空间网格结构健康监测系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间网格结构是一种由杆单元和梁柱单元集成的空间三维结构体系,具有受力合理、刚度大、自重轻、抗震性能好、工期短、造价低等优点,尤其能够满足建筑造型丰富、功能齐全等要求,被广泛用于大跨度工业与民用建筑及公共建筑领域,成为反映一个国家建筑科学技术水平的标志。由于环境荷载作用、疲劳效应、腐蚀效应和材料老化等灾害因素影响,空间网格结构容易产生损伤累积和抗力衰减,甚至会发生破坏乃至倒塌的灾难性事故。因此,对大跨度空间网格结构在使用期间的健康监测以及各种灾害影响下的损伤识别进行研究,开发适合于大跨度空间网格结构的健康监测系统,具有重大的理论价值和现实意义。
     本文结合结构健康监测领域国内外发展现状,对空间网格结构健康监测系统关键技术进行了深入系统的理论研究,包括环境激励下模态参数识别理论、传感器优化布置理论、有限元模型修正理论、空间网格结构损伤识别理论,分别通过了数值仿真验证、实验室模型试验验证和实际工程现场实测验证,最终开发了一套功能强大的空间网格结构健康监测系统。
     对环境激励下结构模态参数识别理论进行了系统的研究,分别提出了环境激励下低阶时域模态参数识别方法的统一理论和环境激励下高阶模态参数识别方法的统一理论,揭示了不同方法之间的本质联系和不同点,完善了结构模态参数识别的系统化理论。比较了四种适合于环境激励下空间网格结构模态参数识别的方法,指出了它们优缺点及适用范围,验证了两类模态参数识别方法统一理论的合理性和有效性。
     针对目前传感器优化布置算法应用于空间网格结构的局限性,提出了一种基于改进遗传算法的传感器优化布置方法,以模态变形能和模态置信准则为适应度函数,提出十进制二维数组编码方式以提高数据存储量,为避免相同位置重复布置传感器引入强制变异算子,利用Guyan扩充振型与有限元计算振型均方误差大小评价传感器布置方案优劣,比较了不同测点工况下数据驱动随机子空间算法识别出的结构模态参数,指出了识别结构前若干阶模态所需的最少传感器数目。
     研究了结构健康监测领域常用的二种传感器优化布置方法,从数学的角度推导了模态动能法与有效独立法的理论相似性,指出了二者在具体应用中的不同之处,促进了传感器优化布置理论的统一化发展。从多自由度系统频响函数矩阵的模态展开式出发,推导了平均位移幅值、平均速度幅值和平均加速度幅值公式,在有效独立法的基础上提出了有效独立-平均加速度幅值法和有效独立-模态动能法,与有效独立法、模态动能法、有效独立驱动点残差法进行了比较研究,验证了两种方法的优越性。
     针对空间网格结构特点,提出了能够定量评估结构损伤程度的模态应变能损伤识别理论,采用非负最小二乘法求解超静定方程组,实现定量评估损伤程度,即保持了刚度矩阵的稀疏性,又不含除阻尼的任何近似和假设。讨论了测试信息完备和测试信息不完备两种情况下该方法对空间网格结构损伤的识别能力,并与基于最小秩摄动理论的损伤程度评估结果进行了比较研究,验证了方法的有效性。
     考虑空间网格结构杆件数目远大于节点数目的实际情况,提出了面向节点的基于三层BP神经网络的多阶段损伤识别方法,将标准化固有频率变化率和振型向量变化量范数作为神经网络输入参数,根据各个节点输出的损伤值来判定结构损伤位置和损伤程度,以一平面桁架结构仿真算例验证了方法的合理性。针对钢筋混凝土空间网格结构,提出了直接利用损伤结构模态信息即可进行损伤识别的曲率模态曲面拟合方法,通过曲率模态与曲面拟合值的差异进行损伤定位,研究表明其适合于钢筋混凝土空间网格结构的在线健康监测。
     设计制作了一空间桁架结构试验模型,对其进行较为充分的静力试验、动力试验和损伤识别试验研究。提出了联合静动力数据的有限元模型修正方法,对初始有限元模型进行了修正,获得了基准模型。按本文提出的方法进行了传感器优化布置和模态参数识别,通过杆端螺栓节点连接失效和节点附加质量来模拟结构杆件和节点损伤,研究结果验证了前文损伤定位方法对空间网格结构损伤识别的有效性。探讨了将该试验模型作为空间网格结构Benchmark标准验证模型的可行性,为不同研究者验证空间网格结构健康监测关键技术提供了统一标准模型。
     以空间网格结构为对象,系统研究了结构健康监测系统的基本组成和监测内容,开发了基于LabVIEW的数据采集系统和基于Matlab的结构模态分析与损伤识别系统(SMADIS 1.0),实现了动态数据采集及预处理、环境激励下结构模态参数识别、模型匹配和模型修正、损伤定位及程度评估等功能,研究表明基于LabVIEW和Matlab二者结合的软件开发模式值得在结构健康监测领域推广。对一空间管桁架游泳馆屋盖结构进行了现场检测研究,提出了全面系统的检测方案,对其进行了整体结构检测、常规静力检测和环境振动试验,并进行静力核算。依据现场实测结构尺寸、荷载和边界条件建立了三维有限元模型,进行了有限元模态分析。对比了四种适合于空间网格结构的环境激励下结构模态参数识别方法,对该结构的安全状态和工作性能进行了全方位评估,提出了加固改造维修方案,给出了相关结论。
Long-span spatial lattice structure which are composed of bar elements and beam-column elements are a kind of three-dimension spatial structure system, and they are the symbol of the national building science and technology for not only their reasonable force, high stiffness, light weight, good earthquake resistance, short construction period and cheap construction cost but also prolific style and complete function. They have been wildly adopted in the fields of long-span architechtures, such as industrial architecture, civil architecture and public building. Spatial lattice structures are inevitable to suffer from natural disasters, such as environmental loading, fatigue, corrosion, aging and so on. And then the damage accumulates and the resistance attenuates during long service period, and finally the damage or even paroxysmal disasters happened. Therefore, intelligent heath monitoring and damage diagnosis for structures during building and service period at various environment become an important technology to study.
     Detailed researches were carried out for spatial lattice structures health monitoring by combining the status quo of structural health monitoring (SHM) and structural condition assessment. The related important problems on structural health monitoring system, such as modal parameters identification under ambient vibration, optimal sensor placement, finite element model updatting, spatial lattice structure damage detection, were investigated and one spatial lattice structure health monitoring system was developed also.
     Meanwhile the laboratory test and field investigations also were finished. This dissertation investigated the theories of modal parameters identification and presented the unified approach for the method of low order time domain modal parameters identification under ambient vibration and the method of high order modal parameters identification under ambient vibration respectively. The similarities and differences of different identification methods were presented as well. All these work is helpful to build the whole unified theory of modal parameters identification methods. By comparing the four useful methods for spatial lattice structure modal parameters identification under ambient vibration, the advantages and disadvantages on their application of these methods were given. And also the validity of the two kinds of methods was verified.
     Considering the problem of optimal sensor placement on spatial lattice structure, an improved genetic algorithm (IGA) was introduced. The method took the modal strain energy (MSE) and the modal assurance criterion (MAC) as the fitness function respectively, and improved the data storage capacity with the decimal two-dimension array coding method and solved the problem of positional repeatability of sensors with the forced mutation operator. Further the evaluation criterion for sensor placement based on the mean square error between the Guyan Expansion mode shapes and the FEM mode shapes was given.
     With this criterion, the structure modal parameters identified by Data-driven Stochastic Subspace Identification (SSI-DATA) method using the measured data at different optimal sensor placement were compared. Then the minimal number of sensors for the identification of the first few modes were indicated. This dissertation investigated two optimal sensor placement methods used widely in the field of structural health monitoring (SHM). And then the theoretical similarity between the modal kinetic energy (MKE) method and effective independence (EI) were given by mathematical derivation.
     Additionally, the differences of the applications of the two methods were pointed, which was helpful to the further development of the optimal sensor placement method. Using the model expansion of MDOF system’s FRF matrix, the formulas of average displacement amplitude and average velocity amplitude and average acceleration amplitude were derivated. Further, based on the effective independence method, the effective independence - average acceleration amplitude (EI-AAA) method and effective independence -modal kinetic energy (EI-MKE) method were derivated. Comparing with the effective independence (EI) and the modal kinetic energy (MKE) method and effective independence - driving-point residue (EI-DPR), the advantage of the two proposed methods were verified.
     An evaluation algorithm based on the modal strain energy theory was given by adopting an overdetermined equation group solved by the non-negative least-squares method to quantitatively identify the damage extent. The method also maintained the sparsness of the stiffness matrix and excluded the approximations and assumptions except the damping ratio. Meanwhile the validity of the method used for the spatial lattice structures was verified by analyzing the two cases of complete and incomplete measured information and comparing with those results obtained by using the minimum rank perturbation theory.
     Considering the number of the bar is quite larger than that of the node in a spatial lattice structure, a node-oriented multistage damage identification method based on three layers BP neural network was proposed. The method took the normalized natural frequence variation ratio and mode vector norm as the input of neural network, and then determinated the position and size of the damage according to the output of neural network nodes. Then the validity of the method was verified by a plain truss model. Considering the propertities of the concrete spatial lattice structure, the damage identification method directly used the modal information of the damage structure by the surface fitting method of curvature mode was proposed, which localized the damage by the difference between curvature mode and its fitted value. The research results showed that it was suitable for online SHM of the concrete spatial lattice structure.
     Laboratory work has been done with an autonomous design space truss test model with which the tests of static and dynamic and damage identification have been finished also. A finite element model updating method using the static and dynamic test data was proposed. And with this method, the benchmark model was obtained from the initial model. Analyzing the results using the identification method proposed in the paper, the validity of the damage localization method based on residual modal force was verified once again. And the damage is simulated by the disabled connection nodes and the added node mass. Further the probability of setting the laboratory model as the Benchmark model for the spatial lattice structure was investigated. Finally, the uniform standard test model was given.
     The dissertation also gave the design approaches of the SHM system for the spatial lattice structure and proposed the system integrated design principles. Also the data acquisition system based on LabVIEW and the structural modal analysis and damage identification system (SMADIS 1.0) based on Matlab were developed, which had the functions such as dynamic data acquisition and its preprocessing, modal parameters identification of the structures under ambient vibration, modal matching, model updating and damage localization and quantification. The application of the two systems verified the developed approach is helpful for the development of the SHM system. Field investigation was carried out on a steel roof of a SPSS structure natatorium in service. The systematic field-work approaches were given. The field visual inspections and static checking were conducted in turn under in-service environmental conditions. Further a three-dimensional finite element model was developed according to its factual geometry properties obtained from the field inspection. By comparing the four useful modal parameters identification methods for spatial lattice structure under ambient vibration, the all-round assessment on structure safe state and service behavior was conducted, then the constructive suggestion of reinforce and maintainance was given, and finally were the relative conclusions.
引文
1沈世钊.大跨空间结构的发展—回顾与展望.土木工程学报. 1998, 31(3): 5~14.
    2董石麟,钱若军.空间网格结构分析理论与计算方法.北京:中国建筑工业出版社. 2000: 1~15.
    3刘锡良.现代空间结构.天津:天津大学出版社. 2003: 1~10.
    4欧进萍.重大工程结构的累积损伤与安全评定.走向21世纪的中国力学—中国科协第9次青年科学家论坛报告文集.北京:清华大学出版社. 1996: 179~189.
    5欧进萍.重大工程结构智能传感器网络与健康监测系统的研究与应用.中国科学基金. 2005, 1: 8~12.
    6雷宏刚.钢结构事故分析与处理.北京:中国建材工业出版社. 2003: 171~173.
    7尹德钰,赵红华.网架质量事故实例及原因分析.建筑结构学报. 1998, 19(1): 15~23.
    8吴金志.基于动力检测的网格结构损伤识别研究.北京工业大学博士学位论文. 2005: 1~21.
    9何浩祥.空间结构健康监测的理论与试验研究.北京工业大学博士学位论文. 2006: 1~16.
    10沈雁彬.基于动力特性的空间网格结构状态评估方法及检测系统研究.浙江大学博士学位论文. 2007, 1~7.
    11禹丹江.土木工程结构模态参数识别——理论、实现与应用.福州大学博士学位论文. 2005, 32~116.
    12 L. M. Zhang, R. Brincker, P. Andersen. An Overview of Operational Modal Analysis: Major Development and Issues. Proceeding of the 1st International Operational Modal Analysis Conference, Copenhagen, Denmark, April 26-27, 2005.
    13 G. H. James, T. G. Carne, J. P. Lauffer. The Natural Excitation Technique for Modal Parameter Extraction from Operating Wind Turbines. 1993, SAND92-1666, UC-261, Sandia National Laboratories.
    14 S. R. Ibrahim. Random Decrement Technique for Modal Identification of Structures. Journal of Spacecraft and Rockts. 1977, 14: 696~700.
    15 D. L. Brown, et al.. Parameter Estimation Techniques for Modal Analysis. SAE Paper No. 790221, 1979.
    16 H. Vold, et al.. A Multi-Input Modal Estimation Algorithm for Mini- Computers. SAE Paper No. 820194, 1982.
    17 J. N. Juang, R. Pappa. An Eigensystem Realization Algorithm (ERA) for Modal Parameter Identification. NASA/JPL Workshop on Identification and Control of Flexible Space Structures, Pasadena, CA, USA, 1984.
    18 S. R. Ibrahim, E. C. Mikulcik. A Method for the Direct Identification of Vibration Parameters from the Free Response. The Shock and Vibration Bulletin 47, September 1977.
    19 L. M. Zhang, Y. X. Yao, M. F. Lu. An Improved Time Domain Polyreference Method for Modal Identification. Mechanical System and Signal Processing. 1987, 1(4): 125~133.
    20秦仙蓉,王彤,张令弥.模态参数识别的特征系统实现算法:研究与比较.航空学报. 2001, 22(4): 340~342.
    21 P. Andersen. Identification of Civil Engineering Structures using Vector ARMAR Model. Ph. D. Thesis, Aalborg University, Denmark, 1997.
    22 K. A. Petsounis, S. D. Fassois. Parametric Time-Domain Methods for the Identification of Vibrating Structures: A Critical Comparison and Assessment. Mechanical System and Signal Processing. 2001, 15(6): 345~352.
    23 A. Benveniste, J. J. Fuche. Single Simple Modal Identification of a Nonstationary Stochastic Process. Automatic Control, AC 30, 1985.
    24 K. S. Arun, S. Y. Kung. Balanced Approximation of Stochastic System. SIAM J. Matrix Analysis Application. 1990, 11(1): 111~119.
    25 P. Van Overschee, B. De Moor. Subspace Identification for Linear Systems - Theory, Implementation, Applications. Kluwer Academic Publishers. 1996: 122~135.
    26 R. Brincker, L. M. Zhang, P. Anderson. Modal Identification from Ambient Response using Frequency Domain Decomposition. Proceeding of the 18th International Modal Analysis Conference, San Antonio, TX, USA, 2000.
    27 C. Y. Shih, Y. G. Tsuei, R. J. Allemang, et al.. Complex Mode Indication Function and Its Applications to Spatial Domain Parameter Estimation. Proceeding of the 7th International Modal Analysis Conference, January 30, 1989.
    28 R. Brincker, C. Ventura, P. Anderson. Damping Estimation by Frequency Domain Decomposition. Proceeding of the 19th International Modal AnalysisConference, Kissimmee, USA, 2001.
    29 L. M. Zhang, T. Wang, Y. Tamura. Frequency Spatial Domain Decomposition Technique with Application to Operational Modal Analysis of Civil Engineering Structures. Proceeding of the 1st International Operational Modal Analysis Conference, Copenhagen, Denmark, April, 2005.
    30王彤,张令弥.运行模态分析的频域空间域分解法及其应用.航空学报. 2006, 27(1): 62~66.
    31 M. H. Richardson. Parameter Estimation from Frequency Response Measurements using Rational Fraction Polynomials. Proceeding of the 1st IMAC, November, 1982.
    32 M. H. Richardson. Global Curve Fitting of Frequency Response Measurements using the Rational Fraction Polynomial Method. Proceeding of the 3rd IMAC, January, 1985.
    33 M. H. Richardson. Global Frequency & Damping Estimates from Frequency Response Measurements. Proceeding of the 4th IMAC, February, 1986.
    34 D. Formenti, M. H. Richardson. Parameter Estimation from Frequency Response Measurements using Rational Fraction Polynomials: Twenty Years of Progress. Proceeding of the 20th IMAC, January, 2002.
    35 B. Peeters, H. V. Auweraer, P. Guillaume, et al.. The PolyMAX Frequency Domain Method: a New Standard for Modal Parameter Estimation. Shock and Vibration. 2004, 11(3-4): 395~409.
    36 B. Peeters, et al.. Operational PolyMAX for Estimating the Dynamic Properties of a Stadium Structure during a Football Game. Proceedings of the 23th IMAC, Orlando (FL), USA, 2005.
    37 B. Peeters, H. V. Auweraer. PolyMAX: a Revolution in Operational Modal Analysis. Proceeding of the 1st IOMAC, Copenhagen, Denmark, April, 2005.
    38 P. Guillaume, et al.. Frequency Domain Maximum Likelihood Identification of Modal Parameters with Confidence Levels. Proceeding of the 23th ISMA, Leuven, Belgium, 1998.
    39 P. Guillaume, et al.. A Poly-reference Implementation of the Least-Squares Complex Frequency Domain Estimator. Proceeding of the 21st IMAC, Kissimmee, USA, 2003.
    40刘福强,张令弥.作动器/传感器优化配置的研究进展.力学进展. 2000, 30(4): 506~516.
    41 W. J. Staszewski, K. Worden. An Overview of Optimal Sensor Location Methods for Damage Detection. Proceedings of SPIE Vol.4326, 2001, 179-187.
    42 D. C. Kammer. Sensor Placement for On-orbit Modal Identification and Correlation of Large Space Structures. Journal of Guidance, Control and Dynamics. 1991, 14(2): 251~259.
    43 D. C. Kammer. Effects of Noise on Sensor Placement for On-orbit Modal Identification of Large Space Structures. Journal of Dynamic Systems, Measurement, and Control. 1992, 114: 436~443.
    44 N. Imamovic. Model Validation of Large Finite Element Model using Test Data. Ph.D. dissertation. Imperial College London; 1998.
    45 T. W. Lim. Sensor Placement for On-orbit Modal Testing. Journal of Spacecraft and Rockets. 1992, 29(2): 279~285.
    46 C. Liu, F. A. Tasker. Sensor Placement for Multi-input/multi-output Dynamic Identification. Proceedings of SDM conference. 1995, 3327~3337.
    47 Y. T. Shih, A. C. Lee, J. H. Chen. Sensor and Actuator Placement for Modal Identification. Mechanical Systems and Signal Processing. 1998, 12(5): 641~659.
    48 G. Q. Xing, P. M. Bainum. Actuator Placement using Degree of Controllability for Discrete-time Systems. Journal of Dynamics Systems, Measurement, and Control. 1993, 114:508~516.
    49 T. W. Lim. Actuator/sensor Placement for Modal Parameter Identification of Flexible Structures. Modal Analysis: the International Journal of Analytical and Experimental Modal Analysis. 1993, 8(1): 1~13.
    50刘福强,张令弥.作动器与传感器优化配置的逐步消减法.宇航学报. 2000, 21(3): 64~69.
    51 G. Heo, M. L. Wang, D. Satpathi. Optimal Transducer Placement for Health Monitoring of Long Span Bridge. Soil Dynamics and Earthquake Engineering. 1997, 16: 495~502.
    52 C. B. Larson, D. C. Zimmerman, E. L. Marek. A Comparison of Modal Test Planning Techniques: Excitation and Sensor Placement using NASA 8-bay Truss. Proceedings of 12th IMAC Conference. 1993, 141~146.
    53 Y. T. Chung, D. Moore. On-orbit Sensor Placement and System Identification of Space Station with Limited Instrumentations. Proceedings of the 11th IMAC Conference. 1992, 413~426.
    54 M. Salama, T. Rose, J. Garba. Optimal Placement of Exciters and Sensor for Verification of Large Dynamical Systems. Proceedings of SDM Conference. 1987, 1024~1031.
    55 Z. Y. Shi, S. S. Law, L. M. Zhang. Damage Localization by Directly using Incomplete Mode Shapes. Journal of Engineering Mechanics. 2000, 126(6):656~660.
    56 R. J. Guyan. Reduction of Stiffness and Mass Matrices. AIAA Journal. 1974, 44(2): 380~394.
    57 J. O’Callahan. A Procedure for an Improved Reduced System (IRS) Model. Proceedings of the 7th IMAC Conference. 1989, 17~21.
    58 D. W. Zhang, S. Li. Succession-level Approximate Reduction (SAR) Technique for Structure Dynamic Modal. Proceedings of the 13th IMAC Conference. 1995, 435~441.
    59 J. E. Penny, M. I. Friswell, S. D. Garvey. Automatic Choice of Measurement Location for Dynamic Testing. AIAA Journal, 1994, 32(2): 407~414.
    60 C. C. Flanigan, C. D. Botos. Automated Selection of Accelerometer Location for Modal Survey Test. Proceedings of the 10th IMAC Conference. 1992, 1205~ 1208.
    61 H. Baruh, K. Choe. Sensor Failure Detection Method for Flexible Structures. Journal of Guidence, Control, and Dynamics. 1987, 10(5): 474~482.
    62 D. A. Pape. Selection of Measurement Locations for Experimental Modal Analysis. Proceedings of the 12th International Modal Analysis Conference. 1994, 34~41.
    63 C. Schedlinski, M. Link. An Approach to Optimal Pick-up and Exciter Placement. Proeeedings of the 14th IMAC Conference. 1996, 376~382.
    64 H. B. Kim, Y. S. Park. Sensor Placement Guide for Structural Joint Stiffness Model Improvement. Mechanical Systems and Signal Processing. 1997, 11(5): 651~672.
    65 T. G. Came, C. R Dohmann. A Modal Test Design Strategy for Modal Correlation. Proeeedings of the 13th International Modal Analysis Conference, New York. 1995, 927~933.
    66 T. Breitfelf. A Method for Identification of a Set of Optimal Measurement Points for Experimental Modal Analysis. The International Journal of Analytical and Experimental Modal Analysis, 1996, 11: 254~273.
    67 C. Papadimitriou. Pareto Optimal Sensor Locations for Structural Identification. Computer Methods in Applied Mechanics and Engineering. 2005, 194: 1655~1673.
    68 M. Meo, G. Zumpano. On the Optimal Sensor Placement Techniques for a Bridge Structure. Engineering Structures. 2005, (27): 1488~1497.
    69陆秋海,李德葆,张维.利用模态试验参数识别结构损伤的神经网络法.工程力学, 1999, 16(1): 35~42.
    70易伟建,刘霞.基于遗传算法的结构损伤诊断研究.工程力学, 2001, 18(2): 64~71.
    71 A. E. Sepulveda, I. M. Jin, J. L. A. Schmit. Optimal Placement of Active Element in Control Augmented Structural Systhesis. AIAA Journal. 1993, 31(10): 1906~1915.
    72 A. E. Sepulveda, J. L. A. Schmit. Optimal Placement of Actuators and Sensors in Control Augmented Structural Optimization. Proceedings of SDM Conference, AIAA-90-1055-cp, 1990, 217~230.
    73 M. Sunar, S. S. Rao. Thermo Piezoelectric Control Design and Actuator Placement. AIAA Journal. 1997, 35(2): 534~539.
    74 M. L. Delorenzo. Sensor and Actuator Selection for Large Space Structure Control. Journal of Guidance, Control, and Dynamics. 1990, 13(2): 249~257.
    75秦仙蓉,张令弥.一种基于QR分解的逐步累积法传感器配置.振动、测试与诊断. 2001, 21(3): 168~173.
    76刘娟,黄维平.传感器优化配置的修正逐步累积法.青岛海洋大学学报. 2003, 33(3): 476~482.
    77 L. Yao, W. A. Sethares, D. C. Kammer. Sensor Placement for On-orbit Modal Identification via a Genetic Algorithm. AIAA Journal. 1993, 31(10): 1167-1169.
    78 H. Gao, J.L. Rose. Sensor Placement Optimization in Structural Health Monitoring using Genetic and Evolutionary Algorithms. Proceedings of SPIE 6174, 2006, 310~320.
    79李戈,秦权,董聪.用遗传算法选择悬索桥监测系统中传感器的最优布点.工程力学. 2000, 17(1): 25~34.
    80黄维平,刘娟,李华军.基于遗传算法的传感器优化配置.工程力学. 2005, 22(1): 113~117.
    81马广,黄方林,王学敏.基于混合遗传算法的桥梁监测传感器优化布置.振动工程学报. 2008, 21(2): 191~196.
    82张德文,魏阜旋.模型修正与破损诊断.北京:科学出版社. 1999: 1~9.
    83李辉,丁桦.结构动力模型修正方法研究进展.力学进展. 2005, 35(2): 170~180.
    84郭勤涛,张令弥,费庆国.结构动力学有限元模型修正的发展——模型确认.力学进展. 2006, 36(1): 36~42.
    85 M. R. Banan, K. D. Hjelmstad. Parameter Estimation of Structures from Static Response. I: Computational Aspects. Journal of Structural Engineering. 1994,120(11): 3243~3258.
    86 M. R. Banan, K. D. Hjelmstad. Parameter Estimation of Structures from Static Response. II: Numerical Simulation Studies. Journal of Structural Engineering. 1994, 120(11): 3259~3283.
    87 M. Sanayei, M. J. Saletnik. Parameter Estimation of Structures from Static Strain Measurement. I: Formulation. Journal of Structural Engineering. 1996, 5: 555~562.
    88 M. Sanayei, M. J. Saletnik. Parameter Estimation of Structures from Static Strain Measurement. II: Error Sensitivity Analysis. Journal of Structural Engineering. 1996, 5: 563~572.
    89 M. Sanayei, G. R. Imbaro, A. S. McClain. Structural Model Updating using Experimental Static Measurements. Journal of Structural Engineering. 1997, 6: 792~798.
    90 F. Bakhtiari-Nejad, A. Rahai, A. Esfandiari. A Structural Damage Detection Method using Static Noisy Data. Journal of Structural Engineering. 2005, 27: 1784~1793.
    91李书,冯太华,范绪萁.静力模型修正的逆特征值方法.工程力学. 1996, 13(2): 92~96.
    92崔飞,袁万城,史家钧.基于静态应变及位移测量的结构损伤识别法.同济大学学报. 2000, 28(1): 5~8.
    93李义强,张彦兵,王新敏.基于参数识别的钢筋混凝土简支梁桥静力模型修正技术.石家庄铁道学院学报. 2006, 19(3): 48~51.
    94 M. Baruch, I. Y. Bar Itzhack. Optimal Weighted Orthogonalization of Measured Models. AIAA Journal. 1978, 16(4): 346~351.
    95 M Baruch. Optimization Procedure to Correct Stiffness and Flexibility Matrices Using Vibration Data. AIAA Journal. 1978, 16(11): 1425~1428.
    96 A. Berman. Mass Matrix Correction Using an Incomplete Set of Measured Modes. AIAA Journal. 1979, 17(10): 1298~1301.
    97 A. Berman, E. J. Nagy. Improvement of a Large Analytical Model Using Test Data. AIAA Journal. 1983, 21(8): 1168~1173.
    98 K. A. Stentson, G. E. Palma. Inversion of First Perturbation Theory and Its Application to Structural Design. AIAA Journal. 1976, 14(4): 313~315.
    99 J. C. Chen, J. A. Garba. Analytical Model Improvement Using Modal Test Results. AIAA Journal. 1980, 18(6): 684~690.
    100 A. M. Kabe. Stiffness Matrix Adjustment Using Mode Data. AIAA Journal. 1985,23(9): 1431~1436.
    101 S. W. Smith, C. A. Beattic. Secant Mehtod Adjustment for Structural Models. AIAA Journal. 1991, 29(1): 119~126.
    102 H. G. Natke, N. Cottin. Updating Mathematical Models on the Basis of Vibration and Model Test Results - A Review of Experience. Proceeding of 4th IMAC, 1986.
    103 H. G. Ahamadian, M. L. Gladwell, F. Isamail. Finite Element Model Identification using Model Data. Journal of Sound and Vibration. 1994, 172(5): 657~669.
    104 J. R. Wu, Q. S. Li. Finite Element Model Updating for a High-rise Structure based on Ambient Vibration Measurements. Engineering Structures. 2004, 26: 979~990.
    105 M. I. Friswell, J. E. Mottershead. Finite Element Model Updating in Structural Dynamics. Dordrecht: Kluwer Academic Publisher, 1995.
    106 J. M. Smith, S. G. Hutton. Frequency Modification using Newton’s Method and Inverse Iteration Eigenvector Updating. AIAA Journal. 1992, 30(7): 1886~1891.
    107 Q. W. Zhang, C. C. Chang, T. Y. P. Chang. Finite Element Modal Updating for Structures with Parametric Constraints. Earthquake Engineering and Structural Dynamics. 2000, 29: 927~944.
    108徐丽,易伟建.框架结构模型修正的理论与试验研究.湖南大学学报(自然科学版). 2000, 27(2): 88~93.
    109 R. L. Fox, M. P. Kapoor. Rates of Change of Eigenvalues and Eigenvectors. AIAA Journal. 1968, 6(12): 2426~2429.
    110 R. B. Nelson. Simplified Calculation of Eigenvector Derivatives. AIAA Journal. 1976, 14(9): 1201~1205.
    111 K. B. Lim, J. L. Junkins, B. P. Wang. Re-examination of Eigenvector Derivatives. Journal of Guidance, Control and Dynamics. 1987, 10(6): 581~587.
    112 I. U. Ojalvo. Efficient Computation of Mode Shape Derivatives for Large Dynamic Systems. AIAA Journal. 1987, 25(10): 1386~1390.
    113 T. R. Sutter, C. J. Camarda, J. L. Walsh. Comparison of Several Methods for Calculating Vibration Mode Shape Derivatives. AIAA Journal. 1988, 26(12): 1506~1511.
    114范立础,袁万城,张启伟.悬索桥结构基于敏感性分析的动力有限元模型修正.土木工程学报. 2000, 33(1): 9~13.
    115张启伟.基于环境振动测量值的悬索桥结构动力模型修正.振动工程学报.2002, 15(1): 74~78.
    116郭彤,李爱群,韩大章.基于灵敏度分析与优化设计原理的大跨桥梁动力模型修正.桥梁建设. 2004, 6: 20~23.
    117袁爱民.基于灵敏度分析的有限元模型修正技术若干关键问题研究.东南大学博士论文. 2006: 28~81.
    118 C. Minas, D. J. Inman. Matching Finite Element Models to Modal Data. Journal of Vibation and Acoustics. 1990, 112(1): 84~92.
    119 D. C. Zimmerman, M. Widengren. Correcting Finite Element Models using a Symmetric Eigenstructure Assignment Technique. AIAA Journal. 1990, 28(9): 1670~1676.
    120 C. D. Foster. A Methods of Improving Finite Element Models by using Experimental Data: Application and Implications for Vibration Monitoring. International Journal of Mechanical Science. 1990, 32(3): 191~203.
    121 M. I. Friswell. Updating Model Parameters from Frequency Domain Data via Reduced Order Model. Mechanical Systems and Signal Processing. 1990, 4(5): 377~391.
    122 J. E. Mottershead. A Linear frequency Domain Filter for Parameter Identification of Vibration Structure. Journal of Vibration and Acoustics. 1987, 109(4): 262~269.
    123 R. S. Sharp, P. C. Brooks. Sensitivities of Frequency Response Functions of Linear Dynamics Systems to Variations in Design Parameter Values. Journal of Sound and Vibration. 1988, 126: 167~172.
    124 F. M. Hemez, G. W. Brown. Improving Structural Dynamics Models by Correlating Simulated to Measured Frequency Response Functions. Proceedings of Structural Dynamics and Materials Conference, 1998, 4: 772~782.
    125秦仙蓉.基于灵敏度分析的结构计算模型修正及相关问题研究.南京航空航天大学博士论文. 2001: 55~86.
    126徐张明,高天明,沈荣瀛等.一种改进的利用频响函数进行有限元模型修正的方法.振动与冲击. 2002, 21(3): 43~46.
    127 M. J. Attalla, D. J. Inman. On Model Updating using Neural Networks. Mechanical System and Signal Processing. 1998, 12: 135~161.
    128 C. C. Chang. Adaptive Neural Networks for Model Updating of Structures. Smart Materials and Structures. 2000, 9(l): 59~68.
    129徐宜贵,史铁林,杨叔子.基于神经网络的结构动力模型修改和破损诊断研究.振动工程学报. 1997, 10(1): 8~12.
    130瞿伟廉,谭冬梅,汪箐.基于神经网络的大型空间网架结构的有限元模型修正.地震工程与工程振动. 2003, 23(4): 83~89.
    131 J. H. Chou, J. Ghaboussi. Genetic Algorithm in Structural Damage Detection. Computers and Structures. 2001, 79: 1335~1353.
    132 M. A. Rao, J. Srinivas, B. S. N. Murthy. Damage Detection in Vibrating Bodies using Genetic Algorithms. Computers and Structures. 2004, 82: 963~968.
    133 Z. G. Tu, Y. Lu. FE Model Updating using Artificial Boundary Conditions with Genetic Algorithms. Computers and Structures. 2008, 86: 714~727.
    134朱宏平,徐斌,黄玉盈.结构动力模型修正方法的比较研究及评估.力学进展. 2002, 32(4): 513~525.
    135闫桂荣,段忠东,欧进萍.遗传算法在结构有限元模型修正中的应用.哈尔滨工业大学学报. 2007, 39(2): 181~186.
    136 R. I. Levin, N. A. J. Lieven. Dynamic Finite Element Model Updating using Simulated Annealing and Genetic Algorithms. Mechanical Systems and Signal Processing. 1998, 12(1): 91~120.
    137费庆国,张令弥,李爱群等.基于统计分析技术的有限元模型修正研究.振动与冲击. 2005, 24(3): 23~26.
    138郭勤涛,张令弥,费庆国.用于确定性计算仿真的响应面法及其试验设计研究.航空学报. 2005, 27(1): 55~61.
    139陈华斌.基于响应面的结构有限元模型修正方法研究.福州大学硕士学位论文. 2007: 55~67.
    140邓苗毅,任伟新.基于响应面方法的结构有限元模型修正研究进展.铁道科学与工程学报. 2008, 5(3): 42~45.
    141 G. G. Goble, V. Saouma, D M Frangopol. Simple Load Capacity Tests for Bridges to Determine Safe Loading Posting Levels: 1987-1990. Project at the University of Colorado at Boulder, sponsored by the Pennsylvania Department of Transportation, 1990.
    142唐光武,廖敬波,赵岩.基于静动多目标的有限元模型修正.重庆大学学报(自然版). 2007, 12(30): 131~133.
    143李国强,李杰.工程结构动力检测理论与应用.北京:科学出版社. 2002: 5~192.
    144 S. W. Doebling, C. R. Farrar, M. B. Prime, etal. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A literature Review. Los Alamos National LaboratoryReport LA-13070-MS, April, 1996.
    145 S. Hoon, R. F. Charles, M.H. Francois, etal.. A Review of Structural Health Monitoring Literature: 1996-2001. Los Alamos National Laboratory Report, LA-13976-MS, 2003.
    146 O. S. Salawu. Detection of Structural Damage through Changes in Frequency: A Review. Engineering Structures. 1997, 19(9): 718~723.
    147 P. Cawley, R. D. Adams. The Location of Defects in Structures from Measurements of the Natural Frequencies. Journal of Strain Analysis. 1979, 14(2): 49~57.
    148 G .Heam, R.B.Testa. Modal Analysis for Damage Detection in Structures. Journal of Structural Engineering. 1991, 117(10): 3042~3061.
    149 B. P. Nandwana. On Foundation for Detection of Crack Based on Measurement of Natural Frequencies. Ph.D. Dissertation. Indian Institute of Technology, Bombay. 1997: 50~61.
    150 J. H. Kim, H. S. Jeon, C. W. Lee. Application of the Modal Assurance Criteria for Detecting and Locating Structural Faults. Proceedings 10th International Modal Analysis Conference. 1992: 536~540.
    151 M. L. Wang, G. Heo, D. Satpathi. Dynamic Characterization of a Long Span Bridge: A Finite Element based Approach. Soil Dynamics and Earthquake Engineering. 1997, 16: 503~512.
    152 C. R. Farrar, D. V. Jauregui. Damage Detection Algorithms Applied to Experimental and Numerical Modal Data From the I-40 Bridge. Los Alamos National Laboratory report LA-13074-MS. 1996.
    153 A. K. Pandey, M. Biswas, M. M. Samman. Damage Detection from Changes in Curvature Mode Shapes. Journal of Sound and Vibration. 1991, 145(2): 321~332.
    154 M. M. Abdel Wahab, G. De Roeck. Damage Detection in Bridges Using Modal Curvatures: Application to a Real Damage Scenario. Journal of Sound and Vibration. 1999, 226(2): 217~235.
    155邓炎.桥梁动态测试技术与系统研究.清华大学博士学位论文. 2000: 115~128.
    156 Y. Y. Li, L. Cheng, L. H. Yam. Identification of Damage Locations for Plate-Like Structures Using Damage Sensitive Indices: Strain Modal Approach. Computers and Structures. 2002, (80): 1881~1894.
    157陆秋海.基于应变模态理论的结构修改和损伤神经网络辨识法研究.清华大学博士学位论文. 1997: 88~102.
    158顾培英,丁伟农.模态试验在梁损伤诊断中的应用研究.振动与冲击. 2004, 23(3): 60~63.
    159 H. Baruh, S. Ratan. Damage Detection in Flexible Structures. Journal of Sound and Vibration. 1993, 1669(1): 21~30.
    160 D. C. Zimmerman, M. Kaouk. Structural Damage Detection Using a Minimum Rank Update Theory. Joural of Vibration and Acoustics. 1994, 116: 222~231.
    161 J. Y. Shen, J. L Sharpe. Damage Detection through Modal Sensitivity Analysis. Proceedings of Space 2002: the Seventh International Conference and Exposition on Engineering, Construction, Operations and Business in Space. 2000: 371~376.
    162 N. Stubbs, J. T. Kim, C. R. Farrar. Field Verification of a Nondestructive Damage Localization and Sensitivity Estimator Algorithm. Proceedings of the
    13th International Modal Analysis Conference. 1995, 210~218.
    163 P. Cornwell, S. W. Doebling etal. Application of the Strain Energy Damage Detection Method to Plate-Like Structures. Journal of Sound and Vibration. 1999, 225(2): 359~374.
    164 Z. Y. Shi, S. S. Law, L. M. Zhang. Structural Damage Localization from Modal Strain Energy Change. Journal of Sound and Vibration. 1998, 218(5): 825~844.
    165 Z. Y. Shi, S. S. Law, L. M. Zhang. Improved Damage Quantification from Elemental Modal Strain Energy Change. Journal of Engineering Mechanics. 2002, 128(5): 521~529.
    166 Z. Wang, R. M. Lin, M. K. Lim. Structural Damage Detection using Measured FRF Data. Computer Methods in Applied Mechanics and Engineering. 1997, 147: 187~197.
    167 R. P. C. Sampaio, N. M. M. Maia et al.. Damage Detection Using the Frequency Response Function Curvature Method. Journal of Sound and Vibration. 1999, 226(5): 1029~1042.
    168 U. Lee and J. Shin. A Frequency-Domain Method of Structural Damage Identification Formulated from The Dynamic Stiffness Equation of Motion. Journal of Sound and vibration. 2002, 257(4): 615-634
    169 N. G. Park, Y. S. Park. Damage Detection using Spatially Incomplete Frequency Response Functions. Mechanical Systems and Signal Processing. 2003, 17(3), 519~532.
    170 A. K. Pandey, M. Biswas. Damage Detection in Structures Using Changes in Flexibility. Journal of Sound and Vibration. 1994, 169(1): 3~17.
    171 D. Bernal, B. Gunes. Damage Localization in Output-only Systems: a Flexibilitybased Approach. Proceedings of IMAC-XX, Los Angeles, California. 2002: 1185~1191.
    172 G. Yong, E. Manuel Ruiz-Sandoval, B. F. Spencer. Flexibility-Based Damage Localization Employing Ambient Vibration. 15th ASCE Engineering Mechanics Confrence, Columbia University, New York, NY. 2002, 6:1~8.
    173闫桂荣.基于广义柔度矩阵和小波分析的结构损伤识别方法.哈尔滨工业大学博士学位论文. 2006: 2~13.
    174 S. W. Smith. Application Strategies for Structure Identification with Optimal Matrix Updates. Proceedings of the 11th International Modal Analysis Conference. 1993, 1274~1280.
    175 M. Kaouk, D. C .Zimmerman, T. W. Simmermacher. Assessment of Damage Affecting All Structural Properties using Experimental Modal Parameters. Journal of Vibration and Acoustics. 2000, 122: 456~462.
    176 S. W. Doebling. Minimum Rank Optimal Update of Elemental Stiffness Parameters for Structural Damage Identification. AIAA Journal. 1996, 34(12): 2615~2621.
    177 F. M. Hemez, C. Farhat. Structural Damage Detection via a Finite Element Model Updating Methodology. Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis. 1995, 10(3): 152~166.
    178 M. Sanayei, M. J. Saletnik. Parameter Estimation of Structures from Static Strain Measurements. I: Formulation. Journal of Structural Engineering, ASCE. 1996, 122(5): 555~562.
    179 M. Sanayei, M. J. Saletnik. Parameter Estimation of Structures from Static Strain Measurements. II: Error Sensitivity Analysis. Journal of Structural Engineering. 1996, 122(5): 563~572.
    180 Z. Y. Shi, S. S. Law, L. M. Zhang. Damage Localization by directly using Incomplete Mode Shapes. Journal of Engineering Mechanics. 2000, 126(6): 656~66.
    181 T. W. Lim. Structural Damage Detection of a Planar Truss Structure Using a Constrained Eigenstructure Assignment. Proceedings of 35th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 1994, 336~346.
    182 T. W. Lim, T. A. L. Kashangaki. Structural Damage Detection of Space Truss Structure Using Best Achievable Eigenvectors. AIAA Journal. 1994, 32(5): 1049~1057.
    183 R. G. Gobb, B. S. Liebst. Structural Damage Identification using Assigned Partial Eigenstructure. AIAA Journal. 1997, 35(l): 152~158.
    184 H. M. Kim, T. J. Bartkowicz. A Two-Step Structural Damage Detection Approach with Limited Instrumentation. Journal of Vibration and Acoustic. 1997, 119: 258~264.
    185 H. M. Kim, T. J. Bartkowicz. An Experimental Study for Damage Detection Using a Hexagonal Truss. Computers and Structures. 2001, 79: 173~182.
    186 C. R. Povich, T. W. Lim. An Artificial Neural Network Approach to Structural Damage Detection Using Frequency Response Functions. Proceedings of the AIAA/ASME Adaptive Structures Forum. 1994, 151~159.
    187 C. B. Yun, E. Y. Bahng. Substructural Identification using Neural Networks. Computers and Structures. 2000, 77: 41~52.
    188 J. M. Ko, Z. G. Sun, Y. Q. Ni. Multi-stage Identification Scheme for Detecting Damage in Cable-stayed Kap Shui Mun Bridge. Engineering Structures. 2002, 24: 857~868.
    189王柏生,倪一清,高赞明.用概率神经网络进行结构损伤位置识别.振动工程学报. 2001, 14(1): 60~64.
    190姜绍飞,周广师,刘红兢.考虑不确定性因素的结构损伤检测方法.沈阳建筑工程学院学报(自然科学版). 2002, 18(2): 85~87.
    191 C. Mares, C. Surace. An Application of Genetic Algorithms to Identify Damage in Elastic Structures. Journal of Sound and Vibration. 1996, 195(2): 195~215.
    192 M. I. Friswell, J. E. T. Penny, S. D. Garvey. A Combined Genetic and Eigensensitivity Algorithm for the Location of Damage in Structures. Computers and Structures. 1998, 69: 547~556.
    193 J. H. Chou, J. Ghaboussi. Genetie Algorithm in Structural Damage Detection. Computers and Structures. 2001, 79: 1335~1353.
    194 F. T. K. Au, Y. S. Cheng, L. G. Tham. Structural Damage Detection Based on a Micro-Genetic Algorithm Using Incomplete and Noisy Modal Test Data. Journal of Sound and Vibration. 2003, 259(5): 1081~1094.
    195 H. Kim, H. Melhem. Damage Detection of Structures by Wavelet Analysis. Engineering Structures. 2004, 26: 347~362.
    196 Z. Hou, M. Noori, R. S. Amand .Wavelet-based Approach for Structural Damage Detection. Journal of Engineering Mechanics, ASCE, 2000, 126(7):677~683.
    197 Z. Sun, C. C. Chang. Structural Damage Assessment Based on Wavelet Packet Transform. Journal of Structural Engineering. 2002, 128(10): 1354~1361.
    198 A. V. Ovanesova, L. E. Suarez. Applications of Wavelet Transforms to Damage Detection in Frame Structures. Engineering Structures. 2004, 26: 39~49.
    199 J. G. Han, W. X. Ren, Z. S. Sun. Wavelet Packet based Damage Identification of Beam Structures. International Journal of Solids and Structures. 2005, 42: 6610~6627.
    200谭冬梅.基于小波分析的空间杆系结构的损伤识别.武汉理工大学博士学位论文. 2007, 33~116.
    201 M. Papadopoulos, E. Gareia. Structural Damage Identifieation: A Probabilistic Approach. AIAA Joumal. 1998, 36(11): 2137~2145.
    202 I. Trendfilove, W. Heylen, P. Sas. Two Statistical Pattern Recognition Methods for Damage Localization. Proceedings of 17th IMAC. 1999, 1380~1386.
    203 H. Sohn, J. J. Czarnecki, C. R. Farrar. Structural Health Monitoring using Statistical Process Control. Journal of Structural Engineering. 2000, 126(11): 1356~1363.
    204 Y. Xia, H. Hao, etal. Damage Identification of Structures with Uncertain Frequency and Mode Shape Data. Earthquake Engineering and Structure Dynamics. 2002, 3: 1053~1066.
    205三田彰著.薛松涛,陈镕译.结构健康监测动力学.西安:西安交通大学出版社. 2004: 114~125.
    206樊可清,倪一清,高赞明.基于频域系统辨识和支持向量机的桥梁状态监测方法.工程力学. 2004, 21(5): 25~30.
    207刘龙,孟光.基于曲率模态和支持向量机的结构损伤位置两步识别方法.工程力学. 2006, 26(s1): 35~39.
    208何浩祥,闫维明,周锡元.小波支持向量机在结构损伤识别中的应用研究. 2007, 27(1): 53~57.
    209李宏男,高东伟,伊延华.土木工程结构健康监测系统的研究状况与进展.力学进展. 2008, 38(2): 151~166.
    210欧进萍,肖仪清,黄虎杰等.海洋平台结构实时安全监测系统.海洋工程. 2001, 19(2): 1~6.
    211欧进萍.土木工程结构用智能感知材料_传感器与健康监测系统的研发现状.功能材料. 2005, 2(5): 115~122.
    212 L. Ren, H. N. Li, J. Zhou, et al. Development of Health Monitoring System for Ocean Offshore Platform with Fiber Bragg Grating Sensors. Proceedings of the 15th International Offshore and Polar Engineering Conference, Seoul, Cupertino.2005. 424~428.
    213喻言.结构健康监测的无线传感器及其网络系统.哈尔滨工业大学博士论文. 2006, 6: 8~10.
    214 S. Kashima, Y. Yanaka, K. Mori. Monitoring the Akashi Kaikyo Bridge: First Experiences. Structural Engineering. 2001, 11(2): 120~123.
    215 F. Myroll, E. Dibiagio. Instrumentation for Monitoring the Skarnsunder Cable-stayed Bridge. Krokeborg J Proceedings of the 3rd Symposium on Strait Crossing. Rotterdam: Balkema, 1994: 207~215.
    216 E. Y. Andersen. Structural monitoring of the Great Belt East Bridge. Krokeborg J Proceedings of the 3rd Symposium on Strait Crossing. Rotterdam: Balkema, 1994: 54~62.
    217 M. S. Chueng, G. S. Tadros, T. G. Brown et al. Field Monitoring and Research on Performance of the Confederation Bridge. Canadian Journal of Civil Engineering. 1997, 24(6): 951~962.
    218 K. Wong, W. Y. K. Chan, K. L. Man. Structural Health Monitoring Results on Tsing Ma, Kap Shui Mun, and Ting Kau Bridges. Proceedings of SPIE, 2000.
    219邱法维,杜文博,钱稼茹.虎门大桥应变监测数据处理系统设计.桥梁建设. 2003, 2: 66~69.
    220张启伟,袁万诚,范立础.大型桥梁结构安全监测的研究现状与发展.同济大学学报. 1997, 25(s1): 76~81.
    221朱永,符欲梅,陈伟民等.大佛寺长江大桥健康监测系统.土木工程学报. 2005, 38(10): 66~71.
    222李惠,周文松,欧进萍等.大型桥梁结构智能健康监测系统集成技术研究.土木工程学报. 2006, 39(2): 46~52.
    223周文松.大跨度斜拉桥健康监测系统研究与应用.哈尔滨工业大学博士论文. 2005, 6: 15~20.
    224李爱群,缪长青,李兆霞.润扬长江大桥结构健康监测系统研究.东南大学学报. 2003, 33(5): 544~548.
    225 S. Sumitro, M. L. Wang. Sustainable Structural Health Monitoring System. Structural Control and Health Monitoring. 2005, 12: 445~467.
    226 W. Habel, D. Hofmann, H. Kohlhoff, etal. Complex Measurement System for Long-term Monitoring of Pretrussed Railways Bridges in the New Lehrter Bahnhof in Berlin. Proceedings of SPIE - Smart Structures and Materials: Smart Sensor Technology and Measurement Systems, San Diego. 2002, 236~241.
    227瞿伟廉,滕军,项海帆等.风力作用下深圳市民中心屋顶网架结构的智能健康监测.建筑结构学报. 2006, 27(1): 1~8.
    228 P. L. Fuhr , D. R. Huston. Embedded Sensors Results from the Winooski one Hydroelectric Dam. Proceedings of SPIE. 1994, 21(9): 445~456.
    229吴中如,杨杰,大坝安全监控的国内外研究现状与发展.西安理工大学学报. 2002, 18(1): 26~30.
    230 M. Pervizpour, J. Curt, X. Qin. Data Processing and Quality Assurance in Health Monitoring of Constructed System. SPIE’s 6th International Symposium on NDE for Health Monitoring and Diagnostics, 4~8 March, 2001.
    231 A. A. Mufti. Structural Health Monitoring of Innovative Canadian Civil Engineering Structures. Structural Health Monitoring. 2002, 1(1): 89~103.
    232 H. Iwak, H. Yamakaw, K. Shiba. Structural Health Monitoring System Using FBG-Based Sensors for Damage Tolerant Building. Smart Structures and Materials, San Diageo. 2002, 469~220.
    233瞿伟廉,秦文科,梁政平.基于输电塔风致响应的节点螺栓脱落损伤自动诊断的小波识别方法.地震工程与工程振动. 2008, 28(4): 146~153.
    234邵剑文.海底管道的健康监测系统与评估研究.浙江大学博士学位论文. 2006, 45~111.
    235顾培英,邓昌,吴福生.结构模态分析及其损伤诊断.南京:东南大学出版社. 2007: 86-90.
    236李惠彬.大型工程结构模态参数识别技术.北京:北京理工大学出版社. 2007: 1-5.
    237 R. J. Allemang, D. L. Brawn. A Unified Matrix Polynomial Approach to Modal Identification. Journal of Sound and Vibration. 1998, 211(3): 301~322.
    238 R. J. Allemang, A. W. Philips. The Unified Matrix Polynomial Approach to Understanding Modal Parameter Estimation: An Update. Proceeding of ISMA International Conference on Noise ans Vibration Engineering, katholieke University Leuven, Belgium, 2004.
    239 L. M. Zhang, R. Brincker, P. Andersen. An Unified Approach for Two-Stage Time Domain Modal Identification. Proceeding of the 20th International Modal Analysis Conference, Los Angeles, CA, USA, January, 2002.
    240 J. C. Asmussen. Modal Analysis based on the Random Decrement Technique. Ph.D. Thesis, Aalbort University, Denmark, 1997.
    241曹树谦,张文德,萧龙翔.振动结构模态分析——理论、实验与应用.天津:天津大学出版社. 2002, 144~173.
    242 Eli Parloo. Application of Frequency Domain System Identification Techniquesin the Field for Operational Modal Analysis. Vrije Universiteit Bussel. 2003, May.
    243 J. S. Lawrence. Digital Spectral Analysis. Prentice-Hall, 1987.
    244 P. D. Welch. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A method based on Time Averaging over Short Modified Periodograms. IEEE Trans. Audio Electracoust., AU-15:70-73, 1967.
    245 R. B. Blackman, J. W. Tukey. The Measurement of Power Spectra from Point of View of Communication Engineering. Dover publications, Inc., New York, 1958.
    246吴子燕,代凤娟,宋静.损伤检测中的传感器优化布置方法研究.西北工业大学学报. 2007, 25(4): 503~507.
    247 D. E. Goldberg. Genetic Algorithms in Search, Machine Learning and Optimization. Addison Wesley, New York, 1989.
    248 H. Y. Guo, L. Zhang, L. L. Zhang. Optimal Placement of Sensors for Structural Health Monitoring using Improved Genetic Algorithms. Smart Materials and Structures. 2004, 13: 528~534.
    249马向东.梁结构健康监测系统传感器优化布置.西南交通大学硕士学位论文. 2007, 56~67.
    250 D. S. Li, H. N. Li, C. P. Fritzen. The Connection between Effective Independence and Modal Kinetic Energy Methods for Sensor Placement. Journal of Sound and Vibration. 2007, 305: 945~955.
    251 C. L. Lawson, R. J. Hanson. Solving Least Squares Problem. Prentice-Hall, Englewod Clifs, N J, 1974.
    252陈长征,罗跃纲,白秉三等.结构损伤检测与智能诊断.北京:科学出版社, 2001: 185~201.
    253 H. Luo, S. Hanagud. Dynamic Learning Rate Neural Network Training and Composite Structural Damage Detection. AIAA Journal. 1997, 35(9): 1522~1527.
    254马克俭,张华刚,肖建春等.中国钢筋混凝土空间网格结构新体系的开拓与发展(上).中国工程科学. 2008, 10(7): 4~17.
    255马克俭,张华刚,肖建春等.中国钢筋混凝土空间网格结构新体系的开拓与发展(下).中国工程科学. 2008, 10(8): 22~34.
    256马克俭,张华刚等.新型建筑空间网格结构理论与实践.北京:人民交通出版社, 2006.
    257马克俭,张华刚等.钢筋混凝土空腹夹层板楼盖技术规程(DB 22/48-2005).贵阳:贵州省建设厅, 2005.
    258 M. K. Yoon, D. Heider, J. W. Gillespie Jr. Local Damage Detection using theTwo-Dimensional Gapped Smoothing Method. Journal of Sound and Vibration, 2005, 279(1-2): 945~955.
    259夏樟华.基于静动力的桥梁结构有限元模型修正.福州大学硕士学位论文. 2005, 8~37.
    260 Bijaya Jaishi.基于环境振动的土木工程结构有限元模型修正.福州大学博士学位论文. 2005, 30~76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700