含环结构可交联聚芳醚酮的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是以制备全芳香性可交联聚芳醚酮为背景,合成了多种双酚单体,并且在假高稀条件下,用两步法合成了含有羟基的环状单体,通过与双氟单体的反应,最终得到聚芳醚酮的共聚物。通过分子设计,将环状结构引入了聚芳醚酮的主链,侧链和封端。在加入氟化铯的条件下,实现了可溶性聚芳醚酮的热交联反应,并且对交联机理进行了研究。在高温下,氟离子进攻醚键,导致了醚键断裂;生成了酚氧铯盐的结构,氟与另外一端相连;生成的氧铯盐进攻另外的一个环状结构,导致其断裂,并与其联结,因而发生了交联反应。通过流变的测试,得到了环状结构开环的最低温度。与传统的不饱和烃类的交联不同,应用这样的交联方法,在交联聚合物的最终结构中,没有残留脂肪族化合物,并且交联反应为熵驱动的反应,因而没有热量的放出,使高温下的交联反应更容易控制。交联后,聚合物拥有较高的凝胶含量,但是聚合物玻璃化转变温度升高不大,这是由于环状单体交联后分子链之间的距离比较大,因而分子链运动相对容易。因而,相对于不饱和烃交联反应,在相同凝胶含量的前提下,环结构的交联得到的材料韧性更好,有相对较高的断裂伸长率。
In recent years there is a considerable interest in the aromatic polymer poly(aryl ether ketone)s among thermoplastic polymers because of their unique combination of toughness, stiffness, thermooxidative stability, electrical performance, flame retardancy and retention of physical properties at high temperatures. So far they have been successfully applied to many fields such as aviation, spaceflight, nuclear energy, communication, telecom, petroleum, machine manufacturing and traffic. However, with the booming development of new science and technology revolution in world, materials with high performance and functionality have been required extensively and urgently. In order to improve the characterization of poly(aryl ether keonte)s further, it is made them to take place crosslinking reaction. Before they are cured processed thermoplastic materials, which can be molded or casted,and then become thermoset through crosslinking reaction, so they have both kinds of advantage of materials. They’re required to introduce crosslinking groups.
     The dissertation include three parts: crosslinkable fully aromatic poly(aryl ether ketone)s bearing macrocycle of aryl ether ketone; synthesis and crosslinking of poly(arel ether ketone)s bearing macrocycle pendants; synthesis and curing behaviors of aromatic poly(ether ether ktone)s with macrocycle pendent.
     A novel bisphenol monomer, (3-methoxy)phenylhydroquinone, was synthesized via a three-step synthetic procedure. The cyclization of the bisphenol monomer and 4,4-difluorobenzophenone was carried out under pseudo high dilution condition. Two types of fully aromatic poly(aryl ether ketone)s were prepared by copolymerization of macrocycle of aryl ether ketone (MACEK) containing hydroxyphenyl, 4,4-(hexafluoroisopropylidene) diphenol (HFBPA), and 4,4-difluorobenzophenone. The copolymers have high molecular mass, good solubility and high glass transition temperatures. The copolymers are crosslinkable in the presence of basic initiator and the glass transition temperatures of the copolymers increased greatly after the curing. These cured copolymers exhibit excellent thermal stability, and the 5% weight loss temperatures are around 500 oC in nitrogen.
     A novel bisphenol monomer, (2,5-methoxy)phenylhydroquinone, was synthesized via a three-step synthetic procedure. The cyclization of the bisphenol monomer and a di-fluoro monomer was carried out under pseudo high dilution condition. Two types of fully aromatic poly(ether ketone)s with macrocycle (MCPAEK) were successfully prepared by copolymerization of macrocycle of aryl ether ketone containing hydroxyphenyl groups, (hexafluoroisopropylidene)diphenol (HFBPA), and 4,4-difluorobenzophenone. The copolymers had high molecular mass, good solubility and high glass transition temperatures. The MCPAEKs exhibited excellent thermal stability due to their wholly aromatic structures. In the presence of CsF, the crosslinking reaction of MCPAEKs could afford fully aromatic thermoset poly(aryl ether ketone)s by ring-opening reaction driven by entropy. After crosslinking, the glass transition temperatures increased greatly. These cured copolymers presented an excellent thermal stability, and the temperatures at the 5% weight loss were above 510 oC in nitrogen. The cured copolymers even possessed good tensile properties and the elongations at break were up to 20%.
     Novel fully aromatic macrocycle-terminated poly(aryl ether ketone)s (MCPAEK) were prepared by condensation of macrocyclic aryl ether ketone dimers containing hydroxyphenyl groups and fluorine end-capped poly(aryl ether ketone)s oligomers. The MCPAEKs exhibited highly thermal stability due to their wholly aromatic structures. Compared to liner poly(aryl ether ketone)s, MCPAEKs showed much lower melt viscosities at low temperature. In the presence of cesium fluoride (CsF), the crosslinking reaction of MCPAEKs could afford fully aromatic thermoset poly(aryl ether ketone)s by ring-opening reaction. After crosslinking, the glass transition temperatures and complex melt viscosities of the polymers both increased greatly. Though there were some residual CsF or phenoxides produced by ring-opening reaction, the obtained thermoset poly(aryl ether ketone)s had good thermal stability with 5% -Td above 475 oC.
引文
1. M. M. James, Engineering Thermoplastics Properties and Applications Marceidekker Inc. New York and Baser, 1985.
    2. Q. Wang, Q. Xue, W. Shen, J. App. Poly. Sci. 1998, 69, 2341.
    3. S. Wang, J. Wang, Z. Mo, H. Zhang, Z. Wu, Mocromol. Chem. Phys. 1996, 197, 4079
    4. X. Li, W. Zhang, Z. Wu, J. Poly. Sci. B: 1997, 35, 431
    5. C. García, P. Tiemblo, A.E. Lozano, J. de Abajo, J.G. de la Campa, J. Membrance. Sci. 2002, 205, 73
    6. S. Bicakci, M. Cakmak, Polymer 2002, 43, 149
    7. A. M. Jonas, D. A. Ivanov, Macromolecules 1998, 31, 5352
    8. M. J. Jenkins, Polymer 2000, 41, 6803
    9. L. H. Lee, J. J. Vanselow, N. S. Schneider, Polymer. Engineering and Science 1988, 28, 181
    10. P. L. Aldred, H. M. Colquhoum, Macromolecules 2002, 35, 9420
    11. O. Dupont, A. M. Jonas, B. Nysten, R. Legras, Macromolecules 2000, 33, 562
    12. J. R. Atkinson, J. N. Hay, M. J. Jenkins, Polymer 2002, 43, 731
    13. L. L. Chang, B. S. Huang, E. M. Woo, Polymer 2001, 42, 8395
    14. X. Li, M. Huang, I. Kresse, J. Springer, Polymer 2001, 42, 8113
    15. D. J. Blundell, V. Bayon, Polymer 1993, 34, 1354
    16. Y. Lee, R. S. Porter, Macromolecules 1988, 21, 2770
    17. A. Jonas, R. Legras, Macromolecules 1993, 26, 526
    18. E. Boinard, R. A. Pethrick, C. J. Macfarlane, Polymer 2000, 41, 1063
    19. A. J. Waddon, A. Keller, Polymer 1992, 33, 27
    20. AY. Malkin, et al., Polym. Eng. Sci., 1984, 24, 1369
    21. Y. P. Khanna et al., Polym. Eng. Sci., 1988, 28, 1042
    22. Chiub W.Y., et al., Mater. Chem. Phys., 1993, 34, 46
    23. F. C. Perez-Cardenes , et al., J. Appl. Polym. Sci., 1991, 43, 779
    24. Turnbull D, Fisher Jc, J. Chem. Phys., 1949, 17 (1): 71
    25. Hoffman, J. D., Davis, G.T., Lauritzen, J.I., in Treatise on Solid State Chemistry, Vol. 3, Plenum Press, New York, 1975
    26. Hoffman, J.D., Weeks. J.J., J. Chem. Phys. 1962, 37, 1723
    27. Alamo R. G., Mandelkern L., Macromolecules 1991, 24, 6480
    28. T. Ozawa, Polymer, 1971, 12, 150
    29. A. Jeziorny, Polymer, 1978, 19, 1142
    30. 吴忠文,于洪泽,那辉, 中国专利 CN85105138(1985)
    31. 吴忠文,郑玉斌,中国专利 CN85108138(1985)
    32. 姬相玲 博士学位论文 吉林大学化学系 1995
    33. M. Shibata, R. Yosomiya, C. H. Chen, J.Z. Wang and Z. W. Wu, Die Angewandte Makromolekulare Chemie, 1998, 263, 15
    34. J. Z. Wang, C. H. Chen, X. Xun, S. Wang, Z. W. Wu, J. Plym. Sci., Part A: Polym. Chem., 1999, 37, 1957
    35. T. Ben, C. Chen, H. Cao, X. Wang, Z. Wu, W. J. Zhang, Y. Wei, Macromol. Rapid Commun. 2002, 23, 196
    36. G. Dang, W. Yang, C. Chen, Synthetic met 2003, 137, 975.
    37. Prochaska R J . US 3 220 980 , 1965
    38. Schnell H , Bottenbruch L. US 3 386 954 , 1968
    39. D. J. Brunelle, Ring-pening Polymerization : Mechanism, Catalysis , Structure , Utility. New York : Hanser , 1993. 309
    40. D. J. Brunelle, US 4 920 200 , 1990
    41. H. Y. Jiang, T. L. Chen, J. P. Xu, Macromol. Rapid Commun 1997, 18, 401.
    42. 姜洪焱,陈天禄,徐吉平, 科学通报 1996, 41, 1055.
    43. M. J. Mulins, R. Galalvan, M. T. Bishop, E. P. Woo, D. B. Gorman, T. A. Chambarlin, Polym. Pre. 1992 32, 414
    44. H. W. Gibson, S. Ganguly, N. Yamaguchi, D. H. Xie, M. Chen; M. Bheda P.Miller, Polym. Pre. 1992, 32, 576-577.
    45. Y. F. Wang, M. Paventi, A. S. Hay, Polym. Pre. 1995, 35, 128.
    46. 张希;林志宏;高蒨(译) 超分子化学 吉林大学出版社
    47. C. J. Pedersen, J. Am. Chem. Soc. 1967, 89, 2495
    48. C. J. Pedersen, Angew. Chem. 1988, 100, 1053
    49. Leo A.; C. Hansch, D. Elkins, Chem. Rev. 1971, 71, 525
    50. T. X. Liu, Z. S. Mo, H. F. Zhang, J. Appl. Polym. Sci. 1998, 67, 815
    51. H. E. Kissinger, Anal. Chem. 1957, 29, 1702
    52. S. S. Tetrahedron, 1993, 49,8933
    53. H. Ohtsuka, S. Shinkai, Supramol. Sci. 1996, 3, 189
    54. J. L. Atwood, G. W. Orr, K. D. Robinson, F. Hamada, Supramol. Chem. 1993, 2, 309
    55. V. Bohmer, Angew Chem. Int. Ed. Engl. 1995, 34, 713
    56. A. Ben-Haida, H. M. Colquhoun and P. Hodge, J. David, J Mater Chem., 2000, 10, 2011.
    57. J. D. Hoffman, G. T Davis, J. I. Lauritzen, in Treatise on Solid State Chemistry, Vol. 3, Plenum Press, New York, 1975
    58. R. G. Alamo, L. Mandelkern, Macromolecules 1991, 24, 6480
    59. J. Y. Chen, M. Chen, S. C. Chao, Macromol. Chem. Phys. 1998, 199, 1623
    60. B. Hasiao, J. Polym.Sci., Part B 1993, 31, 237
    61. H. M. Colquhoun, L. G. Sestiaa, M. G. Zolotukhin, Macromolecules 2000, 33, 8907.
    62. R. Hans, B. Sigrid, S. Gert and K. Ralph-Peter and S. Gunther, Macromolecules, 2001, 34, 8886.
    63. R. Hans, G. Mazen and S. Gert, J Polym. Sci., Part A: Polym Chem., 2005; 43, 4781.
    64. L. Tesdale, E. Harper, P. Coppo, B. Wilson and M. Turner, Macromol. Rapid Commun., 2006, 27:2032.
    65. H. M. Colquhoun, C. C. Dudman, M. M. Thomas and D. J. Williams, Macromolecules, 2004, 37, 2041.
    66. M. Shibata, R. Yosomiya, C. H. Chen, J.Z. Wang and Z. W. Wu, Die Angewandte Makromolekulare Chemie, 1998, 263, 15.
    67. K. Walker, L. Markoski and J. Moore, Macromolecules, 1993, 26, 3713.
    68. M. Chen and W. Gibson Macromolecules, 1996, 29, 5502.
    69. A. Ben-Haida, H. M. Colquhoun and P. Hodge, J. David, Macromol. Rapid Commun., 2005, 26, 1377.
    70. Y. H. Qi, N. H. Song, T. L. Chen, S. Q. Bo and J. P. Xu, Macromol. Chem. Phys., 2000, 201, 840.
    71. K. Chen, Z. A. Liang, Y. Z. Meng adn A. S. Hay, Eur. Polym. J., 2004, 40, 403.
    72. M. Chen, I. Guzei, A. L. Rheingold and W. H. Gibon, Macromolecules, 1997, 30, 2516.
    73. H. M. Colquhoun, L. G. Sestiaa and M. G. Zolotukhin, Macromolecules 2000, 33, 8907.
    74. H. M. Colquhoun, L. G. Sestiaa, D. J Williams and M. G. Zolotukhin, Macromol. Rapid Commun., 2002, 23, 634.
    75. J. Z. Wang, C. H. Chen, X. Xun, S. Wang, Z. W. Wu, J. Plym. Sci., Part A: Polym. Chem., 1999, 37, 1957.
    76. H. M. Colquhoun, L. G. Sestiaa, D. J Williams , M. G. Zolotukhin, Macromol. Rapid Commun. 2002, 23, 634.
    77. K. Nakao, M. Nishimura, T. Tamachi, Y. Kuwatani, H. Miyasaka, T. Nishinaga, M. Iyoda, J. Am. Chen. Soc. 2006, 128, 16740
    78. Y. F. Wang, A. S. Hay, Macromolecules 1997, 30, 182
    79. 高分子化学,潘祖仁
    80. X. S. Dub, M. Xiaoa, Y. Z. Menga, A.S. Hay, Polymer 2004, 45, 6713
    81. Y. Taguchi, H. Uyama, S. Kobayashi, Journal of Polymer Science:Part A:Polymer Chemistry 1997, 35, 271
    82. N. Tanaka, T. Iijima, W. Fkuda, M. Tomoi, Polym. Inter. 1997, 42, 95
    83. A. P. Melissaris, M. H. Litt, Macromolecules 1994, 27, 883
    84. A. P. Melissaris, M. H. Litt, Macromolecules 1994, 27, 888
    85. P. M. Hergenrother, J. G. Simith Ir, Polymer 1994, 35, 4857
    86. A. Ayambem, S. J. Mecham, Y. Sun, T. E. Mcgrath, Polymer 2000, 41, 5109
    87. J. Chang, J. Hong, Polymer 2001, 42, 1525
    88. Y. J. Liu, X. G. Jian, S. J. Liu, J. Zhang, Z. Y. Wang, Acta Polymerica Sinica 1999, 1, 37
    89. 牛亚明,吉林大学博士学位论文,2005
    90. F. Keitoku, M. Kakimoto, Y. Imai, J. Poly. Sci.A 1994, 32, 317
    91. K. A. Walker, L. J. Markoski, J. S. Moore, Macromolecules 1993, 26, 3713
    92. S. F. Hahn, S. J. Martin, M. L. Mckelvy, Macromolecules 1992, 25, 1539
    93. 濑口忠勇,放射线と产业,1995, 66, 4.
    94. N.Sasuga, K. Hayakawa, M.Yoshida, Poly.Degrad.Stab. 1997, 28, 1917.
    95. O. Yoda, Poly. Commun., 1985 26, 16.
    96. T.Sasuga, M.Hagiwara, Polymer, 1987, 28, 1915 ().
    97. J. W. Connell, E. J. Siochi, C. I. Croall, High Perform.Polym., 1993, 5,1.
    98. T. Sasuga, H. Kudoh, Polymer 2000, 41, 185.
    99. S. Kumar, W. Adams, Polymer 1990, 31, 15.
    100. A. S Vaughan, S. J. Sutton, Polymer 1995, 36, 1549.
    101. T.Sasuga, M. Hagiwara, Polymer 1985, 26, 501.
    102. A. S.Vaughan, G. C. Stevens, Polymer 1995, 36, 1531.
    103. T. G. Fox, S. Loshaek, J.Polym.Sci. Part A 1955, 15, 371.
    104. A. S. Vaughan, G. C. Stevens, Polymer, 2001, 42, 8891.
    105. N. Tanaka, T. Iijima, W. Fkuda, M. Tomoi, Polym. Inter. 1997, 42, 95
    106. 吴人洁, 高性能与高功能性纤维的发展, 宇航材料工艺. 1998, 6.
    107. 刘新材,吉林大学博士论文。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700