生物降解高分子熔融、结晶行为的二维红外相关光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油资源的日益枯竭,以及人们对环境保护意识的加强,生物降解高分子已成为人们竞相研发的热点,加快生物降解材料的研究和应用,符合当今高分子材料绿色化的潮流。
     聚合物的熔融和结晶行为一直是高分子科学中一个非常重要的课题,因为材料的性能与结构息息相关,熔融和结晶会直接影响材料的机械性能、热加工性能、降解性能等。近几年来用广义二维红外相关光谱(2D IR)研究生物降解高分子的熔融和结晶行为,引起了人们的关注。广义二维相关光谱是上世纪90年代初发展起来的一种新的分析、表征技术。一般认为,二维相关分析技术有两大主要优势:(1)有效提高了光谱的分辨能力,能将重叠峰或者被掩盖的小峰及弱峰清晰地分辨出来;(2)通过对同步和异步谱图的分析,根据所谓的“序列顺序”法可判断出各个基团发生变化的先后次序。然而,我们现有的理论分析和实验结果表明,由“序列顺序”法则得到的信息不一定完全可靠;同时,由广义二维相关光谱分辨出的新峰大多是不真实的。本文选用可生物降解的结晶性高分子中的左旋聚乳酸(PLLA)、聚羟基丁酸酯(PHB)及其共聚物P(HB-co-HHx)为研究体系,以C=O伸缩振动区为研究对象,结合原位红外光谱分析(差谱、二阶导、傅里叶自去卷积、曲线拟合等)及二维相关分析方法,研究了几种典型的可生物降解的结晶性高分子的熔融或结晶过程。主要内容如下:
     1.探讨了PHB随溶剂1,1,2,2-四氯乙烷(TCM)挥发结晶的过程。原位光谱分析结果表明,PHB的C=O伸缩振动区内包含有5个子峰,且在结晶过程中,结晶态和无定形态组分的吸收峰同时发生变化,没有观察到明显的局部序列顺序。通过分析5个子峰的面积相对百分含量随时间的变化规律,发现结晶态和无定形态组分对外扰有协同响应。
     2.研究了P(HB-co-HHx)随溶剂三氯甲烷挥发的等温结晶过程,及P(HB-co-HHx)的非等温熔融结晶行为。常温下P(HB-co-HHx)随溶剂挥发结晶的过程中,同PHB一样,C=O伸缩振动区域内可能包含有5个子峰,“局部”序列顺序如下:1722 cm-1≈1736 cm-1>1712 cm-1≈1729 cm-1>1746 cm-1。P(HB-co-HHx)的非等温熔融结晶过程,没有观察到明显的“局部”序列顺序。通过分析这两个不同的结晶过程中,5个子峰的面积相对百分含量随时间的变化规律,同样都发现结晶态和无定形态组分对外扰有协同响应。
     3.研究了PLLA在78℃下的冷结晶过程,从分子构象的角度归属C=O伸缩振动区内的子峰。原位光谱分析得到4个子峰的“局部”序列顺序:1760 cm-1(gt)≈1768 cm-1(tg)>1753 cm-1(tt)>1778 cm-1(gg)
     4.二维红外相关光谱提供的信息与原位光谱分析得到的结果不一致。
     总之,本文结合原位红外光谱及二维相关分析的方法,通过对原位红外光谱进行一系列的分析处理,探讨了几种可生物降解的结晶性高分子的熔融或结晶过程,找到了相变过程的真实规律。另一方面,验证了广义二维相关分析方法提供的信息可能缺乏物理意义。
Melting and crystallization behaviors of polymers have long been an important and fundamental issue in polymer science because the properties and structure of polymers are closely related. The mechanical properties, thermal processing performance and biodegradability are largely controlled by the crystallinity and crystal structures of biodegradable polymers. The application of generalized two-dimensional infrared (2D IR) correlation spectroscopy in the melting and crystallization behaviors of polymers has been paid much attention in recent years. The wide application of this technology in various fields due to its two major features. One is the enhanced spectral resolution by spreading peaks along the second dimension. The other is the determination of sequential order of band intensity changes using the so-called "sequential order" rules. However, our theoretical analysis and experimental studies show that conclusions derived from the "sequential order" rules of generalized 2D correlation spectroscopy may lack physical significance. In addition, many new bands resolved by 2D IR are artifacts. In this work, the crystallization or melting behaviors of some biodegradable polymer such as PLLA, PHB and its copolymers P(HB-co-HHx) were studied, by analyzing the C=O stretching regions with a series of data processing methods, including calculation of difference spectrum, second derivative spectrum, fourier self-deconvolution, and curve-fitting, combined with 2D correlation analysis. The objective of this work is to investigate and better understand the melting and crystallization behavior of these polymers and, at the same time, to test the reliability of the information provided by 2D IR correlation spectroscopy. The main contents are as follows:
     l.The crystallization behavior of biosynthesized PHB film cast from 1,1,2,2-tetrachloromethane(TCM) was studied by in situ FTIR spectroscopy and 2D correlation analysis. In situ spectral analysis results reveal that there are probably five component bands under the C=O band profile, and the crystalline and amorphous band intensities change simultaneously during the crystallization process, with no local sequential order. Further analysis on the relative area percentage changes of the five component bands suggests that the crystalline component only changes in a fully cooperative manner with part of the amorphous component at the initial crystallization period.
     2.The crystallization behavior of solution-cast P (HB-co-HHx) film and the non-isothermal melt crystallization process of P (HB-co-HHx) were studied by in situ FTIR spectroscopy and 2D correlation analysis. There are probably five component bands under the overlapped C=O band profile of P (HB-co-HHx), as PHB. During the crystallization of solution-cast film, the following local sequential order has been obtained:1722cm-1≈1736cm-1>1712cm-1≈1729cm-1>1746cm-1. Further analysis on the relative area percentage changes of the five component bands also suggests that the crystalline component only changes in a fully cooperative manner with part of the amorphous component. In the non-isothermal melt crystallization process, no significant (local) sequential order was found for the intensity variation of each component band. That's to say, all the sub-bands change in a fully cooperative manner.
     3.The isothermal cold-crystallization process of PLLA was studied by in situ FTIR and 2D correlation analysis. The individual component bands in the C=O stretching region are attributed to the different molecular conformations. The local sequential order obtained from the in situ spectral analysis results is:1760cm-1(gt)≈1768cm-1(tg)>1753cm-1(tt)>1778cm-1(gg)
     4.The information provided by the generalized 2D IR correlation spectroscopy disaccords with the in situ spectral analysis results.
     In summary, in situ FTIR spectroscopy and 2D correlation analysis are applied to the study the crystallization and melting behaviors of a few typical biodegradable polymers and some interesting results have been obtained. In addition, the applicability of generalized 2D IR correlation spectroscopy is tested, and the results from our experiments indicate that the information provided by the generalized 2D IR correlation spectroscopy may lack physical significance.
引文
[1]Noda I. Two-dimensional infrared spectroscopy of synthetic and biopolymers. Bull. Am. Phys. Soc.,1986,31(3):520-528.
    [2]Noda I. Two-Dimensional Infrared-Spectroscopy. Journal of the American Chemical Society,1989,111(21):8116-8118.
    [3]Noda I. Generalized Two-Dimensional Correlation Method Applicable to Infrared, Raman, and Other Types of Spectroscopy. Appl. Spectrosc.,1993,47(9):1329-1336.
    [4]Shashilov V.A.,Lednev I.K. Two-dimensional correlation Raman spectroscopy for characterizing protein structure and dynamics. Journal of Raman Spectroscopy,2009, 40(12):1749-1758.
    [5]Chae B., Lee S.W., Ree M., et al. Photoreaction and molecular reorientation in a nanoscaled film of poly(methyl 4-(methacryloyloxy)cinnamate) studied by two-dimensional FTIR and UV" correlation spectroscopy. Langmuir,2003,19(3): 687-695.
    [6]Xue M.Y., Yang A.P., Ma M.H., et al. The application of two-dimensional fluorescence correlation spectroscopy on the interaction between bovine serum albumin and prulifloxacin. Spectroscopy,2009,23(5):257-263.
    [7]Schweigert I.V.,Mukamel S. Probing interactions between core-electron transitions by ultrafast two-dimensional x-ray coherent correlation spectroscopy. Journal of Chemical Physics,2008,128(18):184307.
    [8]Izawa K., Ogasawara T., Masuda H., et al. Two-dimensional correlation gel permeation chromatography (2D GPC) study of 1H,1H,2H,2H-perfluorooctyltriethoxysilane sol-gel polymerization process. Journal of Physical Chemistry B,2002,106(11):2867-2874.
    [9]Noda I., Dowrey A.E., Marcott C., et al. Generalized two-dimensional correlation spectroscopy. Applied Spectroscopy,2000,54(7):236A-248A.
    [10]Ozaki Y.,Noda I., Two-dimensional Correlation Spectroscopy. Two-dimensional correlation spectroscopy American Institute of Physics, America.2000.
    [11]Noda I.,Ozaki Y., Two-dimensional Correlation Spectroscopy:Applications in Vibrational and Optical Spectroscopy. Two-dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy John Wiley & Sons Ltd., England. 2004:20-24.
    [12]Noda I., Story G.M.,Marcott C. Pressure-induced transitions of polyethylene studied by two-dimensional infrared correlation spectroscopy. Vibrational Spectroscopy,1999, 19(2):461-465.
    [13]Chen Y., Wang Y., Zhang H., et al. The study of thermal-induced 2D-COS IR on polyoxomolybdenum (polyoxotungstic). Journal of Molecular Structure,2008,883-884: 103-108.
    [14]Osawa M., Yoshii K., Hibino Y., et al.2-Dimensional Infrared Correlation-Analysis of Electrochemical Reactions. Journal of Electroanalytical Chemistry,1997,426(1-2): 11-16.
    [15]李唯真,武培怡,李善君,et al.二维红外相关分析对乙二醇在邻甲酚环氧体系中的扩散过程的研究.化学学报,2004,62(017):1641-1644.
    [16]Buchet R., Wu Y., Lachenal G., et al. Selecting Two-Dimensional Cross-Correlation Functions to Enhance Interpretation of Near-Infrared Spectra of Proteins. Applied Spectroscopy,2001,55(2):155-162.
    [17]Wu Y., Murayama K., Czarnik-Matusewicz B., et al. Two-Dimensional Attenuated Total Reflection/Infrared Correlation Spectroscopy Studies on Concentration and Heat-Induced Structural Changes of Human Serum Albumin in Aqueous Solutions. Applied Spectroscopy,2002,56(9):1186-1193.
    [18]Jiang E.Y.,Rieppo J. Enhancing FTIR imaging capabilities with two-dimensional correlation spectroscopy (2DCOS):A study of concentration gradients of collagen and proteoglycans in human patellar cartilage. Journal of Molecular Structure,2006, 799(1-3):196-203.
    [19]Kontogianni V.G., Exarchou V., Troganis A., et al. Rapid and novel discrimination and quantification of oleanolic and ursolic acids in complex plant extracts using two-dimensional nuclear magnetic resonance spectroscopy-Comparison with HPLC methods. Analytica Chimica Acta,2009,635(2):188-195.
    [20]Liu Y., Chen Y.R.,Ozaki Y. Two-dimensional visible/near-infrared correlation spectroscopy study of thermal treatment of chicken meats. Journal of Agricultural and Food Chemistry,2000,48(3):901-908.
    [21]Li Y.M., Sun S.Q., Zhou Q., et al. Identification of American ginseng from different regions using FT-IR and two-dimensional correlation IR spectroscopy. Vibrational Spectroscopy,2004,36(2):227-232.
    [22]Zhou Q., Sun S.Q., Yu L., et al. Sequential changes of main components in different kinds of milk powders using two-dimensional infrared correlation analysis. Journal of Molecular Structure,2006,799(1-3):77-84.
    [23]Gregoriou V.G., Rodman S.E., Nair B.R., et al. Two dimensional infrared (2D-IR) spectroscopic studies of the viscoelastic behavior of liquid crystalline polyurethanes. Macromolecular Symposia,2002,184:183-192.
    [24]Cheng J.B., Cheng Y.C., Ruan W.D., et al. The molecular structure and orientation of antiferroelectric liquid crystal using the density-functional theory and two-dimensional correlation-polarized infrared spectroscopy. Journal of Chemical Physics,2005,122(21): 8.
    [25]KIMURA F., KOMATSU M.,KIMURA T. Two-Dimensional Vibrational Correlation Spectroscopic Study on the Crystallization Process of Poly(ethylene-2,6-naphthalate). APPLIED SPECTROSCOPY,2000,54(7):974-977.
    [26]Peng Y.,Wu P. A two dimensional infrared correlation spectroscopic study on the structure changes of PVDF during the melting process. Polymer,2004,45(15): 5295-5299.
    [27]Zhang J., Duan Y.,Shen D. Structure Changes during the Induction Period of Cold Crystallizatio of Isotactic Polystyrene Investigated by Infrared and Two-Dimensional Infrared Correlation Spectroscopy. Macromolecules,2004,37(9):3292-3298.
    [28]Yu J.,Wu P. Crystallization process of poly(3-caprolactone)-poly(ethyleneoxide)-poly(3-caprolactone) investigated by infrared and two-dimensional infrared correlation spectroscopy. Polymer 2007,48:3477-3485.
    [29]Zheng K., Liu R.,Huang Y. A two-dimensional IR correlation spectroscopic study of the conformational changes in syndiotactic polypropylene during crystallization. Polymer Journal 2010,42(1):81-85.
    [30]杨燕.聚乳酸:一种绿色包装材料.包装与机械,2004(11):32-33.
    [31]Steinbuchel A.,Fuchtenbusch B. Bacterial and other biological systems for polyester production. Trends in Biotechnology,1998,16(10):419-427.
    [32]Verlinden R.A.J., Hill D.J., Kenward M.A., et al. Bacterial synthesis of biodegradable polyhydroxyalkanoates. Journal of Applied Microbiology,2007,102(6):1437-1449.
    [33]Mokhtari-Hosseini Z.B., Vasheghani-Farahani E., Heidarzadeh-Vazifekhoran A., et al. Statistical media optimization for growth and PHB production from methanol by a methylotrophic bacterium. Bioresource Technology,2009,100(8):2436-2443.
    [34]Middleton J.C.,Tipton A.J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials,2000,21(23):2335-2346.
    [35]Nair L.S.,Laurencin C.T. Biodegradable polymers as biomaterials. Progress in Polymer Science,2007,32:762-798.
    [36]Urayama H., Kanamori T., Fukushima K., et al. Controlled crystal nucleation in the melt-crystallization of poly(L-lactide) and poly(L-lactide)/poly(D-lactide) stereocomplex. Polymer,2003,44(19):5635-5641.
    [37]Tsuji H.,Tezuka Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. Spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. Biomacromolecules,2004,5(4):1181-1186.
    [38]Fujita M., Sawayanagi T., Abe H., et al. Stereocomplex formation through reorganization of poly(L-lactic acid) and poly(D-lactic acid) crystals. Macromolecules, 2008,41(8):2852-2858.
    [39]Zhang J.M., Tsuji H., Noda 1., et al. Weak intermolecular interactions during the melt crystallization of Poly(L-lactide) investigated by two-dimensional infrared correlation spectroscopy. Journal of Physical Chemistry B,2004,108(31):11514-11520.
    [40]Zhang J.M., Tsuji H., Noda I., et al. Structural changes and crystallization dynamics of poly(L-lactide) during the cold-crystallization process investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules,2004,37(17): 6433-6439.
    [41]Zhang J.M., Sato H., Tsuji H., et al. Infrared spectroscopic study of CH3... O=C interaction during poly(L-lactide)/poly(D-lactide) stereocomplex formation. Macromolecules,2005,38(5):1822-1828.
    [42]Opaprakasit P., Opaprakasit M.,Tangboriboonrat P. Crystallization of polylactide and its stereocomplex investigated by two-dimensional Fourier transform infrared correlation spectroscopy employing carbonyl overtones. Applied Spectroscopy,2007,61(12): 1352-1358.
    [43]Tian G., Wu Q., Sun S.Q., et al. Study of thermal melting behavior of microbial polyhydroxyalkanoate using two-dimensional Fourier transform infrared correlation spectroscopy. Applied Spectroscopy,2001,55(7):888-893.
    [44]Wu Q., Tian G., Sun S.Q., et al. Study of microbial polyhydroxyalkanoates using two-dimensional Fourier-transform infrared correlation spectroscopy. Journal of Applied Polymer Science,2001,82(4):934-940.
    [45]Tian G., Wu Q., Sun S.Q., et al. Studies on pre-melting and crystallization process of biosynthesized poly(3-hydroxybutyrate) using two-dimensional Fourier-transform infrared spectroscopy. Chem J Chinese U,2002,23(8):1627-1631.
    [46]Padermshoke A., Katsumoto Y., Sato H., et al. Surface melting and crystallization behavior of polyhydroxyalkanoates studied by attenuated total reflection infrared spectroscopy. Polymer,2004,45(19):6547-6554.
    [47]Padermshoke A., Sato H., Katsumoto Y., et al. Thermally induced phase transition of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by two-dimensional infrared correlation spectroscopy. Vibrational Spectroscopy,2004,36(2):241-249.
    [48]Padermshoke A., Katsumoto Y., Harumi S.A., et al. Melting behavior of poly(3-hydroxybutyrate) investigated by two-dimensional infrared correlation spectroscopy. Spectrochimica Acta Part a:Molecular and Biomolecular Spectroscopy, 2005,61(4):541-550.
    [49]Marcott C., Dowrey A.E., Van Poppel J., et al. Infrared spectroscopic analysis of a series of blends of poly(lactic acid) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), a bacterial copolyester. Vibrational Spectroscopy,2004,36(2): 221-225.
    [50]Tian G., Wu Q., Sun S., et al. Two-dimensional Fourier transform infrared spectroscopy study of biosynthesized poly(hydroxybutyrate-co-hydroxyhexanoate) and poly(hydroxybutyrate-co-hydroxyvalerate). Journal of Polymer Science Part B:Polymer Physics,2002,40(7):649-656.
    [51]Padermshoke A., Sato H., Katsumoto Y., et al. Crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) studied by 2D 1R correlation spectroscopy. Polymer,2004,45(21):7159-7165.
    [52]Huang H. "Sequential order" rules in generalized two-dimensional correlation spectroscopy. Analytical Chemistry,2007,79(21):8281-8292.
    [53]Huang H., Xie J., Yuan L., et al. Two-dimensional fluoreseence correlation spectroscopic study on the tryPtoPhan residues in horseHeart myoglobin. Spctroscopy and Spectra Analysis,2008,28(10):181-182.
    [54]Huang H., Wu P.Y., Vogel C., et al. An experimental study on the "sequential order" rules in generalized two-dimensional correlation spectroscopy. Vibrational Spectroscopy, 2009,51(2):263-269.
    [55]徐新元.应用红外差谱技术鉴定药物包合物及复方制剂中主要成分.药物分析杂志,1997,17(002):87-89.
    [56]郑爱华,杨耿.用傅里叶变换红外光谱差谱技术分析香烟添加剂.分析化学,1998,26(002):245-245.
    [57]Morrison J.D. Studies of Ionization Efficiency. Part Ⅲ. The Detection and Interpretation of Fine Structure. The Journal of Chemical Physics,1953,21:1767.
    [58]Savitzky A.,Golay M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry,1964,36(8):1627-1639.
    [59]Gorry P.A. General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Analytical Chemistry,1990,62(6):570-573.
    [60]成则丰,徐锐,程存归.傅里叶自解卷积-红外光谱分析法应用于中药天麻的鉴别研究.光谱学与光谱分析,2007,27(009):1719-1722.
    [61]程存归.傅里叶自解卷积红外光谱定量分析法测定阿奇霉素的研究.中国抗生素杂志,2003,28(007):399-402.
    [62]Impallomeni G., Ballistreri A., Carnemolla G.M., et al. Synthesis and characterization of poly(3-hydroxyalkanoates) from Brassica carinata oil with high content of erucic acid and from very long chain fatty acids. International Journal of Biological Macromolecules,2011,48(1):137-145.
    [63]Huang H., Hu Y., Zhang J.M., et al. Miscibility and hydrogen-bonding interactions in biodegradable polymer blends of poly(3-hydroxybutyrate) and a partially hydrolyzed poly(vinyl alcohol). Journal of Physical Chemistry B,2005,109(41):19175-19183.
    [64]Ha C.S.,Cho W.J. Miscibility, properties, and biodegradability of microbial polyester containing blends. Progress in Polymer Science,2002,27(4):759-809.
    [65]Sudesh K., Abe H.,Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science,2000,25(10):1503-1555.
    [66]Christian Vogel, Giinter G. Hoffmann,Siesler H.W. Rheo-optical FT-IR spectroscopy of poly(3-hydroxybutyrate)/poly(lactic acid) blend films. Vibrational Spectroscopy,2009, 49(2):284-287.
    [67]Yoshie N., Oike Y., Kasuya K., et al. Change of surface structure of poly(3-hydroxybutyrate) film upon enzymatic, hydrolysis by PHB depolymerase. Bioinacromolecules,2002,3(6):1320-1326.
    [68]Sato H., Murakami R., Padermshoke A., et al. Infrared spectroscopy studies of CH center dot center dot center dot O hydrogen bondings and thermal behavior of biodegradable poly(hydroxyalkanoate). Macromolecules,2004,37(19):7203-7213.
    [69]Zhang J.M., Sato H., Noda I., et al. Conformation rearrangement and molecular dynamics of poly(3-hydroxybutyrate) during the melt-crystallization process investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules,2005,38(10):4274-4281.
    [70]Choe S., Cha Y.J., Lee H.S., et al. Miscibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(vinyl chloride) blends, polymer,1995,36(26): 4977-4982.
    [71]Vasanthan N., Murthy N.S.,Bray R.G. Investigation of brill transition in nylon 6 and nylon 6,6 by infrared spectroscopy. Macromolecules,1998,31(23):8433-8435.
    [72]Sato H., Dybal J., Murakami R., et al. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C-H center dot center dot center dot O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate. Journal of Molecular Structure,2005,744:35-46.
    [73]Kansiz M., Dominguez-Vidal A., McNaughton D., et al. Fourier-transform infrared (FTIR) spectroscopy for monitoring and determining the degree of crystallisation of polyhydroxyalkanoates (PHAs). Analytical and Bioanalytical Chemistry,2007,388(5-6): 1207-1213.
    [74]陈永明,尹卫东.影响吸光度偏离郎伯—比耳定律的因素.石油与天然气化工,1993,22(2):78-81.
    [75]孟令芝,龚淑玲,有机波谱分析(第二版).武汉大学出版社.2004:194-195.
    [76]刘志广等,分析化学.高等教育出版社.2008:228.
    [77]Jiang Y., Gu Q., Li L., et al. Structural changes during isothermal crystallization of a poly(bisphenol A-co-decane ether) polymer. Polymer,2002,43(21):5615-5621.
    [78]Cao Q.K., Qiao X.P., Wang H., et al. Structures and growth mechanisms of poly-(3-hydroxybutyrate) (PHB) crystallized from solution and thin melt film. SCI China Ser B,2008,51(9):853-858.
    [79]Hwang S.H., Jung J.C.,Lee S.W. Crystallinity and thermal characterization of P(HB-HV)/PVAc blend. European Polymer Journal,1998,34(7):949-953.
    [80]You J.W., Chiu H.J., Shu W.J., et al. Influence of Hydroxyvalerate Content on the Crystallization Kinetics of Poly(hydroxybutyrate-co-hydroxyvalerate). Journal of Polymer Research,2003,10(1):47-54.
    [81]Hsu S.F., Wu T.M.,Liao C.S. Isothermal crystallization kinetics of poly(3-hydroxybutyrate)/layered double hydroxide nanocomposites. Journal of Polymer Science Part B:Polymer Physics,2006,44(23):3337-3347.
    [82]Weihua K., He Y., Asakawa N., et al. Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate). Journal of Applied Polymer Science,2004, 94(6):2466-2474.
    [83]Doi Y., Kitamura S.,Abe H. Microbial Synthesis and Characterization of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules,1995,28(14): 4822-4828.
    [84]Kunioka M., Tamaki A.,Doi Y. Crystalline and thermal properties of bacterial copolyesters:poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules,1989,22(2):694-697.
    [85]Sato H., Nakamura M., Padermshoke A., et al. Thermal behavior and molecular interaction of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) studied by wide-angle X-ray diffraction. Macromolecules,2004,37(10):3763-3769.
    [86]Chen C., Cheung M.K.,Yu P.H.F. Crystallization kinetics and melting behaviour of microbial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Polymer International,2005, 54(7):1055-1064.
    [87]Zhang J.M., Duan Y.X., Sato H., et al. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules,2005,38(19): 8012-8021.
    [88]Huang H., Ye Z.C., Chen J., et al. Concerning the spectral resolution enhancement of dynamic 2D-IR. Vibrational Spectroscopy,2009,49(2):251-257.
    [89]Meng L.Z., Gong S.L.,He Y.B. Organic Spectral Analysis. Organic Spectral Analysis Wuhan University press, China,2004.
    [90]Ziaee Z.,Supaphol P. Non-isothermal melt-and cold-crystallization kinetics of poly(3-hydroxybutyrate). Polymer Testing,2006,25(6):807-818.
    [91]温慧颖,蒙延峰,蒋世春,et al.高分子结晶理论的新概念与新进展.高分子学报,2008(2):107-115.
    [92]Liu L. Bioplastics in food packaging:Innovative technologies for biodegradable packaging. San Jose, Calif:San Jose State University,2006,20:2009.
    [93]刘玉磊,胡海霞.聚乳酸纤维针织品的开发.针织工业,(007):13-14.
    [94]Ikada Y.,Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromolecular rapid communications,2000,21(3):117-132.
    [95]张海龙,高玲美,邵洪伟.聚乳酸载药微球的制备及应用研究进展.西北药学杂志,2010(002):158-160.
    [96]S'anchez M.S.o., Ribelles J.L.G.o., S'anchez F.H.a., et al. On the kinetics of melting and crystallization of poly(l-lactic acid) by TMDSC. Thermochimica Acta,2005,430(1-2): 201-210.
    [97]Mano J.F., Wang Y.M., Viana J.C., et al. Cold crystallization of PLLA studied by simultaneous SAXS and WAXS. Macromolecular Materials and Engineering,2004, 289(10):910-915.
    [98]Fujita M.,Doi Y. Annealing and melting behavior of poly (L-lactic acid) single crystals as revealed by in situ atomic force microscopy. Biomacromolecules,2003,4(5): 1301-1307.
    [99]Qin D.,Kean R.T. Crystallinity determination of polylactide by FT-Raman spectrometry. Applied Spectroscopy,1998,52(4):488-495.
    [100]Meaurio E., Lopez-Rodriguez N.,Sarasua J.R. Infrared spectrum of poly(L-lactide): Application to crystallinity studies. Macromolecules,2006,39(26):9291-9301.
    [101]Kister G., Cassanas G.,Vert M. Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer,1998,39(2): 267-273.
    [102]Kang S.H., Hsu S.L., Stidham H.D., et al. A spectroscopic analysis of poly(lactic acid) structure. Macromolecules,2001,34(13):4542-4548.
    [103]Yang X.Z., Kang S.H., Hsu S.L., et al. A spectroscopic analysis of chain flexibility of poly(lactic acid). Macromolecules,2001,34(14):5037-5041.
    [104]Yang X.Z., Kang S.H., Yang Y.N., et al. Raman spectroscopic study of conformational changes in the amorphous phase of poly(lactic acid) during deformation. Polymer,2004, 45(12):4241-4248.
    [105]Brant D.A., Tonelli A.E.,Flory P.J. The Configurational Statistics of Random Poly(lactic acid) Chains. II. Theory. Macromolecules,1969,2(3):228-235.
    [106]Meaurio E., Zuza E., Lopez-Rodriguez N., et al. Conformational behavior of poly(L-lactide) studied by infrared spectroscopy. Journal of Physical Chemistry B,2006, 110(11):5790-5800.
    [107]Meaurio E., de Arenaza I.M., Lizundia E., et al. Analysis of the C=O Stretching Band of the alpha-Crystal of Poly(L-lactide). Macromolecules,2009,42(15):5711-5121.
    [108]Sarasua J.R., Rodriguez N.L., Arraiza A.L., et al. Stereoselective crystallization and specific interactions in polylactides. Macromolecules,2005,38(20):8362-8371.
    [109]Zhang J.M., Sato H., Tsuji H., et al. Differences in the CH3... O=C interactions among poly(L-lactide), poly(L-lactide)/poly(D-lactide) stereocomplex, and poly(3-hydroxybutyrate) studied by infrared spectroscopy. Journal of Molecular Structure,2005, 735:249-257.
    [110]Kimura T., Ezure H., Tanaka S., et al. In situ FTIR spectroscopic study on crystallization process of isotactic polystyrene. Journal of Polymer Science Part B: Polymer Physics,1998,36(7):1227-1233.
    [111]Pan P., Liang Z., Zhu B., et al. Roles of Physical Aging on Crystallization Kinetics and Induction Period of Poly(L-lactide). Macromolecules,2008,41(21):8011-8019.
    [112]Na B., Tian N.N., Lv R.H., et al. Evidence of sequential ordering during cold crystallization of poly (L-lactide). Polymer,2010,51(2):563-567.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700