固定化重组脂肪酶催化木本植物油脂制备生物柴油研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对木本植物油脂的提取与精制,脂肪酶的固定化,固定化酶催化酯交换反应制备生物柴油的工艺条件及生物柴油产品性能等方面进行了系统的研究。主要研究结果如下:
     1.利用溶剂浸提法提取麻疯树籽和黄连木籽油,对毛油进行精制(脱胶和脱色),两种树籽的提油率分别达到:52.4%(种仁)和35.0%(净籽),并对所得油品理化性质进行了分析。
     2.以本课题组的摇瓶发酵优化条件为指导,探讨了培养基种类、诱导时间、甲醇浓度等因素对发酵罐产酶工艺的影响。以无机盐培养基FM21发酵毕赤酵母菌,经过甘油补料和甲醇补料两个阶段,发酵培养96小时后得到的脂肪酶的酶活达到90U/mL,目的蛋白含量为0.92mg/m1。
     3.筛选了一系列的无机和有机载体固定R. oryzae脂肪酶,发现阴离子树脂D301效果最佳。其最佳固定化条件为:1.预吸附条件:吸附时间10h (吸附温度为4℃)或吸附时间4h(吸附温度为28℃),给酶量600U/g。2.交联固定条件:给酶量600U/g,交联剂浓度0.5%,交联时间20min,转速110rpm,固定化脂肪酶的酶活为160U/g.
     4.探讨了固定化脂肪酶催化食用大豆油脂制备生物柴油的工艺条件,并且对固定化酶的重复性进行了探讨。具体的工艺条件如下:醇油比:5:1、反应温度:37℃、反应时间:48h、水含量:60%(基于油重),所得产物中脂肪酸甲酯含量为92%,该固定化脂肪酶可重复使用7次,无明显酶活下降。
     5.探讨了固定化酶催化木本油脂(麻风树和黄连木籽油)制备生物柴油的工艺条件。最佳工艺条件:醇油比:4.7:1、反应温度:37℃、反应时间:48h、水含量:40%(麻疯树籽油),20%(黄连木籽油)。在此条件下,脂肪酸甲酯的含量分别达到94%和92%。该固定化脂肪酶重复使用5次无明显酶活下降。
     6.自制生物柴油产品主要性能指标(密度、运动粘度、热值、闪点、十六烷值)符合现行的美国和我国生物柴油标准要求,可作为柴油发动机燃料使用。
In this dissertation, the extraction and refining of woody plant oils, preparation of immobilized lipase for catalyzing transesterification of the oils, optimization of transesterification conditions, and properties of biodiesel products were systematically investigated. The main results are as follows:
     1. The extraction yield of crude oil from the kernel of Jatropha curcas L. seed and the seed of Pistacia chinensis were 60% and 35.0%, respectively. The extracted oils were degummed and discolored prior to use as the raw material for the transesterification reactions.
     2. Conditions related to cell growth and lipase expression sueh as the cultural medium variety, fermentation time and methanol concentration were investigated in a 10L fermentor based on the fermention conditions of shaker flasks. The effect of fed-batch with glycerol on the production and growth of engineering strain and with methanol as the inducers of lipase were compared. The lipase activity reached at 90U/ml after induction for 96h with increasing the velocity and concentration of methanol.
     3. The immobilization of R. royzae lipase was conducted with different supports. It was found that the anion resin D301 is a proper matrix for immobilization of R. royzae. The optimal conditions for the preparation of immobilized lipase were as follows: absorption time 4h at 28℃or 10h at 4℃, enzyme amount 1200U/g resin, cross-lingking concentration 0.5% and cross-lingking time 20 min at 110 rpm. The optimal activity of the immobilized lipase is 160U/g under these conditons.
     4. The transesterification conditions of refined soybean oil catalyzed by the immobilized lipase were discussed. The proper conditions were as follows: enzyme amout 24U/g oil, oil/alcohol molar ratio 1:4.8, water content 60% based on oil mass, temperature 37°C, and reaction time 48h. The maximum methyl esters (ME) yield could reach 92% under the conditions. The immobilized lipase could be repeatedly used for 7 times in the production of biodiesel without apparent loss of lipase activity.
     5. The optimal alcoholysis conditions for woody plant oils were as follows: enzyme amont 24U/g oil, oil/alcohol molar ratio 1:4.7, water content (on water mass) 40% for Jatropha curcas oil and 20% for Pistacia chinensis seed oil, temperature 37°C, and reaction time 48h. The maximum methyl esters (MEs) yield could reach 94% and 92%, respectivly. The immobilized lipase could be repeatedly used for 5 times in the production of biodiesel without apparent loss of lipases activity.
     6. The main properties of the prepared biodiesel, such as density, kinematic viscosity, heat value, flash point and cetane number, are well consistant with the current American and Chinese biodiesel standards.
引文
[1] Mohamed M.Soumanou ,Uwe T.Bornscheuer. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil, Enzyme and Microbial Technology 2003, 33 : 97–103.
    [2] Zhiyuan Hu, Piqiang Tan,Xiaoyu Yan,Diming Lou. Life cycle energy, environment and economic assessment of soybean-based biodiesel as an alternative automotive fuel in China, Energy 2008,33:1654–1658.
    [3]苏敏光,于少明,吴克,俞志敏,金杰.生物柴油制备方法及其质量标准现状.包装与食品机械2008(26) 3:20~39.
    [4]施肖峰,张晶,童惠英,严有兵,张春辉.生物柴油生产技术及其产品质量标准.粮食与食品工业.2006,13(4):46~48
    [5]颜培兵,王效华.生物柴油催化合成技术研究进展.农业工程学报.2007,(1):286~289.
    [6]何凤苗,雷昌菊,江香梅.生物质能源——生物柴油研究进展.江西林业科技.2007,(1):45~49.
    [7]田树新.生物柴油的研究进展与发展现状.中国林副特产.2007,(1):84~86.
    [8]龚树华.生物柴油的研究进展.山西化工.2006,26(4): 37~40.
    [9] Jose M E, Juan F G, Eduardo S. Preparation and properties of bio-diesel from Canary [J]. Carbuncles Cheese, 1999, (38): 93-95.
    [10] Dorado M P, Ballesterosb E, Arnale J M. Exhaust emissions from a diesel engine fueled with transesterised waste olive oil [J]. Fuel, 2003, 82: 1311-1315.
    [11] McCormick R L, Graboski M S, Alleman T L, et al. Impact of biosiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine [J]. Environ Sci Technol, 2001, 35(9): 1742-1747.
    [12]胡建修,刘志平,郭丽,李汝江,王友生.生物柴油的制备方法及其发展前景.化工中间体.2007,(12):25~28.
    [13] Ziejiewski M, Kaufman K R, Pratt G L. Vegetable oils as diesel fuel [C]. SeminarⅡ, Northern Regional Research Center. Peoria, Illinois, 1983.
    [14]王晓东.生物柴油的制备技术及应用现状[J].工业催化,2008,16(8):38-42.
    [15]单保明,夏力,贾小平,项曙光.生物柴油研究进展。山东化工。2008,(37):19~23.
    [16]何凤苗,雷昌菊,江香梅.生物质能源———生物柴油研究进展.江西林业科技.2007,(1):45~49.
    [17]陈正中,邹立壮,郭瑾,吴启才,袁鉴,郭亦欣,李威.生物柴油的研究现状.化学工程师. 2007,145(10):33~36
    [18]张静,唐恩凌.生物柴油的应用现状及技术进展[J].化工技术与开发,2008,37(8:23-29.
    [19]高荫渝等.生物柴油研究进展[J].可再生能源, 2004, 3: 6-10.
    [20]谭天伟,王芳,邓立等. [J].现代化工, 2002, 22(2): 4-6.
    [21]蒋剑春等.生物柴油研究进展[J].中国能源, 2006, 28(2): 36-39.
    [22] Hongbo shao, Liye chu.. Resource evaluation of typical energy plants and possible functional zone planning in China. Biomass and Bioenergy 32 (2008 ) 283– 288.
    [23]邓绍林.极具开发前景的生物能源树—麻风树.广西林业.2005,6.
    [24]余帅勇,丁贵杰.能源植物麻疯树研究进展.贵州林业科技.2009,37(1):49~54
    [25]陈钢.推广生物柴油树——麻风树的开发应用推动国民经济发展.商业科技.2008,531:30~31.
    [26]阳国军,郭卫军.我国麻风子油制备生物柴油的进展与思考.行业经济.2009,2:22~24.
    [27]陈隆升,彭方仁,梁有旺,张春霞.不同种源黄连木种子形态特征及脂肪油品质的差异性分析.植物资源与环境学报.2009,18(1):16-21.
    [28]钱建军,张存劳,姚亚利,刘晓芳.黄连木油料资源的开发与利用.中国油脂.2000,25(3):49. [ 29 ]侯新村,牟洪香,杨士春,邢艳贞,靖静.木本能源植物黄连木研究进展.安徽农业科学,2007,35(12):3524-352.
    [30]张涨,华新,柏益尧,左玉辉。中国生物柴油原料供应前景研究.河南科学。2008,26(8):987~991
    [31]韩慧芳,崔英德,蔡立彬.油脂中胶质的去除方法.广州食品工业科技.2003,75(19):102~104
    [32]韩景生.食用油脂加工工艺学[M].成都:四川科学技术出版社, 1999.
    [33]韩慧芳,崔英德,蔡立彬.油脂中胶质的去除.油脂工程.粮油加工与食品机械.2003,(4):40~42
    [34]马云霄.浅谈油脂脱色吸附剂.粮油加工.2003,80(4):11~12
    [35]董建林,魏冰.高酸值油脂助脱色与酯化脱酸工艺的研究[J].中国油脂, 2000, 25(6): 82-85. [ 36 ]陈正中,邹立壮,郭瑾,吴启才,袁鉴,郭亦欣,李威.生物柴油的研究现状.化学工程师.2007,(10):33~36.
    [37] Ejaz M.Shahid, Younis Jamal, A review of biodiesel as vehicular fuel, Renewable and Sustainable Energy Reviews 12(2008)2484–2494.
    [38] Adams C,Peters J F,Rand M C,et al.Investigation of soybean oil as adiesel fuel extender[J].J Am Oil Chem Soc,1983,60(8):1574-1579.
    [39]李昌珠,蒋丽娟,程树棋.生物柴油-绿色能源[M].北京:化学工业出版社, 2005.
    [40] Kêrbitz W. [J]. Renewable Energy, 1999, 16 (1-4): 1078-1083.
    [41] Goering C E,Fry B.Engine durability screening test of a diesel oil/soy oil/alcohol microemulsion fuel[J].J Am Oil Chem Soc,1984,61(10):1627-1632.
    [42] Schwab A,Dykstra G,Selke E,et al.Diesel fuel from thermal decomposition of soybean oil [J].J Am Oil Chem Soc,1988,65:1781-1786.
    [43]程国丽.蓖麻油生物柴油的制备及其性能研究[D].中北大学,硕士学位论文, 2008.
    [44] Freedman B,Pryde E,Mounts T.Variables affecting the yields of fatty esters from transesterified vegetable oils[J].J Am Oil Chem Soc,1984,61(10):1638-1643.
    [45] Boocock D G,Konar S K,Mao V,et al.Fast formation of high-purity methyl ester from vegetable oils[J].J Am Oil Chem Soc,1998,75(9):1167-1172.
    [46] J.M.Marchetti,V.U.Miguel,A.F.Errazu. Techno-economic study of different alternatives for biodiesel production.Fuel proceesing technology 2008,89:740-748.
    [47] Benjamas Cheirsilp ,Aran H-Kittikun ,Suchart Limkatanyu. Impact of transesterification mechanisms on the kinetic modeling of biodiesel production by immobilized lipase. Biochemical Engineering Journal 2008,42:261–269.
    [48]何红波,姚日生,江来恩.生物柴油制备方法研究进展.安徽化工.2008,34(6):7~10
    [49] Kim Hak Joo,Kang Bo Seung,et al.[J].Catalysis Today,2004, 93-95:315-320.
    [50] Martini W, Schell J. Plant oils as fuels: Present state of science and future development [M]. New York: Springer Verlag Berin Heideberg, 1998.
    [51]王述样,谭文英.生物液化燃油的开发前景及可持续发展意义[J].科技导报, 2002, (6): 52-55
    [52]司耀斌,马传国等.酯交换法制备生物柴油研究进展[J].中国油脂, 2006, 31(11): 60-64.
    [53]Furuta S,Matsuhashi H,Arata K.[J].Catalysis Communications,2004,5(12):721-723.
    [54]盛梅,李为民,部国英.生物柴油研究进展[J].中国油脂,2003,28(4):66-70.
    [55] Kaieda M, Samukawa T, Matsumoto T, Ban M, Kondo A,Shimada Y, et al. Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. Journal of Bioscience and Bioengineering. 1999,88(6):627~31.
    [56] Lilin Li, Wei Du, Dehua Liu, Li Wang, Zebo Li. Lipase-catalyzed tranesterification of rapeseed oils fro biodiesel production with a novel norganic solvent as the reaction medium. Journal of Molecular Catalysis B: Enzymatic, 2006,(43) 58-62.
    [57] Wei Du,,Yuanyuan Xu,Dehua Liu,,Jing Zeng. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. Journal of Molecular Catalysis B:Enzymatic2004, 30:125–129.
    [58] Yomi Watanabe,Yuji Shimada,Akio Sugihara,Yoshio Tominaga. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. Journal of Molecular Catalysis B:Enzymatic 2002, 17:151–155.
    [59] Erzheng Su, Dongzhi Wei. Improvement in lipase-catalyzed methanolysis of triacylglycerols for biodiesel production using a solvent engineering method. Journal of Molecular Catalysis B: Enzymatic 2008, 55:118–125.
    [60] Seung Wook Kim, Dong Hwan Lee , Jong Ho Lee ,Jung Soo Lim. Optimization for biodiesel production using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases. Abstracts/Journal of Biotechnology 2007, 131S: S122–S126. [ 61 ] H.Noureddini,X.Gao,R.S.Philkana. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology 2005, 96:769–777.
    [62]杨勇,李彦锋,拜永孝,易柳香,夏春谷.酶固定化技术用载体材料的研究进展.化学通报.2007,(4):257~263.
    [63] Srivathsan V R,Srinivasan L N,Karuppan M.An overview of enzymatic production of biodiesel[J].Bioresource Technology,2008,99:3975-3981.
    [64] Hama S,Yamaji H,Fukumizu T,et al.Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles[J].Biochemical Engineering Journal,2007,34(3):273–278.
    [65] Chen Jyh-ping,Chang Shu-chin.Production of biodiesel by immobilized whole-cell biocatalyst[J].Abstracts/Journal of Biotechnology,2008,136S:S385- S386.
    [66] He Qin,Xu Yan,Teng Yun,et al.Biodiesel production catalyzed by whole-cell lipase from Rhizopus chinensis[J].Chinese Journal of Catalysis,2008,29(1):41–46.
    [67]胡小加,江木兰,陈洪等.固定化全细胞葡枝根霉YF6合成生物柴油的研究[J].中国油脂,2008,33(4):47-49.
    [68] Sandra glisic, Dejan skala. The problems in detailed analyses of energy consumption for biodiesel synthesis at supercritical conditions. The journal of supercritical fluids,2009,(49):293-301 .
    [69] Hiroaki lmathara, Eiji minami,Shusaku hari,Shiro saka.thermal stability of biodiesel in supercritical methanol. 2008,(87):1-6
    [70]贾良智,等编.中国油脂植物[M].北京:科学出版社, 1987, 286.
    [71] Xin Menga,Jianming Yang,Xin Xu,Lei Zhang,Qingjuan Nie,Mo Xian, Biodiesel production from oleaginous microorganisms, Renewable Energy 34(2009)1–5.
    [72]咸漠,康亦兼,杨丽,孙艳.脂肪酶催化反应的研究进展.青岛化工学院学报.2000,21(3):189~205.
    [73]彭立凤.微生物脂肪酶的研究进展.生物技术通报.1999,(2):17~22.
    [74]李香春脂肪酶的研究进展,肉类工业:2003,264(4):46~48.
    [75]颜兴和,王栋,徐岩.根霉脂肪酶的研究进展,工业微生物,2005,35(3):45~49.
    [76]贾洪峰等.微生物脂肪酶研究及其在食品中应用,粮食与油质,2006,(7):16~19.
    [77]郭诤,张根旺.脂肪酶的结构特征和化学修饰,中国油脂,2003,28(7):5~10.
    [78] DerewendaU, Swenson L, Wei Y, et al. Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginose andRhizopus delemar. J Lipid Res, 1994, 35: 524~534
    [79] Shiraga S,Ueda M,Takahashi S,et al.Construction of the combinatorial library of Rhizopus oryzae lipase mutated in the lid domain by displaying on yeast cell surface[J].Journal of Molecular Catalysis B:Enzymatic,2002,17:167-173.
    [80] Ricardo N. Farias, Merce Torres, and Ramon Canela. Spectrophotometric Determination of the Positional Specificity of Nonspecific and 1,3-Specific Lipases. Analytical Biochemistry 1997,(252):186–189()
    [81]李燕,潘运国,连毅.微生物脂肪酶催化及其性质研究进展[J].粮食与油脂,2005,10:15-17.
    [82]曹淑桂.脂肪酶的底物特异性及其应用潜力[J].生物化学与生物物理进展,1995,22(1):9-13.
    [83] Miwa matori,Takehiko asahara,Yasuhide ota. Positional Specificity of Microbial Lipases. Journal of fermentation and bioengineering 1991, 72(5):397-398.
    [84] Miwa matori, Takehiko asahsr, Yasuhide ota. Reaction Conditions Influencing Positional Specificity Index (PSI)of Microbial Lipases. Journal of fermentation and bioengineering 1991, 72(6):413-415.
    [85] Tiankui Yang, Maj-Britt Fruekilde, Xuebing Xu. Suppression of acyl migration in enzymatic production of structured lipids through temperature programming. Food Chemistry 92(2005) 101–107.
    [86] Xu,X.(2000b).Enzymatic production of structured lipids: Process reactions and acyl migration. INFORM,11,1121–1131.
    [87]傅红,裘爱泳.超临界CO2合成鱼油质构脂质中酰基转移的研究.中国粮油学报.2006,(6)113~115
    [88] Y.Wang,H.Wu,M.H.Zong. Improvement of biodiesel production by lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer. Bioresource Technology 99(2008)7232–7237.
    [89]郑毅,叶海梅,周虓等.脂肪酶活力测定研究进展[J].工业微生物,2005,35(4):36-40.
    [90]郑毅、吴松刚等。脂肪酶活力测定研究进展。工业微生物,2005,35(4):36~40.
    [91]毕金峰.活性炭固定化α-转移葡萄糖甘酶的研究。河南工业大学学报(自然科学报)2005,26(5):11-14.
    [92]高贵,韩四平,王智等.脂肪酶活力检测方法的比较[J].药物生物技术,2002,9(5):281-284.
    [93]江慧芳,王雅琴,刘春国.三种脂肪酶活力测定方法的比较及改进[J].化学与生物工程,2007,24,(8):72-75.
    [94]张伟,杨秀山.酶的固定化技术及其应用.新技术.新材料.2000,22(5):282~286
    [95]胡和兵,王牧野,吴勇民,何明中.酶的固定化技术及应用.中国酿造.2006,7(170):4~8.
    [96] Gao Yang, Tan Tian-Wei,Nie Kai-Li,Wang Fang, Immobilization of Lipase on Macroporous Resin and Its Application in Synthesis of Biodiesel in Low Aqueous Media, :Chin J Biotech,2006,22(1),114–118.
    [97] P. L′opez-Serrano, L. Cao, F. van Rantwijk & R.A. Sheldon. Cross-linked enzyme aggregates with enhanced activity: application to Lipases. Biotechnology Letters 24: 1379–1383, 2002.
    [98] M.L. Foresti , M.L. Ferreira.Chitosan-immobilized lipases for the catalysis of fatty acid esterifications. Enzyme and Microbial Technology 2007, 40 :769–777.
    [99] Nadir Dizge ,Bu¨lent Keskinler,Aziz Tanriseven, Covalent attachment of microbial lipase onto microporous styrene–divinylbenzene copolymer by means of polyglutaraldehyde, Colloids and Surfaces B:Biointerfaces 2008, 66:34–38.
    [100] Zorica Knezevic , Svetlana Bobic , Aleksandra Milutinovic , Bojana Obradovic , Ljiljana Mojovic , Branko Bugarski.Alginate-immobilized lipase by electrostatic extrusion for the purpose of palm oil hydrolysis in lecithin/isooctane system. Process Biochemistry 2002, 38: 313-318.
    [101] Olivier Orcaire,Paulette Buisson,Alain C.Pierre, Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions, Journal of Molecular Catalysis B:Enzymatic 2006, 42:106–11.
    [102]王海雄,吴侯,翁新楚,活性炭吸附法固定猪胰脂酶的初步研究,上海大学学报(自然科学版) 2003,(9):428~432.
    [103]王康,何志敏,范庆军.有机相中壳聚糖-海藻酸固定脂酶的特性[J].化学工程,2001,29(5):39-43.
    [104] Yesim Y.Utilization of bentonite as a support material for immobilization of Candida rugosa lipase[J].Process Biochemistry,2005,40:2155-2159.
    [105]毕金峰,李春红,陈天金,海藻酸钙固定化α-转移葡萄糖苷酶研究,食品科学,2004,(25):4-10.
    [106] Hung Tien-Chieh, et al.Binary immobilization of Candida rugosa lipase on chitosan [J].Journal of Molecular Catalysis B: Enzymatic,2003,26 (1):69-78. [107 ]纵伟,刘艳芳,赵光远,磁性壳聚糖微球固定化脂肪酶的研究,食品与机械,2008,(24):13-15
    [108]曹国民.交联烯丙基葡聚糖凝胶固定化脂肪酶的研究.[J ]离子交换与吸附,1997(6):515.
    [109]杨玉玲.酶固定化技术及载体材料研究新进展.粮油食品科技.2001,(5):22~25.
    [110]高阳,谭天伟,聂开立,王芳,大孔树脂固定化脂肪酶及在微水相中催化合成生物柴油的研究,生物工程学报,2006,(22):114~118. [ 111 ]陈姗姗,仇农学,离子交换树脂固定化果胶酶条件的优化研究,云南农业大学学报2007(22):109~112.
    [112] T.Nagao,Y.Shimada,A.Sugihara,A.Murata,S.Komemushi,Y. Tominag, Use of Thermostable Fusarium heterosporum Lipase for Production of Structured Lipid Containing Oleic and Palmitic Acids in Organic Solvent-Free System, J.Am.Oil.Chem.Soc.78 (2001)167-172.
    [113] Bahart ,Tuncela.Monod iserse poly pchlorcmehy is rene microbeads by dispersion polymerization[J].Polym Eng Sci,1999.
    [114]张伍魁,范清林,宋礼华.毕赤酵母表达系统在外源基因表达中的研究进展及应用[J].中国生物工程杂志,2006,26(1):87-91.
    [115]张树军,杨磊,黄瑾.巴斯德毕赤酵母表达系统的研究进展[J].农垦医学,2007,29(3):231-233.
    [116]魏虹,王金富.甲醇酵母表达外源蛋白研究进展,江西饲料.2004,(4):8~11.
    [117]胡世界,罗素兰等.巴斯德毕赤酵母表达系统及其高水平表达策略,生物技术,2007,78(6):78~82.
    [118]李洪淼,王红宁,许钦坤.毕赤酵母高密度发酵研究进展.生物技术通讯.2005,16(2):210~212.
    [119]王勇,审校.毕赤酵母表达外源基因研究进展.微生物学免疫学进展.2004,32(1):62~65
    [120]李新丽,黄瑾.表达外源蛋白的有利工具-毕赤酵母表达系统.现代生物医学进展.2009,9(1) 171~174
    [121]高贵,韩四平,王智等.脂肪酶活力检测方法的比较。药物生物技术,2002,9(5):281~284.
    [122]孙宏丹,刘键杰,姚民昌等.无根根霉脂肪酶的酶学性质研究及酯合成的应用.大连医科大学学报. 2001,23(3):52~55
    [123]汪家政,范明主编.蛋白质技术手册.科学出版社.2000,8.
    [124]王琳,罗启芳,硅藻土吸附固定化微生物对邻苯二甲酸二丁酯的降解特性研究[J].卫生研究,2006,35(1):23-25.
    [125]黄磊,程振民.无机材料在酶固定化中的应用[J].化工进展,2006,25(11):1245-1249.
    [126]毕金峰,李春红,陈天金.海藻酸钙固定化α-转移葡萄糖苷酶研究.食品科学.2004,(25):4-10.
    [127]肖志方,伍林,易德莲,秦晓蓉,杨春琪.海藻酸钙凝胶固定葡萄糖氧化酶的研究.化学与生物工程,2008,25(2):42~53.
    [128]陈盛,魏燕芳,蒋意娟.壳聚糖固定化碱性脂肪酶的研究.广州化学.2003,28(3):21~26.
    [129] Xu xue bing. Production of specific-structured triacylglycerols by lipase- catalyzed reactions: a review. Eur J Lipid Sci Technol 2000; 287–303.
    [130] Wei Du et. Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. Journal of Molecular Catalysis B: Enzymatic 37(2005)68–71
    [131]Gao Yang, Tan Tian-Wei, Nie Kai-Li, Wang Fang. Immobilization of Lipase on Macroporous Resin and Its Application in Synthesis of Biodiesel in Low Aqueous Media.Chinese journal ofbiotechnology.2006,22(1):114-118
    [132]徐圆圆,杜伟,刘德华.非水相脂肪酶催化大豆油油脂合成生物柴油的研究.现代化工.2003,(23):167~169.
    [133]曹淑桂.有机溶剂中酶催化研究的新进展.化学通报1995,(5):5~12.
    [134] Y.Shimada,Y.Watanabe,T.Samukawa,J.Am.Oil Chem.Soc.76(1999)789–793.
    [135] Watanabe Y,Shimada Y,Sugihara A, et al. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida Antarctica lipase[J].J. Am. Oil Chem. Soc., 2000,77(4):355-360.
    [136] Ana V, Pizarro L,Park E Y. Lipase-catalyzed production of biodiesel fuel from vegetable oils contained in waste activated bleaching earth [J]. Process Biochemistry,2003,34:1077-1082.
    [137] Guanyi Chen,Ming Ying , Wei Zhun Li. Enzymatic Conversion of Waste Cooking Oils Into Alternative Fuel Biodiesel. Applied Biochemistry and Biotechnology 2006, 129-132.
    [138] M.M.Soumanou,U.T.Bornscheuer, Improvement in lipase-catalyzed synthesis of fatty acid methyl ester from sunflower oil. Enzyme Microb. Technol. 2003, 33:97–103.
    [139] C.Laane.S.et al.,Trends Biotechnol, 1985,3:251.
    [140] Su Er-zheng,Wei Dong-zhi.Improvement in lipase-catalyzed methanolysis of triacylglycerols for biodiesel production using a solvent engineering method[J].Journal of Molecular Catalysis B:Enzymatic,2008,55:118-125.
    [141] C.Laane,S.Boeren,K.Vos,C.Veeger,Biotechnol.Bioeng. 1987, 30:81–87.
    [142] R.H.Valivety,P.J.Halling,A.Macrae, Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents. Biochem.Biophys.Acta 1992,1118:218–222.
    [143] Li L L,Du W,Liu D H,et al. Lipase-catalyzed transesterification of rapeseed oils for biodiesel productionwith a novel organic solvent as the reaction medium[J].Journal of Molecular Catalysis B:Enzymatic,2006,43:58-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700