Van Dien, S.J., C.J. Marx, B.N. O'Brien, and M.E. Lidstrom. Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AMI and isolation of a colorless mutant. Appl Environ Microbiol. 2003,69(12):7563-6.27.Chappell, J. The Biochemistry and Molecular Biology of Isoprenoid Metabolism. Plant Physiol. 1995, 107(1):1-6.
    
    28.Carattoli, A., N. Romano, P. Ballario, G. Morelli, and G. Macino. The Neurospora crassa carotenoid biosynthetic gene (albino 3) reveals highly conserved regions among prenyltransferases. J Biol Chem. 1991, 266(9):5854-9.
    
    29.Brems, D.N., E. Bruenger, and H.C. Rilling. Isolation and characterization of a photoaffinity-labeled peptide from the catalytic site of prenyltransferase. Biochemistry. 1981,20(13):3711-8.
    
    30.Armstrong, G.A., M. Alberti, F. Leach, and J.E. Hearst. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet. 1989, 216(2-3):254-68.
    
    31.Ohnuma, S., T. Nakazawa, H. Hemmi, A.M. Hallberg, T. Koyama, K. Ogura, and T. Nishino. Conversion from farnesyl diphosphate synthase to geranylgeranyl diphosphate synthase by random chemical mutagenesis. J Biol Chem. 1996, 271(17): 10087-95.
    
    32.Tarshis, L.C., M. Yan, CD. Poulter, and J.C. Sacchettini. Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-A resolution. Biochemistry. 1994, 33(36): 10871-7.
    
    33.Math, S.K., J.E. Hearst, and CD. Poulter. The crtE gene in Erwinia herbicola encodes geranylgeranyl diphosphate synthase. Proc Natl Acad Sci U S A. 1992, 89(15):6761-4.
    
    34.Matthews, P.D. and E.T. Wurtzel. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl Microbiol Biotechnol. 2000, 53(4):396-400.
    
    35. Wang, C.W., M.K. Oh, and J.C. Liao. Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol Bioeng. 1999,62(2):235-41.
    
    36. Neudert, U., I.M. Martinez-Ferez, P.D. Fraser, and G. Sandmann. Expression of an active phytoene synthase from Erwinia uredovora and biochemical properties of the enzyme. Biochim Biophys Acta. 1998, 1392(1):51-8.
    
    37. Fraser, P.D., S. Romer, C.A. Shipton, P.B. Mills, J.W. Kiano, N. Misawa, R.G. Drake, W. Schuch, and P.M. Bramley. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci U S A. 2002,99(2): 1092-7.
    
    38. Fraser, P.D., N. Misawa, H. Linden, S. Yamano, K. Kobayashi, and G. Sandmann. Expression in Escherichia coli, purification, and reactivation of the recombinant Envinia uredovora phytoene desaturase. J Biol Chem. 1992,267(28): 19891-5.
    
    39. Albrecht, M., A. Klein, P. Hugueney, G. Sandmann, and M. Kuntz. Molecular cloning and functional expression in E. coli of a novel plant enzyme mediating zeta-carotene desaturation. FEBS Lett. 1995, 372(2-3): 199-202.
    
    40. Tsuchiya, T., S. Takaichi, N. Misawa, T. Maoka, H. Miyashita, and M. Mimuro. The cyanobacterium Gloeobacter violaceus PCC 7421 uses bacterial-type phytoene desaturase in carotenoid biosynthesis. FEBS Lett. 2005, 579(10):2125-9.
    
    41. Schneider, C, P. Boger, and G. Sandmann. Phytoene desaturase: heterologous expression in an active state, purification, and biochemical properties. Protein Expr Purif. 1997,10(2): 175-9.
    
    42. Albrecht, M., H. Linden, and G. Sandmann. Biochemical characterization of purified zeta-carotene desaturase from Anabaena PCC 7120 after expression in Escherichia coli. Eur J Biochem. 1996, 236(1):115-20.
    
    43. Breitenbach, J., M. Kuntz, S. Takaichi, and G. Sandmann. Catalytic properties of an expressed and purified higher plant type zeta-carotene desaturase from Capsicum annuum. Eur J Biochem. 1999,265(1):376-83.
    
    44. Kostichka, K., L. Tao, M. Bramucci, J.F. Tomb, V. Nagarajan, and Q. Cheng. A small cryptic plasmid from Rhodococcus erythropolis: characterization and utility for gene expression. Appl Microbiol Biotechnol. 2003,62(1):61-8.
    
    45. Mann, V., M. Harker, I. Pecker, and J. Hirschberg. Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol. 2000, 18(8):888-92.
    
    46. Yamano, S., T. Ishii, M. Nakagawa, H. Ikenaga, and N. Misawa. Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem. 1994, 58(6): 1112-4.
    
    47. Miura, Y., K. Kondo, H. Shimada, T. Saito, K. Nakamura, and N. Misawa. Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid. Biotechnol Bioeng. 1998, 58(2-3):306-8.
    
    48. Verdoes, J.C, G. Sandmann, H. Visser, M. Diaz, M. van Mossel, and A.J. van Ooyen. Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Appl Environ Microbiol. 2003, 69(7):3728-38.
    
    49. Sandmann, G., M. Albrecht, G. Schnurr, O. Knorzer, and P. Boger. The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli. Trends Biotechnol. 1999, 17(6):233-7.
    
    50. Lorenz, R.T. and G.R. Cysewski. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 2000, 18(4): 160-7.
    1. Nair, S. and S.E. Finkel. Dps protects cells against multiple stresses during stationary phase. J Bacteriol. 2004, 186(13):4192-8.
    
    2. Almiron, M., A.J. Link, D. Furlong, and R. Kolter. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev. 1992,6(12B):2646-54.
    
    3. Wolf, S.G., D. Frenkiel, T. Arad, S.E. Finkel, R. Kolter, and A. Minsky. DNA protection by stress-induced biocrystallization. Nature. 1999,400(6739):83-5.
    
    4. Zhao, G., P. Ceci, A. Ilari, L. Giangiacomo, T.M. Laue, E. Chiancone, and N.D. Chasteen. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coll J Biol Chem. 2002, 277(31):27689-96.
    
    5. Ilari, A., P. Ceci, D. Ferrari, G.L. Rossi, and E. Chiancone. Iron incorporation into Escherichia coli Dps gives rise to a ferritin-like microcrystalline core. J Biol Chem. 2002, 277(40):37619-23.
    
    6. Martinez, A. and R. Kolter. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol. 1997, 179(16):5188-94.
    
    7. Gupta, S. and D. Chatterji. Bimodal protection of DNA by Mycobacterium smegmatis DNA-binding protein from stationary phase cells. J Biol Chem. 2003,278(7):5235-41.
    
    8. Ferguson, G.P., R.I. Creighton, Y. Nikolaev, and I.R. Booth. Importance of RpoS and Dps in survival of exposure of both exponential- and stationary-phase Escherichia coli cells to the electrophile N-ethylmaleimide. J Bacteriol. 1998,180(5): 1030-6.
    
    9. Grant, R.A., D.J. Filman, S.E. Finkel, R. Kolter, and J.M. Hogle. The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat Struct Biol. 1998, 5(4):294-303.
    
    10. Bhattacharyya, G. and A. Grove. The N-terminal extensions of Deinococcus radiodurans Dps-1 mediate DNA major groove interactions as well as assembly of the dodecamer. J Biol Chem. 2007.
    
    11. Stillman, T.J., M. Upadhyay, V.A. Norte, S.E. Sedelnikova, M. Carradus, S. Tzokov, P.A. Bullough, C.A. Shearman, M.J. Gasson, C.H. Williams, P.J. Artymiuk, and J. Green. The crystal structures of Lactococcus lactis MG1363 Dps proteins reveal the presence of an N-terminal helix that is required for DNA binding. Mol Microbiol. 2005, 57(4):1101-12.
    
    12. Frenkiel-Krispin, D., S. Levin-Zaidman, E. Shimoni, S.G. Wolf, E.J. Wachtel, T. Arad, S.E. Finkel, R. Kolter, and A. Minsky. Regulated phase transitions of bacterial chromatin: a non-enzymatic pathway for generic DNA protection. Embo J. 2001, 20(5): 1184-91.
    
    13. Kim, S.G., G. Bhattacharyya, A. Grove, and Y.H. Lee. Crystal structure of Dps-1, a functionally distinct Dps protein from Deinococcus radiodurans. J Mol Biol. 2006, 361(1): 105-14.
    
    14. Daly, M.J., E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, A. Venkateswaran, M. Hess, M.V. Omelchenko, H.M. Kostandarithes, K.S. Makarova, L.P. Wackett, J.K. Fredrickson, and D. Ghosal. Accumulation of Mn(ll) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science. 2004, 306(5698): 1025-8.
    
    15. Ceci, P., S. Cellai, E. Falvo, C. Rivetti, G.L. Rossi, and E. Chiancone. DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus. Nucleic Acids Res. 2004, 32(19):5935-44.
    
    16. Ceci, P., L. Mangiarotti, C. Rivetti, and E. Chiancone. The neutrophil-activating Dps protein of Helicobacter pylori, HP-NAP, adopts a mechanism different from Escherichia coli Dps to bind and condense DNA. Nucleic Acids Res. 2007,35(7):2247-56.
    
    17. Chen, L. and J.D. Helmann. Bacillus subtilis MrgA is a Dps(PexB) homologue: evidence for metalloregulation of an oxidative-stress gene. Mol Microbiol. 1995,18(2):295-300.
    
    18. Pena, M.M. and G.S. Bullerjahn. The DpsA protein of Synechococcus sp. Strain PCC7942 is a DNA-binding hemoprotein. Linkage of the Dps and bacterioferritin protein families. J Biol Chem. 1995,270(38):22478-82.
    
    19. Reindel, S., S. Anemuller, A. Sawaryn, and B.F. Matzanke. The DpsA-homologue of the archaeon Halobacterium salinarum is a ferritin. Biochim Biophys Acta. 2002,1598(1-2): 140-6.
    
    20. Yamamoto, Y., L.B. Poole, R.R. Hantgan, and Y. Kamio. An iron-binding protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vitro. J Bacteriol. 2002, 184(11):2931-9.
    
    21. Ueshima, J., M. Shoji, D.B. Ratnayake, K. Abe, S. Yoshida, K. Yamamoto, and K. Nakayama. Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis. Infect Immun. 2003, 71 (3): 1170-8.
    
    22. Bozzi, M., G. Mignogna, S. Stefanini, D. Barra, C. Longhi, P. Valenti, and E. Chiancone. A novel non-heme iron-binding ferritin related to the DNA-binding proteins of the Dps family in Listeria innocua. J Biol Chem. 1997, 272(6):3259-65.
    
    23. Grove, A. and S.P. Wilkinson. Differential DNA binding and protection by dimeric and dodecameric forms of the ferritin homolog Dps from Deinococcus radiodurans. J Mol Biol. 2005, 347(3):495-508.
    
    24. Park, M., S.T. Yun, S.Y. Hwang, C.I. Chun, and T.I. Ahn. The dps gene of symbiotic "Candidatus Legionella jeonii" in Amoeba proteus responds to hydrogen peroxide and phagocytosis. J Bacteriol. 2006, 188(21):7572-80.
    
    25. Castruita, M., M. Saito, P.C. Schottel, L.A. Elmegreen, S. Myneni, E.I. Stiefel, and F.M. Morel. Overexpression and characterization of an iron storage and DNA-binding Dps protein from Trichodesmium erythraeum.Appl Environ Microbiol. 2006, 72(4):2918-24.
    
    26. Ceci, P., A. Ilari, E. Falvo, L. Giangiacomo, and E. Chiancone. Reassessment of protein stability, DNA binding, and protection of Mycobacterium smegmatis Dps. J Biol Chem. 2005, 280(41):34776-85.
    
    27. Olsen, K.N., M.H. Larsen, C.G. Gahan, B. Kallipolitis, X.A. Wolf, R. Rea, C. Hill, and H. Ingmer. The Dps-like protein Fri of Listeria monocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells. Microbiology. 2005, 151(Pt 3):925-33.
    
    28. Tonello, F., W.G. Dundon, B. Satin, M. Molinari, G. Tognon, G Grandi, G. Del Giudice, R. Rappuoli, and C. Montecucco. The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Mol Microbiol. 1999, 34(2):238-46.
    
    29. Papinutto, E., W.G. Dundon, N. Pitulis, R. Battistutta, C. Montecucco, and G Zanotti. Structure of two iron-binding proteins from Bacillus anthracis. J Biol Chem. 2002, 277(17): 15093-8.
    
    30. Ishikawa, T., Y. Mizunoe, S. Kawabata, A. Takade, M. Harada, S.N. Wai, and S. Yoshida. The iron-binding protein Dps confers hydrogen peroxide stress resistance to Campylobacter jejuni. J Bacteriol. 2003, 185(3):1010-7.
    
    31. Ceci, P., A. Ilari, E. Falvo, and E. Chiancone. The Dps protein of Agrobacterium tumefaciens does not bind to DNA but protects it toward oxidative cleavage: x-ray crystal structure, iron binding, and hydroxyl-radical scavenging properties. J Biol Chem. 2003,278(22):20319-26.
    
    32. Liu, X., K. Hintze, B. Lonnerdal, and E.C. Theil. Iron at the center of ferritin, metal/oxygen homeostasis and novel dietary strategies. Biol Res. 2006, 39(1): 167-71.
    
    33. Chiancone, E., P. Ceci, A. llari, F. Ribacchi, and S. Stefanini. Iron and proteins for iron storage and detoxification. Biometals. 2004, 17(3): 197-202.
    
    34. Harrison, P.M. and P. Arosio. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996,1275(3):161-203.
    
    35. Theil, E.C., M. Matzapetakis, and X. Liu. Ferritins: iron/oxygen biominerals in protein nanocages. J Biol Inorg Chem. 2006, 11(7):803-10.
    
    36. Zanotti, G, E. Papinutto, W. Dundon, R. Battistutta, M. Seveso, G Giudice, R. Rappuoli, and C. Montecucco. Structure of the neutrophil-activating protein from Helicobacter pylori. J Mol Biol. 2002, 323(1):125-30.
    
    37. Yang, X., E. Chiancone, S. Stefanini, A. Ilari, and N.D. Chasteen. Iron oxidation and hydrolysis reactions of a novel ferritin from Listeria innocua. Biochem J. 2000, 349 Pt 3:783-6.
    
    38. Takahashi, T. and S. Kuyucak. Functional properties of threefold and fourfold channels in ferritin deduced from electrostatic calculations. Biophys J. 2003, 84(4):2256-63.
    
    39. Pulliainen, A.T., A. Kauko, S. Haataja, A.C. Papageorgiou, and J. Finne. Dps/Dpr ferritin-like protein: insights into the mechanism of iron incorporation and evidence for a central role in cellular iron homeostasis in Streptococcus suis. Mol Microbiol. 2005, 57(4): 1086-100.
    
    40. Zeth, K., S. Offermann, L.O. Essen, and D. Oesterhelt. Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states. Proc Natl Acad Sci U S A. 2004,101 (38): 13780-5.
    
    41. Price, D. and J.G Joshi. Ferritin: a zinc detoxicant and a zinc ion donor. Proc Natl Acad Sci U S A. 1982,79(10):3116-9.
    
    42. Liu, X., K. Kim, T. Leighton, and E.C. Theil. Paired Bacillus anthracis Dps (mini-ferritin) have different reactivities with peroxide. J Biol Chem. 2006, 281(38):27827-35.
    
    43. Lomovskaya, O.L., J.P. Kidwell, and A. Matin. Characterization of the sigma 38-dependent expression of a core Escherichia coli starvation gene, pexB. J Bacteriol. 1994, 176(13):3928-35.
    
    44. Altuvia, S., M. Almiron, G. Huisman, R. Kolter, and G Storz. The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol. 1994,13(2):265-72.
    
    45. Horsburgh, M.J., M.O. Clements, H. Crossley, E. Ingham, and S.J. Foster. PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun. 2001, 69(6):3744-54.
    
    46. Antelmann, H., S. Engelmann, R. Schmid, A. Sorokin, A. Lapidus, and M. Hecker. Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor sigmaB in Bacillus subtilis. J Bacteriol. 1997, 179(23):7251-6.
    
    47. Stephani, K., D. Weichart, and R. Hengge. Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli. Mol Microbiol. 2003, 49(6): 1605-14.
    
    48. Finkel, S.E. and R. Kolter. Evolution of microbial diversity during prolonged starvation. Proc Natl Acad Sci U S A. 1999,96(7):4023-7.
    
    
    1.Moeller, R., G. Horneck, R. Facius, and E. Stackebrandt, Role of pigmentation in protecting Bacillus sp.endospores against environmental UV radiation. FEMS Microbiol Ecol. 2005, 51(2): 231-6.
    
    2.Poplawsky, A.R., S.C. Urban, and W. Chun, Biological role of xanthomonadin pigments in Xanthomonas campestris pv. campestris. Appl Environ Microbiol. 2000, 66(12): 5123-7.
    
    3.Laurant, L., P. Evelyne, and C. Michel, Deinoxanthin: A New Carotenoid Isolated from Deinococcusradiodurans. Tetrahedron. 1997, 53(3): 919-926.
    
    4.Tian, B., Y. Wu, D. Sheng, Z. Zheng, G. Gao, and Y. Hua, Chemiluminescence assay for reactiveoxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans. Luminescence. 2004, 19(2): 78-84.
    
    5.Wenli, Y. and Z. Yaping, Chemiluminescence evaluation of oxidative damage to biomolecules inducedby singlet oxygen and the protective effects of antioxidants. Biochim Biophys Acta. 2005, 1725(1): 30-4.
    
    1.White, O., J.A. Eisen, J.F. Heidelberg, E.K. Hickey, J.D. Peterson, R.J. Dodson, D.H. Haft, M.L. Gwinn,W.C. Nelson, D.L. Richardson, K.S. Moffat, H. Qin, L. Jiang, W. Pamphile, M. Crosby, M. Shen, J.J. Vamathevan, P. Lam, L. McDonald, T. Utterback, C. Zalewski, K.S. Makarova, L. Aravind, M.J. Daly, K.W. Minton, R.D. Fleischmann, K.A. Ketchum, K.E. Nelson, S. Salzberg, H.O. Smith, J.C. Venter, and CM. Fraser, Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science. 1999,286(5444): 1571-7.
    
    2.Misawa, N., Y. Satomi, K. Kondo, A. Yokoyama, S. Kajiwara, T. Saito, T. Ohtani, and W. Miki,Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol. 1995, 177(22): 6575-84.
    
    3.Hannibal, L, J. Lorquin, N.A. D'Ortoli, N. Garcia, C. Chaintreuil, C. Masson-Boivin, B. Dreyfus, and E.Giraud, Isolation and characterization of canthaxanthin biosynthesis genes from the photosynthetic bacterium Bradyrhizobium sp. strain ORS278. J Bacteriol. 2000,182(13): 3850-3.
    
    4.Steiger, S., Y. Jackisch, and G. Sandmann, Carotenoid biosynthesis in Gloeobacter violaceus PCC4721 involves a single crtI-type phytoene desaturase instead of typical cyanobacterial enzymes. Arch Microbiol. 2005, 184(4): 207-14.
    
    5.Tao, L. and Q. Cheng, Novel beta-carotene ketolases from non-photosynthetic bacteria for canthaxanthin synthesis. Mol Genet Genomics. 2004, 272(5): 530-7.
    
    1.Van Dien, S.J., C.J. Marx, B.N. O'Brien, and M.E. Lidstrom, Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AMI and isolation of a colorless mutant. Appl Environ Microbiol. 2003,69(12): 7563-6.
    
    2.Meima, R., H.M. Rothfuss, L. Gewin, and M.E. Lidstrom, Promoter cloning in the radioresistantbacterium Deinococcus radiodurans. J Bacteriol. 2001, 183(10): 3169-75.
    
    3.Lawrence, G.W. and A.D. Gilbert, A double staining method for differentiating between two classes ofmycobacterial catalase in polyacrylamide electrophoresis gels. Analytical Biochemistry. 1986, 157: 89-92.
    
    4.Tian, B., Y. Wu, D. Sheng, Z. Zheng, G Gao, and Y. Hua, Chemiluminescence assay for reactiveoxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans. Luminescence. 2004,19(2): 78-84.
    
    5.Wenli, Y. and Z. Yaping, Chemiluminescence evaluation of oxidative damage to biomolecules inducedby singlet oxygen and the protective effects of antioxidants. Biochim Biophys Acta. 2005, 1725(1): 30-4.
    
    6.Laurant, L., P. Evelyne, and C. Michel, Deinoxanthin: A New Carotenoid Isolated from Deinococcus radiodurans. Tetrahedron. 1997, 53(3): 919-926.
    
    1.Chamovitz, D., G. Sandmann, and J. Hirschberg, Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J Biol Chem. 1993,268(23): 17348-53.
    
    2.Van Dien, S.J., C.J. Marx, B.N. O'Brien, and M.E. Lidstrom, Genetic characterization of the carotenoidbiosynthetic pathway in Methylobacterium extorquens AMI and isolation of a colorless mutant. Appl Environ Microbiol. 2003, 69(12): 7563-6.
    
    3.Schneider, C, P. Boger, and G. Sandmann, Phytoene desaturase: heterologous expression in an activestate, purification, and biochemical properties. Protein Expr Purif. 1997, 10(2): 175-9.
    
    4.Di Mascio, P., S. Kaiser, and H. Sies, Lycopene as the most efficient biological carotenoid singletoxygen quencher. Arch Biochem Biophys. 1989, 274(2): 532-8.
    
    5.Fraser, P.D., N. Misawa, H. Linden, S. Yamano, K. Kobayashi, and G. Sandmann, Expression in??Escherichia coli, purification, and reactivation of the recombinant Erwinia uredovora phytoene desaturase. J Biol Chem. 1992,267(28): 19891-5.
    
    6.Lowe, G.M., L.A. Booth, A.J. Young, and R.F. Bilton, Lycopene and beta-carotene protect against oxidative damage in HT29 cells at low concentrations but rapidly lose this capacity at higher doses. Free Radic Res. 1999, 30(2): 141-51.
    
    7.Yeh, S. and M. Hu, Antioxidant and pro-oxidant effects of lycopene in comparison with beta-carotene on oxidant-induced damage in Hs68 cells. J Nutr Biochem. 2000,11(11-12): 548-554.
    
    1.Makarova, K.S., L. Aravind, Y.I. Wolf, R.L. Tatusov, K.W. Minton, E.V. Koonin, and M.J. Daly, Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev. 2001, 65(1): 44-79.
    
    2.Harrison, P.M. and P. Arosio, The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996, 1275(3): 161-203.
    
    3.Chiancone, E., P. Ceci, A. Ilari, F. Ribacchi, and S. Stefanini, Iron and proteins for iron storage and detoxification. Biometals. 2004, 17(3): 197-202.
    
    4.Kim, S.G., G. Bhattacharyya, A. Grove, and Y.H. Lee, Crystal structure of Dps-1, a functionally distinct Dps protein from Deinococcus radiodurans. J Mol Biol. 2006, 361(1): 105-14.
    
    1.Liu, X., K. Hintze, B. Lonnerdal, and E.C. Theil, Iron at the center of ferritin, metal/oxygen homeostasis and novel dietary strategies. Biol Res. 2006,39(1): 167-71.
    
    2.Nair, S. and S.E. Finkel, Dps protects cells against multiple stresses during stationary phase. J Bacteriol.2004,186(13): 4192-8.
    
    3.Meima, R. and ME. Lidstrom, Characterization of the minimal replicon of a cryptic Deinococcusradioduram SARK plasmid and development of versatile Escherichia coli-D. radiodurans shuttle vectors. Appl Environ Microbiol. 2000, 66(9): 3856-67.
    
    4.Funayama, T., I. Narumi, M. Kikuchi, S. Kitayama, H. Watanabe, and K. Yamamoto, Identification anddisruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans. Mutat Res. 1999,435(2): 151-61.
    
    5.Ma, J.F., U.A. Ochsner, M.G. Klotz, V.K. Nanayakkara, ML. Howell, Z. Johnson, J.E. Posey, M.L.Vasil, J.J. Monaco, and D.J. Hassett, Bacterioferritin A modulates catalase A (KatA) activity and resistance to hydrogen peroxide in Pseudomonas aeruginosa. J Bacteriol. 1999,181(12): 3730-42.
    
    6.Tian, B., Y. Wu, D. Sheng, Z. Zheng, G. Gao, and Y. Hua, Chemiluminescence assay for reactiveoxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans. Luminescence. 2004,19(2): 78-84.
    
    7.Wenli, Y. and Z. Yaping, Chemiluminescence evaluation of oxidative damage to biomolecules inducedby singlet oxygen and the protective effects of antioxidants. Biochim Biophys Acta. 2005, 1725(1): 30-4.
    1. Grant, R.A., D.J. Filman, S.E. Finkel, R. Kolter, and J.M. Hogle, The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat Struct Biol. 1998, 5(4): 294-303.
    
    2. Gauss, G.H., P. Benas, B. Wiedenheft, M. Young, T. Douglas, and CM. Lawrence, Structure of the DPS-like protein from Sulfolobus solfataricus reveals a bacterioferritin-like dimetal binding site within a DPS-like dodecameric assembly. Biochemistry. 2006, 45(36): 10815-27.
    
    3. Stillman, T.J., M. Upadhyay, V.A. Norte, S.E. Sedelnikova, M. Carradus, S. Tzokov, P.A. Bullough, C.A. Shearman, M.J. Gasson, C.H. Williams, P.J. Artymiuk, and J. Green, The crystal structures of Lactococcus lactis MG1363 Dps proteins reveal the presence of an N-terminal helix that is required for DNA binding. Mol Microbiol. 2005, 57(4): 1101-12.
    
    4. Wolf, S.G, D. Frenkiel, T. Arad, S.E. Finkel, R. Kolter, and A. Minsky, DNA protection by stress-induced biocrystallization. Nature. 1999,400(6739): 83-5.
    
    5. Zhao, G., P. Ceci, A. Ilari, L. Giangiacomo, T.M. Laue, E. Chiancone, and N.D. Chasteen, Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coll J Biol Chem. 2002, 277(31): 27689-96.
    
    6. Liu, X., K. Kim, T. Leighton, and E.C. Theil, Paired Bacillus anthracis Dps (mini-ferritin) have different reactivities with peroxide. J Biol Chem. 2006,281(38): 27827-35.
    
    7. Grove, A. and S.P. Wilkinson, Differential DNA binding and protection by dimeric and dodecameric forms of the ferritin homolog Dps from Deinococcus radiodurans. J Mol Biol. 2005, 347(3): 495-508.
    
    8. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227(5259): 680-5.
    
    9. Nair, S. and S.E. Finkel, Dps protects cells against multiple stresses during stationary phase. J Bacteriol. 2004,186(13): 4192-8.
    
    10. Castruita, M., M. Saito, P.C. Schottel, L.A. Elmegreen, S. Myneni, E.I. Stiefel, and F.M. Morel, Overexpression and characterization of an iron storage and DNA-binding Dps protein from Trichodesmium erythraeum. Appl Environ Microbiol. 2006, 72(4): 2918-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700