家蚕(Bombyx mori)全基因组细胞色素P450基因结构与进化分析及CYP18A1克隆与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞色素P450酶系义称作多功能氧化酶(MFO),是广泛存在于所有需氧生物体中的一类代谢酶系,细胞色素P450基因起源于35亿年前的一个共同祖先,是最古老和最庞大的超基因家族之一,在生命的过程中,它对内源物质的代谢与转化或外源化合物的活化与降解等进行催化和调控。在昆虫基因组中大约有100个左右的P450s,它们的作用涉及生长、发育、取食等过程,其对异生物质的代谢特性导致了昆虫对杀虫剂的抗药性和对植物有毒物质的耐受性,它还参与了昆虫体内保幼激素、蜕皮激素和脂肪酸等内源化合物的合成与代谢。
     家蚕(Bombyx mori)是鳞翅目昆虫的模式生物,鳞翅目是昆虫中的第二大目,其中许多是极具危害性的农业害虫。随着生物技术的发展,家蚕已经成为一个重要的生物反应器用于生产重组蛋白。鳞翅目昆虫基因组信息不但对蚕丝业的改良产生了重大影响,而且也促进了新的害虫防治技术的发展。本研究基于家蚕基因组精细图和EST、全基因组基因芯片数据,对家蚕细胞色素P450基因进行了生物信息学及比较基因组学研究,开展了其中CYP9A基因簇的结构与进化分析,采用RNAi技术对家蚕中被推定为蜕皮激素C_(26)-羟基化酶的直向同源基因CYP18A1进行了功能研究。本论文的主要研究结果如下:
     1.家蚕细胞色素P450基因的基因组学分析
     将人、拟南芥、果蝇及盘基网柄菌等其它24个物种中已知的P450s在家蚕基因组精细图数据库中进行同源检索分析,以鉴定家蚕细胞色素P450基因。结果显示,家蚕基因组中存在84个细胞色素P450基因,其中有78个功能基因,6个假基因,并发现其中有8个基因簇的存在,最大的基因簇包含有9个P450s。假基因和基因簇的存在均属首次报道。
     首次绘制了家蚕P450s的基因图谱,其中80个P450s可定位到19条不同的染色体上。此次首先报道的6个假基因,包括2个基因缺失突变,3个因片段滑移而产生阅读框内的移码突变,1个基因碎片。它们主要分布于基因数量大量扩增的Clan3和Clan4,而且有5个位于基因簇中,这充分显示了它们与基因复制的直接联系。
     通过对预测P450s序列延伸,获得了70个具有完全开放阅读框的功能基因全长序列。并根据预测序列建立了系统发生树,将它们按昆虫P450集团、家族、亚家族分类,78个功能基因可分为26个家族,47个亚家族。提交国际细胞色素P450委员会后被分别予以正式命名。
     84个预测基因有40个基因至少有1条EST序列为其表达证据。其中,来自Clan2和线粒体集团的P450s有EST证据的比例要明显高于其它2个集团,说明这些基因对家蚕正常的发育变态至关重要。家蚕全基因组芯片数据分析表明不同家蚕P450s之间具有组织和时期表达的差异性与特异性,未表达基因应更具昆虫P450s的诱导表达特点。
     本研究还首次利用wise2程序对每个预测家蚕P450s进行内含子-外显子结构的分析,绘制了首张全基因组家蚕P450s结构图,通过它们的系统发生关系分析得知,基因结构和系统发生关系之间总体上存在紧密联系,即:进化关系越近,基因结构越相似,进化关系越远,基因结构差异越大。
     2.昆虫P450s的比较基因组学分析
     果蝇是目前昆虫P450s功能研究得最为清楚的模式昆虫,它和家蚕分别作为双翅目与鳞翅目昆虫的代表,P450s的数量也基本相当。通过利用这2种昆虫的功能基因建立系统发生树,发现了2物种间存在10对直向同源基因,但在基因数量大量扩增的Clan3与Clan4中,已很难找出直向同源基因,这2个集团基因在进化树的进化枝上表现出了种属特异性,即:在独立的进化枝上聚合的基因绝大多数是来自同一昆虫。我们推测这些基因在不同种类昆虫中的分化,是为了应对昆虫各自不同的生存环境与取食对象的选择压力所致。此外,在家蚕和果蝇的P450功能基因在Clan3与Clan4的数量和种类分布上存在明显差异,推测家蚕等鳞翅目昆虫可能没有像果蝇等双翅目昆虫那样对有毒物质的强代谢能力,替而代之是更多地依赖于多样选择和增强反防御能力等主动防御方式来提高自身对环境的适应能力。
     通过比较基因组学方法,研究发现直向同源基因CYP18A1和CYP306A1在家蚕、果蝇与蜜蜂中存在线性保守,其基因位置与结构的同源性。暗示了它们功能上的相似性。
     首次根据果蝇、蜜蜂与家蚕P450s内含子-外显子结构,按不同集团的划分对来自3种不同昆虫的P450s进行了基因结构的比较分析。结果发现这些基因中存在大量的特异性内含子,在家蚕和蜜蜂中存在0相跨集团保守内含子,但在3个昆虫中均存在的跨集团保守内含子是1相内含子,这些实际观察到的情况还不能很好回答内含子起源的问题。横向同源基因大量扩增,进化最迅速,功能多样,表现出环境应答基因特点的Clan3基因虽然由昆虫特有的P450s所组成,分化时间在3亿年以内,但跨不同昆虫的保守内含子最少。而在功能保守的Clan2和线粒体集团,特别是线粒体集团,则存在数量较多的跨昆虫保守内含子;从线虫、人与昆虫的P450s比较来看,尽管它们的分化时间已超过7亿年,仍然在这2集团中存在一定数量的保守内含子,说明这些功能保守的基因虽然在氨基酸序列保守性方面发生了明显的差异,已不属于同一家族的基因,但与功能相关的结构域仍然高度保守,导致了编码该保守序列的DNA结构即形成的内含子与外显子的结构保守性也很高。
     果蝇、蜜蜂与家蚕的基因组大小分别为132Mb、262Mb和432Mb。果蝇P450s的内含子数量最少,大小最小,家蚕的内含子数量最多,大小最大,蜜蜂则居于其中,这刚好和这3种昆虫基因组大小相一致。表明随着基因组增大,基因的内含子含量也随之增多。
     3.家蚕CYP9A基因簇基因的克隆与复制机制研究
     通过RT-PCR方法,克隆得到了家蚕4个CYP9A基因,分别被国际P450委员会命名为CYP9A19,CYP9A20,CYP9A21,CYP9A22。它们具有完全相同大小的开放阅读框,均有9个内含子,10个外显子,内含子的插入位点与相位完全保守。3个同转录方向的基因串联重复,而另1个反方向转录的基因被4个串联的乙醇脱氢酶基因所间隔而位于同一Scaffold的下游,呈现出明显的基因重复的结构特征,这是关于家蚕细胞色素P450s基因簇的第一个报道。
     同源性分析表明,家蚕CYP9As和已分离的昆虫CYP9As有很高的序列相似性,而且和美国棉铃虫的CYP9A12v3和CYP9A14具有完全保守的内含子插入位点,所对应的各外显子长度几乎完全相同。昆虫CYP9As的系统进化分析表明,家蚕的4个CYP9As是由3次不同的复制事件而来。其中,CYP9A22和棉铃虫的CYP9A14的同源性超过了和家蚕本身CYP9As的同源性,应是最古老的基因,CYP9A19和CYP9A21的序列相似性超过了94%,而且5'端旁侧序列也存在相当高的同源性,应是最近基因复制事件的产物。
     从家蚕CYP9A基因的表达分析来看,这4个基因均选择性地在外源化合物进入蚕体的主要入口组织脂肪体、中肠及体壁中表达,表明它们可能与异生性化合物代谢有关,同时它们也在其他组织和器官中表达,推测它们参与了内源性物质调节。通过4个基因间的特异性表达方式和它们系统发生关系表明,基因复制发生时间与基因的表达分化之间存在相当紧密的相关关系。即:分化时间越远则表达筹异越大。
     4.家蚕CYP18A1的克隆与功能研究
     蜕皮激素对昆虫生长、发育和繁殖有重要调控作用,尤其对蜕皮和变态过程。根据信息分析的结果,我们克隆了家蚕中被推定为蜕皮激素C_(26)羟基化酶的直向同源基因CYP18A1,该基因包括5'-UTR在内有1737bp,编码541个氨基酸,在GenBank上的对应登录号为EF421988。它和已经分离的其它物种的直向同源基因,特别是海灰翅夜蛾的有较高的同源性。在和包括哺乳动物中与类固醇合成和代谢有关P450s在内的基因进行系统发生关系分析时发现,哺乳动物中与类固醇代谢有关的CYP2基因和家蚕CYP18A1有较为相近的进化关系,这可能暗示着与甾类化合物代谢相关基因在远源物种分化后,仍保持着序列与功能的保守性。
     无论表达谱分析还是家蚕全基因组芯片数据均表明该基因在上簇第2天有相对较高的转录水平,与家蚕体内相应的蜕皮激素峰值时间有很高的一致性,从而进一步印证了以前的研究对该昆虫直向同源基因功能的推断,即蜕皮激素应一样参与了家蚕的CYP18A的转录调控,该基因与家蚕蜕皮激素代谢也可能有一定的关系。
     结合组织、时间表达谱分析,以体外注射的方式,通过在5龄中后期及老熟前期连续向蚕体导入体外合成的CYP18A1对应的dsRNA,获得了发育偏快的表型。说明家蚕CYP18A1基因可能与家蚕的发育变态相关。该基因功能的发现和进一步深入研究可会为昆虫害虫防治提供新的作用靶标和控制策略。
Cytochrome P450 enzymes(mixed function oxidases)are a complex family of heme-containing enzymes found in virtually all aerobic organisms,which is one of the oldest and largest gene superfamilies.Cytochrome P450(P450s)evolved from a common ancestor which has existed for more than 3.5 billion years.Many functions are attributed to cytochrome P450s including the metabolism of a wide variety of both endogenous substrates and xenobiotics.The genome of each insect species may carry a hundred or so different P450 genes.They do many things:P450.enzymes are found in the biosynthetic and metabolic pathways of ecdysteroids and juvenile hormones,they also metabolize insecticides,resulting either in bioactivation or,more often,in detoxification,the latter process being enhanced in many strains with metabolic resistence to insecticides.Furthermore, P450 metabolism of certain plant chemicals is often the key to the adaptation of insect herbivores to their host plants.
     Silkworm(Bombyx raori)is the model organism for Lepidoptera,the second biggest order in insects,which includes the most disruptive agricultural pests.With the development of biotechnology,B.mori has been used as an important bioreactor for the production of recombinant proteins.Lepidopteran genome information not only makes a strong impact on improving sericulture, but also facilitates the development of new pest controls.On basis of the completing genome sequence database of silkworm,coupled with its ESTs and the whole genome microarray,we studied the silkworm cytochrome P450 by analysis of bioinformation and comparative genomics.We also analyzed the structure and evolution of the CYP9A cluster and studied on the cloning and function of orthologous CYP18A1,a candidate for the ecdysone 26-hydroxylase.The main results present as follows.
     1.Analysis of cytochrome P450s in a completing silkworm genome sequence
     The cytochrome P450s in 24 species available from GenBank or P450 homepage were used to scanne the completing silkworm genome sequence,we identified 84 putative cytochrome P450s in silkworm genome.Among of them,78 appear to be functional P450 genes,six are probable pseudogenes.The genetic map shows that 80 P450s are distributed on 19 chromosomes,eight clusters with over three genes are organized in silkworm genome,with up to 9 member genes in the largest cluster.Of six probable pseudogenes,2 are characterized by deletions,3 by the presence of several stop codons in the open reading frame(ORF)and one separated from their parent loci but never represented a functional gene.Five probable pseudogenes are distributed into the different clusters,maybe they are duplications in the different evolutionary events.This constructs first report on gene clusters and pseudogenes in P450S superfamily of the silkworm.
     These insect conserved motifs of the protein were used as milestones in the gradual elaboration of full-length P450 sequences.As a result,70 functional P450s with complete open reading frame are identified by Wise2 and EST assembly.All them were named by the P450 Nomenclature Committee,78 functional P450-like genes can be classified into 26 families and 47 subfamilies,and were used to BLAST search against the ESTs database,40 genes have at least one EST,while 44 genes are not represented in the EST collection.Among of them,more P450s from Clan2 and Mito.CYP.clan,especially P450s involved in ecdysteroid biosynthesis,have ESTs as expression evidence than the other P450s from Clan3 and Clan4,which suggest that these P450s from Clan2 and Mito.CYP are essential housekeeping genes which require a high fidelity because of functional constrains.The whole genome microarray also reveals that the different P450s have distinct pattern of temporal and tissue-specific expression.Others unexpressed should be inducible expression.
     We have drawn the first map of silkworm P450 intron positions and phases compared to the phylogenetic tree.There is a relatively good correlation between intron conservation and phylogenetic relationship between members of the P450 subfamilies.The orthologous CYP15C1 is also identified,which catalyzes epoxidation of methyl famesoate to juvenile hormoneⅢin cockroach corpora allata.
     2.Comparative genomics analysis of P450s among different insects
     The silkworm and the fruit fly(Drosophila melanogaster),which is the most well-studied model organism for insect,a lepidoptera,a diptera,are complete metamorphosis insects,and they almost contain the same numbers of P450s.We have presumed 10 orthologous gene pairs by phylogenetic analysis,and 5 gene pairs among them are involved in ecdysteroid biosynthesis,which require a high fidelity because of functional constrains,and almost retain stringently as 1:1 orthologs.But P450s in Clan3 and Clan4 are the most numerous among insect P450s,it is difficult to find the distinct orthologous gene pairs.They form different separate species-specific clusters in the phylogenetic tree,which is presumedly related to their habitat and ecological niche.Almost all P450s of silkworm in Clan3 are cluster into one clade with CYP6B found in the metabolism of certain plant chemicals,whereas P450s of housefly in this clan are cluster into a different clade with CYP6A related to metabolic resistence to insecticides.Furthermore,there are distinct number and subfamily difference in P450s of Clan3 and Clan4,We can presume that silkworm may not confer an strong metabolic resistance to xenobiotics,instead,it depend much more on additional selective ability of their varied food sources and environment to cope with the ever-changing environment.
     By comparative genomics analysis,we find there is conserved arrangement of CYP306A1 and CYP18.41 among the three insects.Together,the tight linkage and conserved intron-exon organization indicate an orthologous relationship.
     Based on the data.on intron-exon organization of P450s in D.melanogaster and Apis,along with the analysis of P450s in silkworm,we draw comparisons between P450s from different insect P450 Clans.The different P450s contain a large member of unique intron positions and phases,the very few introns of insect P450s conserved across CYP Clan are phase 1 introns,while there is phase 0 conserved across CYP Clan intron.The observed results were not what the "intron-early or intron-late" scenario expected.Fewer introns are conserved from insect CYP genes in Clan3 which appear to share the characteristics of "environment response genes" and are related to functional diversity,while a lot of conserved introns of insect CYP genes from Clan2 and mitochondrial P450 which are involved in essential physiological functions have their counterparts in other insect P450s. As compared with other animal phyla P450s,some intron insertion sites of are conserved,although the three phyla diverged some 700.MAY.The result revealed that the conserved intron-exon structure play a vital part in conservation of gene function.
     Assuming the genome sizes of B.mori,D.melanogaster and A.mellifera are 432Mb,132Mb and 262Mb,respectively.The intron number per gene and the intron sizes are different,B.mori>A. rnellifera>D.melanogaster.There is a tendency that they all increase with genome sizes
     3.Characterization of multiple CYP9A genes and their putative evolution mechanism All four of CYP9A subfamily members in the silkworm were cloned by RT-PCR and designated as CYP9A19-CYP9A22 by the P450 Nomenclature Committee,respectively.Each of the genes contains an ORF of 1593bp in identical length and encodes a putative polypeptide of 531 amino acids.Both of nucleic acid and amino acid sequences share very high identities to each other. Alignment with the cDNA sequences revealed that these paralogs share an identical genomic structure,each comprising 10 exons and 9 introns of variable sizes.The locations of their introns are absolutely conserved,CYP9A19,CYP9A20 and CYP9A21 form a tandem cluster,whereas CYP9A22 separated from the cluster by four tandem alcohol dehydrogenase-like genes.Phylogenetic relationships and structural comparisons indicated that these paralogs arose as a result of gene duplication events.CYP9A22 with oppositional orientation forms a separate one with the members from different organisms in lepidopteran insect,which is more similar to CYP9A14(63%amino acid identical)from H.armigera than to members of its own,indicating an duplication which occur most early than the other two tandem duplicate events.In contrast,CYP9A19 and CYP9A21 displayed not only a high degree of sequence similarity in the coding region,but also in the 5'-flanking region, which further confirmed that they probably arose from the most recent duplication event.The analysis of the tissue-related expressions show that all CYP9A genes in silkworm selectively expressed in "first line of defense" tissue such as midgut,exoskeleton and subcuticular fat body, which coincides with the most commonly Clan3 function involved in xenobiotics metabolism and resistance.The other tissue-related expressions do not exclude a physiological function towards endogenous substmtes.The differentially expression patterns of four duplicates in silkworm CYP9A subfamily and their phylogenetic relationships also confirm the inference that there is a positive correlation between expression divergence and the age of duplicate genes.
     4.cDNA cloning and function study on P450 gene CYP18A1 in the silkworm,B.mori Fundamental events in the life of insects such as growth,development and reproduction are regulated by ecdysteroids(molting hormone),especially during molting and metamorphosis development.The orthologous CYP18A1 gene,which are a candidate for the ecdysone 26-hydroxylase,was identified from B.mori.A gene containing 1 737 bp is assembled on the basis of several ESTs,which extended into 5'-UTR.It contains an ORF of 1 623 bp encoding 541 amino acids,termed as B.rnori CYP18A1 by the P450 nomenclature committee(GenBank accession number:EF421988).It shares high identities with other orthologs including Spodoptera littoralis CYP18A1 genes.The result of RT-PCR and the whole genome microarray revealed that B.mori CYP18A1 not only acquired a temporal and tissue-specific expression profile,but also exhibited a distinct expression pattern which closely coincided with the reported peak of ecdysteroid in the haemolymphs of B.mori.This further suggests orthologous CYP18A1 gene in insects is closely related to ecdysteroid homeostasis.The phylogenetic relationship of genes involved in ecdysteroids shows a close relationship between the silkworm CYP18A1 and the members of the CYP2 family, including some mammalian sterorid-metabolising P450s.
     Based on the analysis of RT-PCR,we prepared dsRNA and performed RNAi(RNA interference)experiment in the silkworm larva.RNAi mediated knockdown drastically reduced CYP18A1 expression and led to the presence of excessive early mature silkworms and moth.Result revealed that the silkworm CYP18A1 is essential for molting and metamorphosis development.The result futher indicates silkworm CYP18A1 has involved in metabolic pathways of ecdysteroids, which may provide novel targets for exploitation in the development of new pest control strategies.
引文
[1]Scott,J.G.Cytochromes P450 and insecticide resistance.Insect bwchemistry and molecular biology.1999,29(9):757-777.
    [2]Gonzalez,F.J.Cytochrome P450 evolution and nomenclature.In:Schenkman J B and Greim H.Eds.Handb,Exp.Pharmacol.Berlin:Springer,Germany.1993,105:211-219.
    [3]Feyereisen,R.Insect cytochrome P450.in:Gilbert LI,latrou K,Gill SS(Eds),Comprehensive Molecular Insect Science.2005,vol.4.Elsevier,Oxford,pp:1-77.
    [4]Porter,T.D.,and Coon,M.J.Cytochrome P450:Multiplicity of isoforms,substrates,and catalytic and regulatory mechanisms.The Journal of biological chemistry.1991,266(21):13459-13472.
    [5]Klingenberg,M.Pigments of rat liver microsomes.Arch.Biochem.Biophys.1958.75:376-386.
    [6]Omura,T.,and Sato,R.A new cytochrome in liver micrsome.J.Bioi.Chem.1962,237:1375-1376.
    [7]Sato,R.,and Omura,T.A carbon monoxide-binding pigment of liver microsomes.Proc 5th Intern Congr Biochem.1961,9:529.
    [8]Nelson,D.R.,Koymans,L.,Kamataki,T.,Stegeman,J.J.,Feyereisen,R.,Waxman,D.J.,Waterman,M.R.,Gotoh,O.,Coon,M.J.,Estabrook,R.W.,Gunsalus,I.C.,and Nebert,D.W.P450 superfamily:update on new sequences,gene mapping,accession numbers and nomenclature.Pharmacogenetics.1996,6(1):1-42.
    [9]Mckinnon,R.A.Cytochrome P450(Ⅰ)-Mutiplicity and function.Aust J hosp Pharm.2000,30:54-56.
    [10]Omura,T.,and Sato,R.The carbon monoxide-binding pigment of liver microsomes.Evidence for its hemoprotein natrure.J.Biol.Chem.1964,239:2370-2378.
    [11]冷欣夫,邱星辉,编著.细胞色素P450酶系的结构、功能与应用前景[M].北京:科学出版社.2001.
    [12]Graham,S.E.,and Peterson,J.A.How similar are P450s and what can their differences teach us?Archives of biochemistry and biophysics.1999,369(1):24-29.
    [13]Williams,P.A.,Cosme,J.,Sridhar,V.,Johnson,E.F.,and McRee,D.E.Microsomal cytochrome P450 2C5:comparison to microbial P450s and unique features.Journal of inorganic biochemistry.2000,81:183-190.
    [14]Backes,W.L.NADPH-Cytochrome P450 reductase.In:Cytochromes P450.Schenkman,J B and Griem H.(Eds.).1993:PP15-34.Berlin Springer-Verlag.
    [15]Omura,T.,Ishimura,Y.,and Fjii,k.Y.Cytochrome P450.1993,Kodansha.VCH Tokyo.
    [16]Guzov,V.M.,Unnithan,G.C.,Chemogolov,A.A.,and Feyereisen,R.CYP12A1,a mitochondrial cytochrome P450 from the house fly.Archives of biochemistry and biophysics.1998,359(2):231-240.
    [17]Danielson,P.B.,Maclntyre,R.J.,and Fogleman,J.C.Molecular cloning of a family of xenobiotic-inducible drosophilid cytochrome p450s:evidence for involvement in host-plant allelochemical resistance.Proceedings of the National Academy of Sciences of the United States of America.1997,94(20):10797-10802.
    [18]唐振华.昆虫中的细胞色素P-450及其特性.昆虫知识,1990:52-55.
    [19]Nebert,D.W.,and Gonzalez,F.J.P450 genes:structure,evolution,and regulation.Annual review of biochemistry.1987,56:945-993.
    [20]Nelson,D.R.,Kamataki,T.,Waxman,D.J.,Guengerich,F.P.,Estabrook,R.W.,Feyereisen,R.,Gonzalez,F.J.,Coon,M.J.,Gunsalus,I.C.,Gotoh,O.,and et al.The P450 superfamily:update on new sequences,gene mapping,accession numbers,early trivial names of enzymes,and nomenclature.DNA and cell biology.1993,12(1):1-51.
    [21]Cohen,M.B.,Schuler,M.A.,and Berenbaum,M.R.A host-inducible cytochrome P-450 from a host-specific caterpillar:molecular cloning and evolution.Proceedings of the National Academy of Sciences of the United States of America.1992,89:10920-10924.
    [22]Negishi,M.,Uno,T.,Darden,T.A.,Sueyoshi,T.,and Pedersen,L.G.Structural flexibility and functional versatility of mammalian P450 enzymes.Faseb J.1996,10(7):683-689.
    [23]Lindberg,R.L.,and Negishi,M.Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue.Nature.1989,339(6226):632-634.
    [24]Gotoh,O.Evolution and differentiation of P-450 genes In:Omura T,Ishimura Y,Fuji-Kuriyama Y.(Eds),Cytochrome P-450,2nd edn Kodansha,Tokyo.1993,pp:255-272.
    [25]Nelson,D.R.Metazoan cytochrome P450 evolution.Comparative biochemistry and physiology.1998,121(1-3):15-22.
    [26]Nelson,D.R.Cytochrome P450 Nomenclature.Methods in Mol Biol.cytochrome P450Protocols:Second Edition.Edited by Phillips I R and Shephard E A,Totowa:Humana Press Inc.2004,320.
    [27]Feyereisen,R.Evolution of insect P450.Biochemical Society transactions.2006,34(Pt 6):1252-1255.
    [28]Nelson,D.R.,Zeldin,D.C.,Hoffman,S.M.,Maltais,L.J.,Wain,H.M.,and Nebert,D.W.Comparison of cytochrome P450(CYP)genes from the mouse and human genomes,including nomenclature recommendations for genes,pseudogenes and alternative-splice variants.Pharmacogenetics.2004,14(1):1-18.
    [29]Coon,M.J.,Vaz,A.D.,and Bestervelt,L.L.Cytochrome P450 2:peroxidative reactions of diversozymes.Faseb J.1996,10(4):428-434.
    [30]Fujii-kuriyama,Y.,Mizukami,Y.,Kawajiri,and et,a.Primary structure of a cytochrome P450:coding nucleotide sequence of phenobarbital inducible cytochrome P450 cDNA from rat liver.Proceedings of the National Academy of Sciences of the United States of America.1982,79:2793-2797.
    [31]Werck-Reichhart,D.,and Feyereisen,R.Cytochromes P450:a success story.Genome biology.2000,1(6):REVIEWS3003.
    [32]华梓婷,郭养浩,孟春,刘楠晓.细胞色素P450的基因多态性与药物代谢.中国新药杂志.2007.7:510-515.
    [33]Feyereisen,R.Insect P450 enzymes.Annual review of entomology.1999,44:507-533.
    [34]Ray,J.W.The epoxidation of aldrin by housefly microsomes and its inhibition by carbon monoxide.Biochem.Pharmacol.1967,16:99-107.
    [35]Feyereisen,R.,Koener.J F,Famsworth,D.E.,and et al.Isolation and sequence of cDNA encoding a cytochrome P450 from an insecticide-resistant strain of the housefly,Musca domestica.Proc.Natl.Acad.Sci.USA.1989,86:1465-1469.
    [36]邱星辉,冷欣夫.昆虫细胞色素P450基因的表达与调控及P450介导抗性的分子机制.农药学学报.1999,1:5-14.
    [37]向仲怀.主编 蚕丝生物学.北京:中国林业出版社[M].2005.
    [38]Doddapanenil,H.,Chakraborty,R.,and JS.,Y.Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes(P450ome)in the white rot fungus Phanerochaete chrysosporium:Evidence for gene duplications and extensive gene clustering.BMC Genomics 2005,6:92.
    [39]Ranson,H.,Nikou,D.,Hutchinson,M.,Wang,X.,Roth,C.W.,Hemingway,J.,and Collins,E H.Molecular analysis of multiple cytochrome P450 genes from the malaria vector,Anopheles gambiae.Insect molecular biology.2002,11(5):409-418.
    [40]Bradfield,J.Y.,Lee,Y.H.,and Keeley,L.L.Cytochrome P450 family 4 in a cockroach:molecular cloning and regulation by regulation by hypertrehalosemic hormone.Proceedings of the National Academy of Sciences of the United States of America.1991,88(10):4558-4562.
    [41]Snyder,M.J.,Stevens,J.L.,Andersen,J.F.,and Feyereisen,R.Expression of cytochrome P450genes of the CYP4 family in midgut and fat body of the tobacco hornworm,Manduca sexta.Archives of biochemistry and biophysics.1995,321(1):13-20.
    [42]Tijet,N.,Helvig,C.,and Feyereisen,R.The cytochrome P450 gene superfamily in Drosophila melanogaster:annotation,intron-exon organization and phylogeny.Gene.2001,262(1-2):189-198.
    [43]Scott,J.G.,Sridhar,P.,and Liu,N.Adult specific expression and induction of cytochrome P4501pr in house flies.Archives of insect biochemistry and physiology.1996,31(3):313-323.
    [44]Ranasinghe,C.,Headlam,M.,and A.,H.Induction of the mRNA for CYP6B2,a pyrethroid inducible cytochrome P450,in Helicoverpa armigera(Hubner)by dietary monoterpenes.Archives of insect biochemistry and physiology.1997,34:99-109.
    [45]Gandhi,R.,Varak,E.,and Goldberg,M.L.Molecular analysis of a cytochrome P450 gene of family 4 on the Drosophila X chromosome.DNA and cell biology.1992,11(5):397-404.
    [46]Carino,F.A.,Koener,J.F.,Plapp,F.W.,Jr.,and Feyereisen,R.Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides.Insect biochemistry and molecular biology.1994,24(4):411-418.
    [47]Scott,J.,and Lee,S.Tissue distribution of microsomal cytochrome P-450 monooxygenases and their inducibility by Phenobarbital in the insecticide-resistant LPR strain of house fly,Musca domestica L.Insect Biochem Molec Biol.1993,23:729-738.
    [48]Snyder,M.,and Davidson,N.Two gene families clustered in a small region of the Drosophila genome.Journal of molecular biology.1983,166:101-118.
    [49]Prapaipong,H.,Berenbaurn,M.R.,and Schuler,M.A.Transcriptional regulation of the Papilio polyxenes CYP6B1 gene.Nucleic acids research.1994,22(15):3210-3217.
    [50]Hung,C.F.,Harrison,T.L.,Berenbaurm,M.R.,and Schuler,M.A.CYP6B3:a second furanocoumarin-inducible cytochrome P450 expressed in Papilio polyxenes.Insect molecular biology.1995,4(3):149-160.
    [51]Hung,C.,Prapaipong,H.,Berenbaum,M.,and Schuler,M.Differential induction of cytochrome P450 transcripts in Papilio polyxenes by linear and angular furanocoumarins.Insect Biochem Mol Biol..1995,25:89-99.
    [52]Hung,C.F.,Holzmacher,R.,Connolly,E.,Berenbaum,M.R.,and Schuler,M.A.Conserved promoter elements in the CYP6B gene family suggest common ancestry for cytochrome P450monooxygenases mediating furanocoumarin detoxification.Proceedings of the National Academy of Sciences of the United States of America.1996,93(22):12200-12205.
    [53]Maibeche-Coisne,M.,Monti-Dedieu,L.,Aragon,S.,and Dauphin-Villemant,C.A new cytochrome P450 from Drosophila melanogaster,CYP4G15,expressed in the nervous system.Biochemical and biophysical research communications.2000,273(3):1132-1137.
    [54]Wen,Z.,and Scott,J.G.Cytochrome P450 CYP6L1 is specifically expressed in the reproductive tissues of adult male German cockroaches,Blattella germanica(L.).Insect biochemistry and molecular biology.2001,31(2):179-187.
    [55]Kasai,S.,and Tomita,T.Male specific expression of a cytochrome P450(Cyp312al)in Drosophila melanogaster.Biochemical and biophysical research communications.2003,300(4):894-900.
    [56]Wheelock,G.D.,and Scott,J.G.Immunological detection of cytochrome P450 from insecticide resistant and susceptible house flies(Musca domestica).Pesticide biochemistry and physiology.1990,38:130-139.
    [57]Sundesth,S.,Kennel,S.,and Water,L.Monoclonal antibodies to resistance-related forms of cytochrom P450 from Drosophila melanogaster.Pesticide biochemistry and physiology.33:176-188.
    [58]Liu,N.,and Scott,J.G.Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly.Insect biochemistry and molecular biology.1998,28(8):531-535.
    [59]Waters,L.C.,Zelhof,A.C.,Shaw,B.J.,and Ch'ang,L.Y.Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila.Proceedings of the National Academy of Sciences of the United States of America.1992,89(11):4855-4859.
    [60]Maitra,S.,Dombrowski,S.M.,Waters,L.C.,and Ganguly,R.Three second chromosome-linked clustered Cyp6 genes show differential constitutive and barbital-induced expression in DDT-resistant and susceptible strains of Drosophila melanogaster.Gene.1996,180(1-2):165-171.
    [61]Rose,R.L.,Goh,D.,Thompson,D.M.,Verma,K.D.,Heckel,D.G.,Gahan,L.J.,Roe,R.M.,and Hodgson,E.Cytochrome P450(CYP)9A1 in Heliothis virescens:the first member of a new CYP family.Insect bioch,emistry and molecular biology.1997,27(6):605-615.
    [62]Pittendrigh,B.,Aronstein,K.,Zinkovsky,E.,Andreev,O.,Campbell,B.,Daly,J.,Trowell,S.,and Ffrench-Constant,R.H.Cytochrome P450 genes from Helicoverpa armigera:expression in a pyrethroid-susceptible and -resistant strain.Insect biochemistry and molecular biology.1997,27(6):507-512.
    [63]岳丽娜,杨亦桦,武淑文,吴益东.棉铃虫P450基因CYP6AE12和CYP9A18的克隆与mRNA表达水平.昆虫学报,2007,50(3):234-240.
    [64]Suthedand,T.D.,Unnithan,G.C.,Andersen,J.F.,Evans,P.H.,Murataliev,M.B.,Szabo,L.Z.,Mash,E.A.,Bowers,W.S.,and Feyereisen,R.A cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis.Proceedings of the National Academy of Sciences of the United States of America.1998,95(22):12884-12889.
    [65]Andersen,J.F.,Utermohlen,J.G,and Feyereisen,R.Expression of house fly CYP6A1 and NADPH-cytochrome P450 reductase in Escherichia coli and reconstitution of an insecticide-metabolizing P450 system.Biochemistry.1994,33(8):2171 -2177.
    [66]Andersen,J.F.,Walding,J.K.,Evans,P.H.,Bowers,W.S.,and Feyereisen,R.Substrate specificity for the epoxidation of terpenoids and active site topology of house fly cytochrome P450 6A1.Chemical research in toxicology.1997,10(2):156-164.
    [67]Sabourault,C.,Guzov,V.M.,Koener,J.F.,Claudianos,C.,Plapp,F.W.,Jr.,and Feyereisen,R.Overproduction of a P450 that metabolizes diazinon is linked to a loss-of-function in the chromosome 2 ali-esterase(MdalphaE7)gene in resistant house flies.Insect molecular biology.2001,10(6):609-618.
    [68]Amichot,M.,Tares,S.,Bnm-Barale,A.,Arthand,L.,Bride,J.M.,and Berge,J.B.Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2enable DDT metabolism.European journal of biochemistry / FEBS.2004,271(7):1250-1257.
    [69]Helvig,C.,Koener,J.F.,Unnithan,G.C.,and Feyereisen,R.CYP15A1,the cytochrorne P450that catalyzes epoxidation of methyl farnesoate to juvenile hormone Ⅲ in cockroach corpora allata.Proceedings of the National Academy of Sciences of the United States of America.2004,101(12):4024-4029.
    [70]Dunkov,B.C.,Guzov,V.M.,Mocelin,G.,Shotkoski,F.,Brun,A.,Amichot,M.,Ffrench-Constant,R.H.,and Feyereisen,R.The Drosophila cytochrome P450 gene Cyp6a2:structure,localization,heterologous expression,and induction by phenobarbital.DNA and cell biology.1997,16(11):1345-1356.
    [71]Hung,C.F.,Berenbaum,M.R.,and Schuler,M.A.Isolation and characterization of CYP6B4,a furanocoumarin-inducible cytochrome P450 from a polyphagous caterpillar (Lepidoptera:papilionidae).Insect biochemistry and molecular biology.1997,27(5):377-385.
    [72]Wen,Z.,Pan,L.,Berenbaum,M.R.,and Schuler,M.A.Metabolism of linear and angular furanocoumarins by Papilio polyxenes CYP6B1 co-expressed with NADPH cytochrome P450reductase.Insect biochemistry and molecular biology.2003,33(9):937-947.
    [73]Li,W.,Schuler,M.A.,and Berenbaum,M.R.Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids:Specificity and substrate encounter rate.Proceedings of the National Academy of Sciences of the United States of America.2003,100Suppl 2:14593-14598.
    [74]Saner,C.,Weibel,B.,Wurgler,F.E.,and Sengstag,C.Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae.Environmental and molecular mutagenesis.1996,27(1):46-58.
    [75]Smith,F.F.,and Scott,J.G.Functional expression of house fly(Musca domestica)cytochrome P450 CYP6D1 in yeast(Saccharomyces cerevisiae).Insect biochemistry and molecular biology.1997,27(12):999-1006.
    [76]Warren,J.T.,Petryk,A.,Marques,G,Jarcho,M.,Parvy,J.P.,Dauphin-Villemant,C.,O'Connor,M.B.,and Gilbert,L.I.Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster.Proceedings of the National Academy of Sciences of the United States of America.2002,99(17):11043- 11048.
    [77]Petryk,A.,Warren,J.T.,Marques,G,Jarcho,M.P.,Gilbert,L.I.,Kahler,J.,Parvy,J.P.,Li,Y.,Dauphin-Villemant,C.,and O'Connor,M.B.Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone.Proceedings of the National Academy of Sciences of the United States of America.2003,100(24):13773-13778.
    [78]邱星辉,冷欣夫.昆虫细胞色素P450研究:P450的可诱导性.昆虫知识,1996,36:48-53.
    [79]Lee,S.S.T.,and Scott,J.G Tissue distribution of microsomal cytochrome P-450monooxygenases and their inducibility by Phenobarbital in house fly,Mnsca domestic L.Insect Biochem Molec Biol.1992,22:699-711.
    [80]Scott,J.G,and Lee,S.S.T.Tissue distribution of microssomal cytochrome P-450monooxygenases and their inducibility by phenobarbital in the insecticide resistant LPR strain of house fly,Muscadomestica L.Insect Biochem Molec.Biol.1993,23(6):729-738.
    [81]Okey,A.Enzyme induction in the cytochrome P-450 system.Pharmacol Ther.1990,45::241-298.
    [82]Wing,K.D.RH5849,a nonsteroidal ecdysone agonist:effects on larval lepidoptera.Science (New York,N.Y.)1988,241:470-472.
    [83]Smith,S.I.Regulation of ecdysteriod titer:synthesis,in:Kerkut G A,Glbert Ⅱ(eds).Comprehesive Insect Physiology,Biochemistry and Pharmacology.1985:vol 7,Pergamon, Oxford,pp.1985,1295-1341.
    [84] Hoggard, N., Fisher, M. J., and Ree, H. H. Possible role for covalent modification in the reversible activation of ecdysone 20-monooxygenase activity. Archives of insect biochemistry and physiology. 1989, 10: 241-253.
    [85] Oesch-Bartlomowicz, B., and Oesch, F. Cytochrome-P450 phosphorylation as a functional switch. Archives of biochemistry and biophysics. 2003,409 (1): 228-234.
    [86] Williams, D., Fisher, M., and Rees, H. Characterization of ecdysteroid 26-hydroxylase: an enzyme involved in molting hormone inactivation. Arch. Biochem. Biophys. 2000,376: 389-398.
    [87] Kappler, C, Kabbouh, M., Durst, F., et al. Studies on the C-2 hydroxylation of 2-deoxyecdysone in Locusta migratoria. Insect biochemistry and molecular biology. 1986, 16: 25-32
    [88] Kappler, C, Kabbouh, M., Hetru, C, Durst, F., and Hoffmann, J. A. Characterization of three hydroxylases involved in the final steps of biosynthesis of the steroid hormone ecdysone in Locusta migratoria (Insecta, Orthoptera). Journal of steroid biochemistry. 1988, 31 (6): 891-898.
    [89] Grieneisend, M., Warren, J., and Gilbert, I. Early steps in ecdysterorid biosynthesis:evidence for the involvement of cytochrome P-450 enzymes. Insect biochemistry and molecular biology. 1993,23:13-23.
    [90] Rewitz, K. F., O'Connor, M. B., and Gilbert, L. I. Molecular evolution of the insect Halloween family of cytochrome P450s: Phylogeny, gene organization and functional conservation. Insect biochemistry and molecular biology. 2007, 37 (8): 741 -753.
    [91] Ono, H., Rewitz, K. F., Shinoda, T., Itoyama, K., Petryk, A., Rybczynski, R., Jarcho, M., Warren, J. T., Marques, G., Shimell, M. J., Gilbert, L. I., and O'Connor, M. B. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Developmental biology. 2006, 298 (2): 555-570.
    [92] Chavez, V. M., Marques, G., Delbecque, J. P., Kobayashi, K., Hollingsworth, M., Burr, J., Natzle, J. E., and O'Connor, M. B. The Drosophila disembodied gene controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic ecdysone levels. Development (Cambridge, England). 2000, 127 (19): 4115-4126.
    [93] Warren, J. T., Petryk, A., Marques, G., Parvy, J. P., Shinoda, T., Itoyama, K., Kobayashi, J., Jarcho, M., Li, Y, O'Connor, M. B., Dauphin-Villemant, C, and Gilbert, L. I. Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: a P450 enzyme critical in ecdysone biosynthesis. Insect biochemistry and molecular biology. 2004, 34 (9): 991-1010.
    [94] Warren. JT, Wismar, J., Subrahmanyam, B., and Gilbert, L. Woe (without children) gene control of ecdysone biosynthesis in Drosophila melanogaster. Molecular and cellular endocrinology. 2001: 1-14.
    [95] Koolman, J. a. K., P. (1985) in Comprehensive Insect Physiology, Biochemistry and Pharmacology (Kerkut, G A. and Gilbert, L. I., eds.), vol. 7, pp. 343-361, Pergamon Press, oxford.
    [96] Kayser, H., Winkler, T., and Spindler-Barth , M. 26-hydroxylation of ecdysteroids is catalyzed by a typical cytochrome P-450-dependent oxidase and related to ecdysteroid resistance in an insect cell line.Eur.J.Biochem.1997,248:707-716.
    [97]Tillman,J.,Seybold,S.,Jurenka,R.,and Blomquist,G.Insect pheromones-an overview of biosynthesis and endocrine Regulation.Insect Biochem Mol Biol.1999,29:481-514.
    [98]Hammock,B.D.NADPH dependant epoxidation of methyl famesoate to juvenile hormone in the cockroach.Life sciences.Pt.1975,17:323-328.
    [99]Feyereisen,R.,Johnson,G.,Koener,J.,and al,e.Precocense as proallatocideins in adult female Diploptera punctata:A functional and ultrastructural study.J.Insect Physiol.1981,27:855-868.
    [100]Hammock,B.D.,and Quistad,G.B.Metabolism and mode of action of juvenile hormone,juvenoids and other insect growth regulations.Progr.Pestic.Biochem.1981,1:1-83.
    [101]Pratt,G.E.,Kuwano,E.,Farnsowth,D.E.,and R,F.Structure-activity studies on 1,5-disubstituted imidazoles as inhibitors of juvenile hormone biosynthesis in isolated corpora allata of Diploptera punctata.Pestle.Biochem.Physio.1990,38:223-230.
    [102]Sutherland,T,D.,Unnithan,G.C.,and Feyereisen,R.Terpenoid omega-hydroxylase(CYP4C7)messenger RNA levels in the corpora allata:a marker for ovarian control of juvenile hormone synthesis in Diploptera punctata.Journal of insect physiology.2000,46(8):1219-1227.
    [103]Ahamad,S.,Kirkland,K.E.,and Blomquist,G.J.Evidence for a sex pheromone metabolizing cytochrome P450 monooxygenase in the housefly.Arch.Insect Biochem.Physiol.1987,6:121-140.
    [104]Wojtasek,H.,and Leal,W.S.Degradation of an alkaloid pheromone from the pale-brown chafer,Phyllopertha diversa(Coleoptera:Scarabaeidae),by an insect olfactory cytochrome P450.FEBS letters.1999,458(3):333-336.
    [105]Snyder,M.J.,and Glendinning,J.I.Causal connection between detoxification enzyme activity and consumption of a toxic plant compound.Journal of comparative physiology.1996,179:255-261.
    [106]Snyder,M.,Walding,J.,and R,F.Metabolic fate of the allelochemical nicotine in the tobacco hornworm,Manduca sexta.Insect biochemistry and molecular biology.1994,24:837-846.
    [107]Stevens,J.L.,Snyder,M.J.,Koener,J.F.,and Feyereisen,R.Inducible P450s of the CYP9family from larval Manduca sexta midgut.Insect biochemistry and molecular biology.2000,30(7):559-568.
    [108]Berenbaum,M.R.Coumarins.In Rosenthal GA,Berenbaum,MR.Herbivores[A].In:Their interaction with secondary plant metabolites.(2nd edition).1991,SanDiego,Californlia:Acad.Press(Vol.1):221-249.
    [109]Cohen,M.B.,Berenbanm,M.R.,and Schuler,M.A.Induction of cytochrome P450-mediated detoxification of xanthotoxin in the black swallowtail.J.Chem Ecol.1989,15:2347-2355.
    [110]Prapaipong,H.,Berenbaum,M.,and Schuler,M.A.Transcriptional regulation of the Papilio polvxenes CYP6BI gene.Nucl.Acids Res.1994,22:3210-3217.
    [111]Ma,R.,Cohen,M.B.,Berenbaum,M.R.,and Schuler,M.A.Black swallowtail(Papilio polyxenes)alleles encode cytochrome P450s that selectively metabolize linear furanocoumarins.Archives of biochemistry and biophysics.1994,310(2):332-340.
    [112]Petersen,R.A.,Zangerl,A.R.,Berenbanm,M.R.,and Schuler,M.A.Expression of CYP6B1and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism in different tissues of Papilio polyxenes(Lepidoptera:Papilionidae).Insect biochemistry and molecular biology.2001,31(6-7):679-690.
    [113]Li,X.,Schuler,M.A.,and Berenbaum,M.R.Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes.Nature.2002,419(6908):712-715.
    [114]Miksch,M.,and Boland,W.Airborne methyl jasmonate stimulates the biosynthesis of furanocoumarins in the leaves of celery plants.Experientia.1996,52:739-743.
    [115]Scott,J.G.Liu,N.,and Wen,Z.Insect cytochromes P450:diversity,insecticide resistance and tolerance to plant toxins.Comparative biochemistry and physiology.1998,121(1-3):147-155.
    [116]邱星辉.杀虫剂抗性:遗传学、基因组学及应用.昆虫学报.2005,48(6):960-967.
    [117]Berge,J.B.,Feyereisen,R.,and Amichot,M.Cytochrome P450 monooxygenases and insecticide resistance in insects.Philosophical transactions of the Royal Society of London.1998,353(1376):1701-1705.
    [118]Kennaugh,L.,Pearce,D.,Daly,J,,and Hobbs,A.A piperonyl butoxide synergizable resistance to permethrin in Helicoverpa armigera which is not due to increased detoxification by cytochrome P450.Pesticide biochemistry and physiology.1993,45:234-241.
    [119]Ringo,J.,Jona,G,Rockwell,R.,Segal,D.,and Cohen,E.Genetic variation for resistence to chlorpyriphos in Drosophila melanogaster(Diptera:Drosophilidae)infesting grapes in Istael,J Econ Entomol.1995,88:1158-1163.
    [120]Daborn,P.,Boundy,S.,Yen,J.,Pittendrigh,B.,and ffrench-Constant,R.DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid.Mol Genet Genomics.2001,266(4):556-563.
    [121]Dabom,P.J.,Yen,J.L.,Bogwitz,M.R.,Le Goff,G.,Feil,E.,Jeffers,S.,Tijet,N.,Perry,T.,Heckel,D.,Batterham,P.,Feyereisen,R.,Wilson,T.G.,and ffrench-Constant,R.H.A single p450 allele associated with insecticide resistance in Drosophila.Science(New York,N.Y.2002,297(5590):2253-2256.
    [122]Brandt,A.,Scharf,M.,Pedra,J.H.,Holmes,G.,Dean,A.,Kreitman,M.,and Pittendrigh,B.R.Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus.Insect molecular biology.2002,11(4):337-341.
    [123]Le-Goff,G.,Boundy,S.,Dabom,P.,Yen,J.,Sofer,L.,Lind,R.,Sabourault,C.,Madi-Ravazzi,L.,and ffrench-Constant,R.Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila.Insect Biochem Molec Biol,.2003,33:701-708.
    [124]Schlenke,T.A.,and Begun,D.J.Strong selective sweep associated with a transposon insertion in Drosophila simulans.Proceedings of the National Academy of Sciences of the United States of America.2000,101(6):1626-1631.
    [125]Catania,F.,Kauer,M.O.,Daborn,P.J.,Yen,J.L.,Ffrench-Constant,R.H.,and Schlotterer,C.World-wide survey of an Accord insertion and its association with DDT resistance in Drosophila melanogaster.Molecular ecology.2000,13(8):2491-2504.
    [126]Chung,H.,Bogwitz,M.R.,McCart,C.,Andrianopoulos,A.,Ffrench-Constant,R.H.,Batterham,P.,and Daborn,P.J.Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1.Genetics.2007,175(3):1071-1077.
    [127]Horike,N.,Takemori,H.,Nonaka,Y.,Sonobe,H.,and Okamoto,M.Molecular cloning of NADPH-cytochrome P450 oxidoreductase from silkworm eggs.Its involvement in 20-hydroxyecdysone biosynthesis during embryonic development.European journal of biochemistry/FEBS.2000,267(23):6914-6920.
    [128]Horike,N.,and Sonobe,H.Ecdysone 20-monooxygenase in eggs of the silkworm,Bombyx mori:enzymatic properties and developmental changes.Archives of insect biochemistry and physiology.1999,41(1):9-17.
    [129]Maeda,S.,Yamada,R.,Sonobe,H.,and Molecular cloning of a Bombyx cytochrome P450enzyme that belongs to the CYP314a1 subfamily,encodeing ecdysone 20-hydroxylase in Drosophila.unpublished.2005.
    [130]Niwa,R.,Matsuda,T.,Yoshiyama,T.,Namiki,T.,Mita,K.,Fujimoto,Y.,and Kataoka,H.CYP306A1,a cytochrome P450 enzyme,is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila.The Journal of biological chemistry..2004,279(34):35942-35949.
    [131]Niwa,R.,Sakudoh,T.,Namiki,T.,Saida,K.,Fujimoto,Y.,and Kataoka,H.The ecdysteroidogenic P450 Cyp302a1/disembodied from the silkworm,Bombyx mori,is transcriptionally regulated by prothoracicotropic hormone.Insect molecular biology.2005,14(5):563-571.
    [132]Namiki,T.,Niwa,R.,Sakudoh,T.,Shirai,K.,Takeuchi,H.,and Kataoka,H.Cytochrome P450CYP307A1/Spook:a regulator for ecdysone synthesis in insects.Biochemical and biophysical research communications.2005,337(1):367-374.
    [133]Gu,SH,and YS,C.Analysis of ecdysteroidogenic activity of the prothoracic glands during the last larval instar of the silkworm,Bombyx mori.Arch.Insect Biochem.Physiol.2005,58:17-26.
    [134]陈玉华,卫正国,李兵,王东,赵华强,沈卫德.野桑蚕CYP3051ν1,基因的克隆与序列分析.蚕业科学,2006,32:32-36.
    [135]Xia,Q.Y.,Zhou,Z.Y.,Lu,C.,Cheng,D.J.,Dai,E Y.,Li,B.,Zhao,P.,Zha,X.F.,Cheng,T.C.,Chai,C.L.,Pan,G.Q.,Xu,J.S.,Liu,C.,Lin,Y.,Qian,J.F.,Hou,Y.,Wu,Z.L.,Li,G.R.,Pan,M.H.,Li,C.F.,Shen,Y.H.,Lan,X.Q.,Yuan,L.W.,Li,T.,Xu,H.F.,Yang,G.W.,Wan,Y.J.,Zhu,Y.,Yu,M.D.,Shen,W.D.,Wu,D.Y.,Xiang,Z.H.,Yu,J.,Wang,J.,Li,R.Q.,Shi,J.P.,Li,H.,Li,G.Y.,Su,J.N.,Wang,X.L.,Li,G.Q.,Zhang,Z.J.,Wu,Q.F.,Li,J.,Zhang,Q.P.,Wei, N.,Xu,J.Z.,Sun,H.B.,Dong,L.,Liu,D.Y.,Zhao,S.L.,Zhao,X.L,Meng,Q.S.,Lan,F.D.,Huang,X.G.,Li,Y.Z.,Fang,L.,Li,C.F.,Li,D.W.,Sun,Y.Q.,Zhang,Z.P.,Yang,Z.,Huang,Y.Q.,Xi,Y.,Qi,Q.H.,He,D.D.,Huang,H.Y.,Zhang,X.W.,Wang,Z.Q.,Li,W.J.,Cao,Y.Z.,Yu,Y.P.,Yu,H.,Li,J.H,Ye,J.H.,Chen,H.,Zhou,Y.,Liu,B,Wang,J.,Ye,J.,Ji,H.,Li,S.T.,Ni,P.X.,Zhang,J.G.,Zhang,Y.,Zheng,H.K.,Mao,B.Y.,Wang,W.,Ye,C.,Li,S.G.,Wang,J.,Wong,G K.S.,and Yang,H.M.A draft sequence for the genome of the domesticated silkworm (Bombyx mori).Science(New York,N.Y.2004,306(5703):1937-1940.
    [136]李斌,夏庆友,鲁成,周泽扬 向仲怀.家蚕细胞色素P450的基因组学分析.中国科学C 辑 生命科学.2004,34(6):517-521.
    [137]Lewin,B.Gene Ⅷ.Pearson Prentice Hall/Pearson Education.2004,Upper Saddle River,N.J.,:pp 1-1027.
    [138]Nebert,D.W.,and Gonzalez,F.J.P450 genes and evolutionary genetics.Hospital practice (Office ed.1987,22(3):63-74.
    [139]Frolov,M.V.,and Alatortsev,V.E.Cluster of cytochrome P450 genes on the Ⅹ chromosome of Drosophila melanogaster.DNA and cell biology.1994,13(6):663-668.
    [140]Cohen,M.B.,and Feyereisen,R.A cluster of cytochrome P450 genes of the CYP6 family in the house fly.DNA and cell biology.1995,14(1):73-82.
    [141]Dunkov,B.C.,Rodriguez-Arnaiz,R.,Pittendrigh,B.,ffrench-Constant,R.H.,and Feyereisen,R.Cytochrome P450 gene clusters in Drosophila melanogaster.Mol Gen Genet.1996,251(3):290-297.
    [142]Ranasinghe,C.,and Hobbs.A.A.Isolation and characterization of two cytochrome P450 cDNA clones for CYP6B6 and CYP6B7 from Helicoverpa armigera(Hubner):possible involvement of CYP6B7 in pyrethroid resistance.Insect biochemistry and molecular biology.1998,28(8):571-580.
    [143]Li,X.,Berenbaum,M.R.,and Schuler,M.A.Cytochrome P450 and actin genes expressed in Helicoverpa zea and Helicoverpa armigera:paralogy/orthology identification,gene conversion and evolution.Insect biochemistry and molecular biology.2002,32:311-320.
    [144]Ranson,H.,Claudianos,C.,Ortelli,F.,Abgrall,C.,Hemingway,J.,Sharakhova,M.V.,Unger,M.F.,Collins,F.H.,and Feyereisen,R.Evolution of supergene families associated with insecticide resistance.Science(New York,N.Y.2002,298(5591):179-181.
    [145]Celniker,S.E.,Wheeler,D.A.,Kronmiller,B.,Carlson,J.W.,Halpern,A.,Patel,S.,Adams,M.,Champe,M.,Dugan,S.P.,Frise,E.,Hodgson,A.,George,R.A.,Hoskins,R.A.,Laverty,T.,Muzny,D.M.,Nelson,C.R.,Pacleb,J.M.,Park,S.,Pfeiffer,B.D.,Richards,S.,Sodergren,E.J.,Svirskas,R.,Tabor,P.E.,Wan,K.,Stapleton,M.,Sutton,G.G,Venter,C.,Weinstock,G,Scherer,S.E.,Myers,E.W.,Gibbs,R.A.,and Rubin,G M.Finishing a whole-genome shotgun:release 3 of the Drosophila melanogaster euchromatic genome sequence.Genome biology.2002,3(12):RESEARCH0079.
    [146]Wen,Z.,Horak,C.E.,and Scott,J.G.CYP9E2,CYP4C21 and related pseudogenes from German cockroaches, Blattella germanica: implications for molecular evolution, expression studies and nomenclature of P450s. Gene. 2001, 272 (1-2): 257-266.
    [147] Crampton, A. L., Baxter, G. D., and Barker, S. C. Identification and characterisation of a cytochrome P450 gene and processed pseudogene from an arachnid: the cattle tick, Boophilus microplus. Insect biochemistry and molecular biology. 1999,29 (4): 377-384.
    [148] He, H., Chen, A. C, Davey, R. B., and Ivie, G. W. Molecular cloning and nucleotide sequence of a new P450 gene, CYP319A1, from the cattle tick, Boophilus microplus. Insect biochemistry and molecular biology. 2002, 32 (3): 303-309.
    [149] Gilbert, W. The exon theory of genes. Cold Spring Harbor symposia on quantitative biology. 1987,52:901-905.
    [150] Scott, J. A., Collins, F. H., and Feyereisen, R. Diversity of cytochrome P450 genes in the mosquito, Anopheles albimanus. Biochemical and biophysical research communications. 1994, 205 (2): 1452-1459.
    [151] Li, X., Berenbaum, M. R., and Schuler, M. A. Cytochrome P450 and actin genes expressed in Helicoverpa zea and Helicoverpa armigera: paralogy/orthology identification, gene conversion and evolution. Insect biochemistry and molecular biology. 2002, 32 (3): 311-320.
    [152] Rewitza , K., Connorb , M. B., and Gilbertc, L. Molecular evolution of the insect Halloween family of cytochrome P450s: Phylogeny, gene organization and functional conservation. Insect Biochem MolBiol. 2007, 37: 741-753.
    [153] Berenbaum, M. R. Postgenomic chemical ecology: From genetic code to ecological interactions. Journal of chemical ecology. 2002,28 (5): 873-896.
    [154] Willingham, A. T., and Keil, T. A tissue specific cytochrome P450 required for the structure and function of Drosophila sensory organs. Mechanisms of Development. 2004, 121 (10): 1289-1297.
    [155] Lepesheva, G. I., and Waterman, M. R. CYP51--the omnipotent P450. Molecular and cellular endocrinology. 2004, 215 (1-2): 165-170.
    [156] gonzalez , F. Cytochrome P450 evolution and nomenclature. In.Schenkman JB, Greim H(eds). 1993, Handb,Exp.Pharmacol 105 (Berlin:Springer,Germany): 211-219.
    [157] Gonzalez, F. J., and Nebert, D. W. Evolution of the P450 gene superfamily: animal-plant 'warfare', molecular drive and human genetic differences in drug oxidation. Trends Genet. 1990, 6 (6): 182-186.
    [158] Lynch, M. Genomics. Gene duplication and evolution. Science (New York, NY. 2002, 297 (5583): 945-947.
    [159] Insights into social insects from the genome of the honeybee Apis mellifera. Nature. 2006, 443 (7114): 931-949.
    [160] Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer, S. E., Li, P. W., Hoskins, R. A., Galle, R. F, George, R. A., Lewis, S. E., Richards, S., Ashburner, M., Henderson, S. N., Sutton, G. G., Wortman, J. R., Yandell, M. D., Zhang, Q., Chen, L.X.,Brandon,R.C.,Rogers,Y.H.,Blazej,R.G.,Champe,M.,Pfeiffer,B.D.,Wan,K.H.,Doyle,C.,Baxter,E.G.,Heir,G.,Nelson,C.R.,Gabor,G.L.,Abril,J.F.,Agbayani,A.,An,H.J.,Andrews-Pfannkoch,C.,Baldwin,D.,Ballew,R.M.,Basu,A.,Baxendale,J.,Bayraktaroglu,L.,Beasley,E.M.,Beeson,K.Y.,Benos,P.V.,Berman,B.P.,Bhandari,D.,Bolshakov,S.,Borkova,D.,Botchan,M.R.,Bouck,J.,Brokstein,P.,Brottier,P.,Burtis,K.C.,Busam,D.A.,Butler,H.,Cadieu,E.,Center,A.,Chandra,I.,Cherry,J.M.,Cawley,S.,Dahlke,C.,Davenport,L.B.,Davies,P.,de Pablos,B.,Delcher,A.,Deng,Z.,Mays,A.D.,Dew,I.,Dietz,S.M.,Dodson,K.,Doup,L.E.,Downes,M.,Dugan-Rocha,S.,Dunkov,B.C.,Dunn,P.,Durbin,K.J.,Evangelista,C.C.,Ferraz,C.,Ferriera,S.,Fleischmann,W.,Fosler,C.,Gabrielian,A.E.,Garg,N.S.,Gelbart,W.M.,Glasser,K.,Glodek,A.,Gong,F.,Gorrell,J.H.,Gu,Z.,Guan,P.,Harris,M.,Harris,N.L.,Harvey,D.,Heiman,T.J.,Hemandez,J.R.,Houck,J.,Hostin,D.,Houston,K.A.,Howland.T.J.,Wei,M.H.,Ibegwam,C.,Jalali,M.,Kalush,F..Karpen.G.H.,Ke,Z,Kennison,J.A.,Ketchum,K.A.,Kimmel,B.E.,Kodira,C.D.,Kraft,C.,Kravitz,S.,Kulp,D.,Lai,Z.,Lasko,P.,Lei,Y.,Levitsky,A.A.,Li,J.,Li,Z.,Liang,Y.,Lin,X.,Liu,X.,Mattei,B.,McIntosh,T.C.,McLeod,M.P.,McPherson,D.,Merkulov,G.,Milshina,N.V.,Mobarry,C.,Morris,J.,Moshrefi,A.,Mount,S.M.,Moy,M.,Murphy,B.,Murphy,L.,Muzny,D.M.,Nelson,D.L.,Nelson,D.R.,Nelson,K.A.,Nixon,K.,Nusskem,D.R.,Pacleb,J.M.,Palazzolo,M.,Pittman,G.S.,Pan,S.,Pollard,J.,Puri,V.,Reese,M.G.,Reinert,K.,Remington,K.,Saunders,R.D.,Scheeler,F.,Shen,H.,Shue,B.C.,Siden-Kiamos,I.,Simpson,M.,Skupski,M.P.,Smith,T.,Spier,E.,Spradling,A.C.,Stapleton,M.,Strong,R.,Sun,E.,Svirskas,R.,Tector,C.,Turner,R.,Venter,E.,Wang,A.H.,Wang,X.,Wang,Z.Y.,Wassarman,D.A.,Weinstock,G.M.,Weissenbach,J.,Williams,S.M.,WoodageT,Worley,K.C.,Wu,D.,Yang,S.,Yao,Q.A.,Ye,J.,Yeh,R.F.,Zaveri,J.S.,Zhan,M.,Zhang,G.,Zhao,Q.,Zheng,L.,Zheng,X.H.,Zhong,F.N.,Zhong,W.,Zhou,X.,Zhu,S.,Zhu,X.,Smith,H.O.,Gibbs,R.A.,Myers,E.W.,Rubin,G.M.,and Venter,J.C.The genome sequence of Drosophila melanogaster.Science (New York,N.Y.2000,287(5461):2185-2195.
    [161]Holt,R.A.,Subramanian,G.M.,Halpem,A.,Sutton,G.G.,Charlab,R.,Nusskem,D.R.,Wincker,P.,Clark,A.G.,Ribeiro,J.M.,Wides,R.,Salzberg,S.L.,Loftus,B.,Yandell,M.,Majoros,W.H.,Rusch,D.B.,Lai,Z.,Kraft,C.L.,Abril,J.F.,Anthouard,V.,Arensburger,P.,Atkinson,P.W.,Baden,H.,de Berardinis,V.,Baldwin,D.,Benes,V.,Biedler,J.,Blass,C.,Bolanos,R.,Boscus,D.,Barnstead,M,,Cai,S.,Center,A.,Chaturverdi,K.,Christophides,G.K.,Chrystal,M.A.,Clamp,M.,Cravchik,A.,Curwen,V.,Dana,A.,Delcher,A.,Dew,I.,Evans,C.A.,Flanigan,M.,Grundschober-Freimoser,A.,Friedli,L.,Gu,Z.,Guan,P.,Guigo,R.,Hillenmeyer,M.E.,Hladun,S.L.,Hogan,J.R.,Hong,Y.S.,Hoover,J.,Jaillon,O.,Ke,Z.,Kodira,C.,Kokoza,E.,Koutsos,A.,Letunic,I.,Levitsky,A.,Liang,Y.,Lin,J.J.,Lobo,N.F.,Lopez,J.R.,Malek,J.A.,McIntosh,T.C.,Meister,S.,Miller,J.,Mobarry,C.,Mongin,E.,Murphy,S.D.,O'Brochta,D.A.,Pfannkoch,C.,Qi,R.,Regier,M.A.,Remington,K.,Shao,H.,Sharakhova,M.V.,Sitter,C.D.,Shetty,J.,Smith,T.J.,Strong,R.,Sun,J.,Thomasova,D.,Ton, L.Q.,Topalis,P.,Tu,Z.,Unger,M.F.,Walenz,B.,Wang,A.,Wang,J.,Wang,M.,Wang,X.,Woodford,K.J.,Wortman,J.R.,Wu,M.,Yao,A.,Zdobnov,E.M.,Zhang,H.,Zhao,Q.,Zhao,S.,Zhu,S.C.,Zhimulev,I.,Coluzzi,M.,della Torte,A.,Roth,C.W.,Louis,C.,Kalush,F.,Mural,R.J.,Myers,E.W.,Adams,M.D.,Smith,H.O.,Broder,S.,Gardner,M.J.,Fraser,C.M.,Birney,E.,Bork,P.,Brey,P.T.,Venter,J.C.,Weissenbach,J.,Kafatos,F.C.,Collins,F.H.,and Hoffman,S.L.The genome sequence of the malaria mosquito Anopheles gambiae.Science (New York,N.Y.2002,298(5591):129-149.
    [162]马彩霞,李梅,邱星辉等.用mRNA RT-CR差异显示技术克隆拟除虫菊酯抗性家蝇细胞色素P450基因片段.寄生虫与医学昆虫学报.2005,4:210-215.
    [163]Claudianos,C.,Ranson,H.,Johnson,R.M.,Biswas,S.,Schuler,M.A.,Berenbaum,M.R.,Feyereisen,R.,and Oakeshott,J.G.A deficit of detoxification enzymes:pesticide sensitivity and environmental response in the honeybee.Insect molecular biology.2006,15(5):615-636.
    [164]de Souza,S.J.,Long,M.,Klein,R.J.,Roy,S.,Lin,S.,and Gilbert,W.Toward a resolution of the introns early/late debate:only phase zero introns are correlated with the structure of ancient proteins.Proceedings of the National Academy of Sciences of the United States of America.1998,95(9):5094-5099.
    [165]Scott,J.G.,and Kasai,S.Evolutionary plasticity of mono oxygenase-mediated resistance.Pesticide biochemistry and physiology.2004,78(3):171-178.
    [166]Tribolium Genome Sequencing Consortium,The genorne of the model beetle and pest Tribolium castaneum,nature,Published online 23 March.2008.
    [167]Cheng,T.C.,Xia,Q.Y.,Qian,J.F.,Liu,C.,Lin,Y.,Zha,X.F.,and Xiang,Z.H.Mining single nucleotide polymorphisms from EST data of silkworm,Bombyx mori,inbred strain Dazao.Insect biochemistry and molecular biology.2004,34(6):523-530.
    [168]Mita,K.,Morimyo,M.,Okano,K.,Koike,Y.,Nohata,J.,Kawasaki,H.,Kadono Okuda,K.,Yamamoto,K.,Suzuki,M.G.,Shimada,T.,Goldsmith,M.R.,and Maeda,S.The construction of an EST database for Bombyx mori and its application.Proceedings of the National Academy of Sciences of the United States of America.2003,100(24):14121-14126.
    [169]Xia,Q.,Cheng,D.,Duan,J.,Wang,G.,Cheng,T.,Zha,X.,Liu,C.,Zhao,P.,Dai,F.,Zhang,Z.,He,N.,Zhang,L.,and Xiang,Z.Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm,Bombyx mori.Genome Biol.2007,8(8):R162.
    [170]Saitou,N.,and Nei,M.The neighbor-joining method:a new method for reconstructing phylogenetic trees.Molecular biology and evolution.1987,4(4):406-425.
    [171]Gu,Z.L.,Cavalcanti,A.,Chen,F.C.,Bournan,P.,and Li,W.H.Extent of gene duplication in the genomes of Drosophila,nematode,and yeast.Molecular Biology and Evolution.2002,19(3):256-262.
    [172]Petrov,D.A.DNA loss and evolution of genome size in Drosophila.Genetica.2002,115(1):81-91.
    [173]Nelson,D.,and Strobel,H.Evolution of cytochrome P-450 proteins.Molecular biology and evolution. 1987, 4: 572-593.
    [174] Zhong, L., Wang, K., Tan, J., Li, W., and Li, S. G. Putative cytochrome P450 genes in rice genome (Oryza sativa L. ssp indica) and their EST evidence. Science in China Series C-Life Sciences. 2002,45 (5): 512-517.
    [175] Omura, T. Localization of cytochrome P450 in membrances:mitochondria.In: Schenkman, JB, Breim,H.(Eds). Cytocrome P450. Springer, Berlin, 1993,pp. 1961-1969.
    [176] Balakirev, E. S., and Ayala, F. J. Pseudogenes: are they "junk" or functional DNA? Annual review of genetics. 2003, 37: 123-151.
    [177] Nelson, D. R., Schuler, M. A., Paquette, S. M., Werck-Reichhart, D., and Bak, S. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant physiology. 2004, 135 (2): 756-772.
    [178] Rogozin, I. B.. Wolf, Y I., Sorokin, A. V., Mirkin, B. G., and Koonin, E. V. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol. 2003, 13 (17): 1512-1517.
    [179] Long, M., Rosenberg, C, and Gilbert, W. Intron phase correlations and the evolution of the intron/exon structure of genes. Proceedings of the National Academy of Sciences of the United States of America. 1995, 92 (26): 12495-12499.
    [180] Gotoh, O. Divergent structures of Caenorhabditis elegans cytochrome P450 genes suggest the frequent loss and gain of introns during the evolution of nematodes. Molecular biology and evolution. 1998, 15(11): 1447-1459.
    [181] Orengo, D. J., and Aguade, M. Genome scans of variation and adaptive change: Extended analysis of a candidate locus close to the phantom gene region in Drosophila melanogaster. Molecular biology and evolution. 2007, 24 (5): 1122-1129.
    [182] Bassett, M. H., McCarthy, J. L., Waterman, M. R., and Sliter, T. J. Sequence and developmental expression of Cyp18, a member of a new cytochrome P450 family from Drosophila. Molecular and cellular endocrinology. 1997,131 (1): 39-49.
    [183] Iwasaki, M., Lindberg, R. L., Juvonen, R. O., and Negishi, M. Site-directed mutagenesis of mouse steroid 7 alpha-hydroxylase (cytochrome P-450(7) alpha): role of residue-209 in determining steroid-cytochrome P-450 interaction. Biochem J. 1993, 291 ( Pt 2): 569-573.
    [184] Storbeck, K. H., Swart, P., Graham, S., and Swart, A. C. Evidence for the functional role of residues in the B'-C loop of baboon cytochrome P450 side-chain cleavage (CYP11A1) obtained by site-directed mutagenesis, kinetic analysis and homology modelling. The Journal of steroid biochemistry and molecular biology. 2007, 103 (1): 65-75.
    [185] Kamath, R. S., Fraser, A. G., Dong, Y, Poulin, G., Durbin, R., Gotta, M, Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., Welchman, D. P., Zipperlen, P., and Ahringer, J. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 2003, 421 (6920): 231-237.
    [186] Robinson, G. E., Evans, J. D., Maleszka, R., Robertson, H. M., Weaver, D. B., Worley, K., Gibbs, R. A., and Weinstock, G. M. Sweetness and light: illuminating the honey bee genome. Insect molecular biology. 2006,15 (5): 535-539.
    [187] Mirny, L. A., and Gelfand, M. S. Using orthologous and paralogous proteins to identify specificity-determining residues in bacterial transcription factors. Journal of molecular biology. 2002,321(1): 7-20.
    [188] Rewitz, K. E, Rybczynski, R., Warren, J. T., and Gilbert, L. 1. Identification, characterization and developmental expression of Halloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta. Insect biochemistry and molecular biology. 2006,36 (3): 188-199.
    [189] Force A, Lynch M, Pickett FB, Amores A, Yan YL, John Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics, 1999,151: 1531-1545.
    [190] Rastogi R. Liberles DA. Subfunctionalization of duplicated genes as a transition state to neofunctionalization .BMC Evolutionary Biology, 2005, 5:1-7.
    [191] Wen, Z. M., Berenbaum, M. R., and Schuler, M. A. Inhibition of CYP6B1 -mediated detoxification of xanthotoxin by plant allelochemical in the black swallowtail (Papilio polyxenes). Journal of chemical ecology. 2006,32 (3): 507-522.
    [192] Grubor, V. D., and Heckel, D. G. Evaluation of the role of CYP6B cytochrome P450s in pyrethroid resistant Australian Helicoverpa armigera. Insect molecular biology. 2007, 16 (1): 15-23.
    [193] Wang, X. P., and Hobbs, A. A. Isolation and sequence analysis of a cDNA clone for a pyrethroid inducible cytochrome P450 from Helicoverpa armigera. Insect biochemistry and molecular biology. 1995, 25 (9): 1001-1009.
    [194] Maibeche-Coisne, M., Jacquin-Joly, E., Francois, M. C, and Nagnan-Le Meillour, P. cDNA cloning of biotransformation enzymes belonging to the cytochrome P450 family in the antennae of the noctuid moth Mamestra brassicae. Insect molecular biology. 2002, 11 (3): 273-281.
    [195] Maibeche-Coisne, M., Merlin, C, Francois, M. C, Porcheron, P., and Jacquin-Joly, E. P450 and P450 reductase cDNAs from the moth Mamestra brassicae: cloning and expression patterns in male antennae. Gene. 2005,346: 195-203.
    [196] Robertson, H. M., Martos, R., Sears, C, Todres, E., Walden, K., and Nardi, J. B. Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect molecular biology. 1999, 8 (4): 501-518.
    [197] Vogt R.G. In: LI Gilbea, Iatro K., Gill S. (eds),Comprehensive Physiology, Biochemistry, Pharmacology and Molecular Biology. Vol.3. Endocrinology. London: Elsevier Academic Press.2005.753-804
    [198] Robertson, H. M., and Wanner, K. W. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome research. 2006, 16(11): 1395-1403.
    
    [199] Robertson, H. M., Warr, C. G., and Carlson, J. R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster.Proceedings of the National Academy of Sciences of the United States of America.2003,100 Suppl 2:14537-14542.
    [200]Hill,C.A.,Fox,A.N.,Pitts,R.J.,Kent,L.B.,Tan,P.L.,Chrystal,M.A.,Cravchik,A.,Collins,F.H.,Robertson,H.M.,and Zwiebel,L.J.G protein-coupled receptors in Anopheles gambiae.Science(New York,N.Y.2002,298(5591):176-178.
    [201]Ahn,S.,Anderson,J.A.,Sorrells,M.E.,and Tanksley,S.D.Homoeologons relationships of rice,wheat and maize chromosomes.Mol Gen Genet.1993,241(5-6):483-490.
    [202]Gilbert,W.Why genes in pieces? Nature.1978,271(5645):501.
    [203]Roy,S.W.,and Gilbert,W.The evolution of spliceosomal introns:patterns,puzzles and progress.Nature Reviews Genetics.2006,7(3):211-221.
    [204]Cavalier-Smith,T.Selfish DNA and the origin of introns.Nature.1985,315(6017):283-284.
    [205]de Souza,S.J.The emergence of a synthetic theory of intron evolution.Genetica.2003.118(2-3):117-121.
    [206]Fedorov,A.,Merican,A.F.,and Gilbert,W.Large-scale comparison of intron positions among animal,plant,and fungal genes.Proceedings of the National Academy of Sciences of the United States of America.2002,99(25):16128-16133.
    [207]Doolittle,R.F.,Feng,D.F.,Tsang,S.,Cho,G.,and Little,E.Determining divergence times of the major kingdoms of living organisms with a protein clock.Science(New York,N.Y.1996,271(5248):470-477.
    [208]王亚馥,戴灼华 主编 遗传学.2004,北京(高等教育出版社).
    [209]Vinogradov,A.E.Intron-genome size relationship on a large evolutionary scale.Journal of molecular evolution.1999,49(3):376-384.
    [210]HE,M.,LI,J.,and ZHANG,S.Statistical characteristics of eukaryotic intron database.Front.Biol.China(2006):.2006,4:362-366.
    [211]Yang,Y.,Chert,S.,Wu,S.,Yue,L.,and Wu,Y.Constitutive overexpression of multiple cytochrome P450 genes associated with pyrethroid resistance in Helicoverpa armigera.Journal of economic entomology.2006,99(5):1784-1789.
    [212]Chen,S.,and Li,X.Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes.BMC evolutionary biology.2007,7:46.
    [213]Heffman,S.,Nelson,D.,and Keeney,D.Organization,structure and evolution of the CYP2gene cluster on human chromosome 19.Pharrnacogenetics.2001,(11):687-698.
    [214]Wang,H.,Donley,K.,Keeney,D.,and Hoffman,S.Organization and evolution of the CYP2gene cluster on mouse chromosome 7,and comparison with the syntenic human cluster.Environmental health perspectives.2003,(111):1835-1842.
    [215]Ohno,S.Evolution by gene duplication.1970,New York:Springer-Verlag.
    [216]Force,A.,Lynch,M.,Pickett,F.B.,Amores,A.,Yan,Y.L.,and Postlethwait,J.Preservation of duplicate genes by complementary,degenerative mutations.Genetics.1999,151(4):1531-1545.
    [217]Zhang,Z.,Gu,J.,and Gu,X.How much expression divergence after yeast gene duplication could be explained by regulatory motif evolution? Trends Genet.2004,20(9):403-407.
    [218]Livak,K.J.,and Schmittgen,T.D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))Method.Methods.2001,25(4):402-408.
    [219]Johnson,E.,Barnes,H.,Griffin,K.,Okino,S.,and Tukey,R.Characterization of a second gene product related to rabbit cytochrome P-450 1.J Biol Chem.Apr 25;:.1987 262(12):5918-5923.
    [220]Iwasaki,M.,Lindberg,R.,Juvonen,R.,and Negishi,M.Site-directed mutagenesis of mouse steroid 7 alpha-hydroxylase(cytochrome P-450(7)alpha):role of residue-209 in determining steroid-cytochrome P-450 interaction.Biochem.J.1993,291 569-573.
    [221]Noshiro,M.,Lakso,M.,Kawajiri,K.,and Negishi,M.Rip locus:regulation of female-specific isozyme(I-P-450(16 alpha)of testosterone 16 alpha-hydroxylase in mouse liver,chromosome localization,and cloning of P-450 cDNA.Biochemistry 1988,27(17):6434-6443
    [222]Liu,Y.,Yao,Z.X..and Papadopoulos,V.Cytochrome P450 17alpha hydroxylase/17,20 lyase (CYP17)function in cholesterol biosynthesis:identification of squalene monooxygenase (epoxidase)activity associated with CYP17 in Leydig cells.Molecular endocrinology (Baltimore,Md.2005,19(7):1918-1931.
    [223]Burghelle-Mayeur,C.,Geffrotin,C.,and Vaiman,M.Sequences of the swine 21-hydroxylase gene(CYP21)and a portion of the opposite-strand overlapping gene of unknown function previously described in human.Biochim Biophys Acta.Dec 29;:.1992,1171(2):153-161.
    [224]Lafont,R.,Blais,C.,Beydon,P.,Modde,J.,Enderle,U.,and Koolman,J.Conversion of ecdysone and 20-hydroxy-ecdysone into 26-OIC derivatives is major pathway in larvae and pupae of species from three insect orders.Arch.Insect Biochem.Physiol.1983:1:41-58.
    [225]Chen,J.H.,Kabbouh,M.,Fisher,M.J.,and Rees,H.H.Induction of an inactivation pathway for ecdysteroids in larvae of the cotton leafworm,Spodoptera littoralis.Biochemical and biophysical research communications.1994,301:89-95.
    [226]Williams,D.,Chen,J.,Fisher,M.,and HH,R.Induction of enzymes involved in molting hormone(ecdysteroid)agonist 1,2-dibenzoyl-tert-butylhydrazine(RH-5849).J.Biol.Chem.1997,272(8):427-428 432.
    [227]Hurban,P.,and Thummel,C.Isolation and characterization of fifteen ecdysone-inducible Drosophlia genes reveal unexpected complexities in ecdysone regulation.Mol.Cell.Biol.1993,13:7101-7111.
    [228]Davies,L.,Williams,D.R.,Turner,P.C.,and Rees,H.H.Characterization in relation to development of an ecdysteroid agonist-responsive cytochrome P450,CYP18A1,in Lepidoptera.Archives of biochemistry and biophysics.2006,453(1):4-12.
    [229]Calvez,B.,Him,M.,and De Reggi,M.Ecdysone changes in the haemotymph to two silkworms (Bombyx mori and Philosamia cynthia)during larval and pupal development..FEBS letters.1976,72(1):57-61.
    [230]Gu,S.H.,and Chow,Y.S.Analysis of ecdysteroidogenic activity of the prothoracic glands during the last larval instar of the silkworm,Bombyx mori.Archives of insect biochemistry and physiology.2005,58(1):17-26.
    [231]Fire,A.,Xu,S.,Montgomery,M.K.,Kostas,S.A.,Driver,S.E.,and Meilo,C.C.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature.1998,391(6669):806-811.
    [232]Mao,Y.B.,Cai,W.J.,Wang,J.W.,Hong,G.J.,Tao,X.Y.,Wang,L.J.,Huang,Y.P.,and Chen,X.Y.Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol.Nature biotechnology.2007,25(11):1307-1313.
    [233]崔为正,张友英,刘发余,徐俊良.保幼激素和蜕皮激素混合使用对家蚕发育和产丝量的影响.蚕业科学.1993,19:236-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700