人体上肢与上肢康复机器人运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着上肢偏瘫患者数量的增多,上肢康复机器人越来越多地引起人们的重视。但现有的上肢康复系统大多采用开环控制系统结构,较少考虑到患者的主动运动意识和反馈信号。本论文针对上肢康复机器人的运动控制问题,先对人体上肢的运动控制机理进行研究,再结合得到的结论,对上肢康复机器人运动控制进行研究。
     本文的主要工作和贡献包括以下几个方面:
     研究了矢状面内人体上肢的姿态控制问题。首先分析了矢状面内人体上肢的运动特性,建立矢状面内人体上肢神经肌肉骨骼系统的数学模型,采用多层感知器神经网络实现上肢姿态控制系统,控制系统的持续时间根据反馈误差实时估计得到,比较Levenberg-Marquardt学习算法和弹性BP算法在上肢姿态控制问题中的适用性。
     研究了矢状面内人体上肢的大幅度姿态运动控制问题。基于小脑神经网络思想,结合模糊控制和滑模控制理论,提出了一种滑模模糊小脑神经网络。该网络利用滑模面函数转换网络输入信号,提出基于量化方式的多维接受域函数实现联想单元与接受域空间之间的映射,有效地降低了网络的存储空间。网络参数的训练分两阶段完成,粗调阶段以滑模控制器训练网络参数,微调阶段以粗调阶段训练结果为基础,进一步加强控制系统的稳定性。
     针对人体上肢的轨迹跟踪控制问题,提出了一种进化对角回归神经网络,网络的结构由遗传算法与进化计算结合的混合学习算法优化得到,网络的参数由附加动量因子的自适应动态反向传播学习算法训练得到。这种具有动态映射能力和生物进化特性的神经网络更适合于矢状面内人体上肢这类多变量非线性系统的轨迹跟踪控制,可以进一步用于康复机器人控制等问题中。
     讨论了人体上肢的实时轨迹跟踪控制问题。在滑模模糊小脑神经网络的基础上,提出了一种滑模对角回归小脑神经网络。该网络在联想层节点中引入自回归单元,使网络具有更好的动态映射能力。这种动态小脑神经网络具有更好的跟踪平滑性和更强的鲁棒性,适合于多变量不确定非线性系统的动态控制。
     研究了上肢康复机器人的姿态控制问题。分析了上肢康复机器人的功能和结构,对上肢康复系统的机械结构部分建立了动力学模型。根据临床观察和患肢的病理分析,设计患者的主动作用函数。根据上肢康复机器人的控制需求,结合人体运动控制思想,采用鲁棒控制实现了上肢康复系统的大幅度姿态运动控制。根据李亚普诺夫稳定性定理,设计鲁棒控制律,并在仿真和实验中验证该控制律的有效性。
     讨论了上肢康复机器人的轨迹跟踪问题。基于逆向动力学补偿和滑模控制,提出一种多变量滑模控制策略,较好地实现了上肢康复系统的机械结构模型的轨迹跟踪控制。
     最后,对全文进行了总结,并指出了下一步需要进行的工作。
With the increasing number of the hemiplegia patient, persons regard the rehabilitation therapy of the arm movement functional disorder as a more important thing. But, the current rehabilitation systems are driven by the motor, and have an open-loop control structure. The active movement consciousness of the patients and the feedback signal during the therapy are not usually been considered. This dissertation is to study the human arm motion control in the sagittal plane and the rehabilitation robot control based on the research results of the human arm movement mechanism.
     The research work has been done in this dissertation includes the following aspects:
     The posture control of the human arm in the sagittal plane is discussed. The dynamic characteristic of the human arm in the sagittal plane is analyzed, and then the arm is modeled as a neuro-musculoskeletal model with two degrees of freedom and six muscles. A multilayer perceptron network containing feedforward and feedback control modes is used. The duration of the movement is regulated according as the current feedback states. The Levenberge-Marguardt training algorithm and the resilient back propagation algorithm are compared.
     Based on cerebellar model articulation controller, fuzzy control, sliding mode control scheme, and the dynamic characteristic and the control requirement of the human arm, a sliding-mode-based fuzzy cerebellar model articulation controller is investigated. The sliding mode function is used to transfer the input variables; a quantization mode based multidimensional receptive field function is presented. The network is trained at two learning stages to guarantee the stability of the control scheme.
     An evolutionary diagonal recurrent neural network is presented for trajectory tracking control of the human arm in the sagittal plane, in which hybrid genetic algorithm and evolutionary program strategy is applied to optimize the network architecture and an adaptive dynamic back propagation algorithm with momentum is used to obtain the network weights, Lyapunov theory can be implemented to guarantee the convergence of the control system. This dynamical network is more suitable for trajectory tracking control of a multi input multi output nonlinear system, and can be further applied into the rehabilitation robot control.
     Trajectory tracking control in real time of the human arm in the sagittal plane is further discussed. A sliding-mode-based diagonal recurrent cerebellar model articulation controller is presented, in which recurrent units are introduced in the association layer to add the dynamic mapping ability of the network. Compared with other control methods, this network has a better dynamic and static performance and better robustness.
     The posture control of the rehabilitation robot for the human arm is investigated. The function and the structure of the Robotic Assisted Upper Extremity Repetitive Therapy (RUPERT) are analyzed, and then the forward simMechanics model, the mathematic model, and an interactive robust controller are presented. The functions of patient’s active action are designed depending on the motion ability of their arms. The performance of the controller is tested by simulations and experiments.
     A multi input multi output sliding mode control scheme is designed for the trajectory tracking control of the multi-joint link robot, the structural model of the RUPERT-hemiplegia arm system.
     At last, this dissertation is summarized, and the further work is discussed.
引文
[1]陈景藻.康复医学.北京:高等教育出版社, 2001. 26-177
    [2] Wise SP. Motor control. Encyclopedia of the Human Brain, 2001, 3(1): 1-21
    [3]胡宇川.偏瘫上肢复合运动康复训练机器人的研制: [硕士学位论文].北京:清华大学, 2004.
    [4] Hawing WS. A review of design issues in rehabilitation robotics with reference to North American Research. IEEE Trans on Rehabilitation Engineering, 1995, 3(1): 3-13
    [5] Erlandson RF. Applications of robotic/mechatronic systems in special education, rehabilitation therapy, and vocational training: a paradigm shift. IEEE Trans on Rehabilitation Engineering, 1995, 3(1): 22-34
    [6] Krebs HI, Volpe BT, Williams D, et al. Robot-Aided Neurorehabilitation: A Robot for Wrist Rehabilitation. IEEE Trans on Rehabilitation Engineering, 2007, 15(3): 327-335
    [7] Lum PS, Loos MV, Shor P. A robotic system for upper-limb exercises to promote recovery of motor function following stroke. In: Proc. 6th Intern. Conf. on Rehabilitation Robotics. New Jersey: IEEE Press, 1999. 235-239
    [8] Burgar CG, Lum PS, Shor PC, et al. Development of robot for rehabilitation therapy: The PALO Alto VA/Stanford experience. J. Rehabilitation Research and Development, 2000, 37(6): 663-673
    [9] Reinkensmeyer DJ, Kahn LE, Averbuch M, et al. Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM Guide. J. Rehabilitation Research and Development, 2000, 37: 653–662
    [10]车仁炜,吕广明,孙立宁.五自由度康复机械手臂的设计.机械设计, 2005, 22(4): 18-21
    [11] Kiguchi K, Tanaka T, Watanabe, et al. Designed and control of an exoskeleton system for human upper-limb motion assist. In: Proc. IEEE/ASME ICAIM, New Jersey: IEEE Press, 2003. 926-931
    [12]任宇鹏.辅助上肢运动功能康复机器人的控制和评价系统研究: [硕士学位论文].北京:清华大学, 2004.
    [13]李军强.康复医疗手臂外骨骼系统的研究: [硕士学位论文].天津:河北工业大学, 2005.
    [14] He Jiping, Koeneman EJ, Schultz RS, et al. RUPERT: a device for robotic upper extremity repetitive therapy. In: Proc. 27th EMBS. New Jersey: IEEE Press, 2005. 6844-6847
    [15] Sugar TG, He Jiping, Koeneman EJ, et al. Design and Control of RUPERT: A Device for Robotic Upper Extremity Repetitive Therapy. IEEE Trans. on Rehabilitation Engineering, 2007, 15(3): 336-346
    [16] Lan Ning. Analysis of an optimal control model of multi-joint arm movements. Biol. Cybern., 1997, 76: 107-117
    [17] Haruno M, Wolpert DM, Kawato M. Multiple paired forward-inverse models for human motor learning and control. Advances in Neural Information Processing Systems, 1999, 11: 31-37
    [18] Bernstein N. The co-ordination and regulation of movement. Oxford: Pergamon Press, 1967. 17-112
    [19] Laquaniti F, Soechting JF, Terzuolo SA. Path constraints on point-to-point arm movement in three-dimensional space. Neuroscience, 1986, 17(2): 313-324
    [20] Sporns O, Edelman GM. Solving Bernstein’s problem: a proposal for the development of coordinated movement by selection. Child Development, 1993, 64(4): 960-981
    [21] Wolpert DM. Computational approaches to motor control. Trends in Cognitive Sciences, 1997, 1(6): 209-216
    [22] Bryson AE, Ho YC. Applied Optimal Control. Wiley, New York, 1975
    [23] Jordan M, Wolpert DM. Computational motor control. In: M. Gazzaniga, (Ed.). The Cognitive Neurosciences. Cambridge, MA: MIT Press, 1999
    [24] Kelso JAS. Dynamic patterns: the self-organization of brain and behavior. 1st Ed. Cambridge, Massachusetts: MIT Press, 1995. 33-40
    [25] Hogan N. The mechanics of multi-joint posture and movement contro1. Biol. Cybern., 1985, 52: 315-331
    [26] Yang NF, Jin DW, Zhang M, et al. A function description for the human upper limb pointing movements performance. In: Proc. 23nd IEEE-EMBS. New Jersey: IEEE Press, 2001. 1236-1239
    [27] Soechting JF, Lacquaniti F. Invariant characteristics of a pointing movement in man. J. Neurosci., 1(7): 710-720
    [28] Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci., 1985, 5(7): 1688-1703
    [29] Hasan Z. Optimized movement trajectories and joint stiffness in unperturbed, inertially loaded movements. Biol. Cybern., 1986, 53(6): 373-382
    [30] Uno Y, Kawato M, Suzuki R. Formation and control of optimal trajectory in human multijoint arm movement. Biol. Cybern., 1989, 61(2): 89-101
    [31] Uno Y, Suzuki R, Kawato M. Minimum muscle tension change model which reproduces human arm movement. In: Proc. 4th Symposium on Biological and Physiological Engineering. 1989, 1: 299-302
    [32] Latash ML. Reconstruction of equilibrium trajectories and joint stiffness patterns during single-joint voluntary movements under different instructions. Biol. Cybern., 1994, 71(5): 441-450
    [33] Soechting JF, Flanders M. Movement planning: kinematics, dynamics, both or neither? In: Harris LR, Jenkin M (ed.). Vision and Action. Cambridge: Cmbridge University Press, 1999. 332-349
    [34] Nakano E, Imamizu H, Osu R, et. al.. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J. Neurophysiol., 1999, 81(5): 2140-2155
    [35] Rehbinder H, Martin C. A control theoretic model of the forearm. J. Biomechanics, 2001, 34(6): 741-748
    [36] Li Weiwei, Todorov E, Pan X. Hierarchical optimal control of redundant biomechanical systems. In: Proc. 26th IEEE EMBS, 2004, 1: 4618-4621
    [37] Alfred CS, Erwin de V, Frans CT van der H, et al. Optimal posture control of a musculo-skeletal arm model. Biol. Cybern., 2001, 84: 143-152
    [38] Li Weiwei, Todorov E. Iterative Linear Quadratic Regulator design for nonlinear biological movement systems. In: Proc. 1st International Conference on Information in Control, Automation and Robotics. Netherlands: INSTICC Press, 2004. 222-229
    [39] Todorov E, Li Weiwei. A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems. In: ACC’05, 2005. 300-306
    [40] Todorov E, Jordan M. Optimal feedback control as a theory of motor coordination. Nat. Neurosci., 2002, 5(11): 1226-1235
    [41] Kawato M., Furawaka K., Suzuki R. A hierarchical neural network model for the control and learning of voluntary movements. Biol. Cybern., 1987, 56: 1-17
    [42] Jordan MI, Rumelhart DE. Forward models: supervised learning with distal teacher. Cogn. Sci., 1992, 16(3): 307-354
    [43] Miall RC, Weir DJ, Wolpert DM, et al. Is the cerebellum a smith predictor? J. Motor Behav., 1993, 25: 203-216
    [44] Ito M. Neurophysiological aspects of the cerebellar motor control system. Int. J. Neurol., 1970, 7: 162-176
    [45] Kawato M. Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 1999, 9: 718-727
    [46] Stroeve S. Impedance characteristics of a neuromusculoskeletal model of the human arm. I. Posture control. Biol. Cybern., 1999, 81: 475-594
    [47] Inbar GF, Yafe A. Parameter and signal adaptation in the stretch reflex loop. Progress in brainresearch, 1976, 44: 317-337
    [48] Hatze H. The inverse dynamics problem of neuromuscular control. Biol. Cybern., 2000, 82: 133-141
    [49] Jordan MI, Flash T, Arnon Y. A model of the learning of arm trajectories from spatial targets. J. Cogn. Neurosci., 1994, 6: 359-376
    [50] Kawato M, Gomi H. A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern., 1992, 68: 95-103
    [51] Kawato M, Gomi H, Katayama M, et al. Supervised learning for coordinative motor control. In: Proc. 3rd NEC Res. Symp., 1992: 126-161
    [52] Hirayama M, Kawato M, Jordan MI. The cascade neural network model and a speed-accuracy trade-off of arm movement. J. Motor Behav., 1993, 25: 189-192
    [53] Karniel A, Inbar GF. A model for learning human reaching movements. Biol Cybern., 1997, 77: 173-183
    [54] Stroeve S. Neuromuscular control model of the arm including feedback and feedforward components. Acta Psychologica, 1998, 100: 117-131
    [55] Stroeve S. An analysis of learning control by backpropagation through time. Neural Networks, 1998, 11: 709-721
    [56] Stroeve S. A learning feedback and feedforward neuromuscular control model for two degrees of freedom human arm movements. Human Movements Science, 1997, 16: 621-651
    [57] Stroeve S. Impedance characteristics of a neuromusculoskeletal model of the human arm II. Movement control. Biol. Cybern., 1999, 81: 495-504
    [58] Lan Ning, Li Y, Sun Y, et al. Reflex Regulation of Antagonist Muscles for control of joint equilibrium position. IEEE Trans Neural System and Rehabilitation Engineering, 2005, 13(1): 60-71
    [59] Saltman E. Levels of sensorimotor representation. J. Mathematical Biology, 1979, 20: 91-163
    [60] Bernstein NA. On dexterity and its development. Lawrence Erlbaum Associates, 1996
    [61] Loeb GE, Brown IE, Cheng EJ. A hierarchical foundation for models of sensorimotor control. Exp Brain Res, 1999, 126: 1-18
    [62] Sanner RM, Kosha M. A mathematical model of the adaptive control of human arm motions. Biol. Cybern., 1999, 80: 369-382
    [63] Draye JP, Winters JM, Cheron G. Self-selected modular recurrent neural networks with postural and inertial subnetworks applied to complex movements. Biol. Cybern., 2002, 87: 27-39
    [64] Khemaissia S, Morris A. Use of an artificial neuroadaptive robot model to describe adaptive and learning motor mechanisms in the central nervous system. IEEE Trans System, Man, and Cybern. Part B: Cybernm, 1998, 28(3): 404-416
    [65] Fagg AH, Nathan S, Houk JC, Barto AG. Cerebellar Learning for Control of a Two-Link Arm in Muscle Space. In: ICRA’97, 1997. 1-8
    [66] Izawa J, Kondo T, Ito K. Biological Robot Arm Motion through Reinforcement Learning. In: Proc. 2000 IEEE International Conf. Robotics & Automation, 2000. 3398-3403
    [67] Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task. J. Neurosci., 1994, 14(5): 3208-3224
    [68] Inbar G.F. Muscle spindles in muscle control III. Analysis of adaptive system model. Kybernetik, 1972, 11: 130-141
    [69] Karniel A, Inbar GF. Human motor control: learning to control a time-varying, nonlinear, many-to-one system. IEEE Trans System, Man and Cybernetics-Part C, 2000, 30: 1-11
    [70] Davison PR, Jones RD, Andreae JH, et al. Simulating closed- and open-loop voluntary movement: a nonlinear control systems approach. IEEE Trans on Biomedical Engineering, 2002, 49(11): 1242-1252
    [71] Papaxanthis C, Pozzo T, McIntyre J. Arm end-point trajectories under normal and micro-gravity environments. Acta Astronautica, 1998, 43: 153-161
    [72] Papaxanthis C. Pozzo T, Schieppati M. Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed. Exp. Brain Res., 2003, 148: 498-503
    [73] Kambara H, Kim K, Shin D, et al. Motor control-learning model for reaching movements. In: 2006 International Joint Conference on Neural Networks, 2006. 555-562
    [74]李广庆,王人成,王茂斌,华超.矢状面人体运动轨迹检测与分析系统的研制.中国医师协会第二届康复医学论坛、中国康复医学会第四届青年学术会议、北京康复医学会第三届会员代表大会论文集, 2005. 165-169
    [75] Raikova R. Prediction of individual muscle forces using lagrange multipliers method– a model of the upper human limb in the sagittal plane: II numerical experiments and sensitivity analysis. Computer Methods in Biomechanics & Biomedical Engineering, 2000, 3(3): 167-182
    [76] Raikova R. Investigation of the peculiarities of two-joint muscles using 3 dof model of the human upper limb in the sagittal plane: an optimization approach. Computer Methods in Biomechanics & Biomedical Engineering, 2001, 4(6): 1-28
    [77] Zaal FTJM, Daigle K, Gottlieb GL, Thelen E. An unlearned principle for controlling natural movements. J. Neurophysiol., 1999, 82: 255-259
    [78] Kahn LE, Rymer WZ, Reinkensmeyer DJ. Adaptive assistance for guided force training in chronic stroke. In: 26th IEEE EMBS, 2004. 2722-2725
    [79]王岚.手臂康复训练机器人控制及实验研究: [硕士学位论文].哈尔滨:哈尔滨工程大学, 2007.
    [80]温淑涣.不确定性机器人力/位置智能控制及轨迹跟踪实验的研究: [博士学位论文].秦皇岛:燕山大学, 2005.
    [81] Kiguchi K, Watanabe. Two-stage adaptive robot position / force control using fuzzy reasoning and neural networks. Advanced Robotics, 2000, 14(3): 153-168
    [82]殷跃红,朱剑英.智能机器力觉及力控制研究综述.航空学报, 1999, 20(1): 1-7
    [83] Hogan N. Impedance control: an approach to manipulation I II III. ASME J DSMC, 1985, 107: 1-24
    [84] Lemay M, Hogan N, Dorsten JW. Issues in Impedance Selection and Input Devices for Multipoint Powered Orthotics. IEEE Trans Rehab. Eng., 1998, 6(1): 102-105
    [85] Heinrichs B, Sepehri N, Thorton TAB. Position-based impedance control of an industrial hybraulic manipulator. IEEE Control Systems Magazine, 1997, 17:46-52
    [86] Cheah CC. Learning impedance control for robotic manipulators. In: Proc. of IEEE Int. Conf. on Robot and Automation, 1995. New Jersey: IEEE Press. 2150-2155
    [87] Wang Danwei. An interative learning control scheme for impedance control of robotic manipulators. Int. J Robot Research, 1998, 17: 1091-1104
    [88] Jung S. Robot neural force control scheme under uncertainties in robot dynamics and unknown environment. IEEE Trans on Industrial Electronics, 2000, 47: 403-412
    [89] Hogan N, et al. Controlling Multijoint Motor Behavior. Exerc Sport Sci Rev, 1987, 15: 153-190
    [90]张新闻.脑机系统中特征提取方法的研究: [硕士学位论文].兰州:兰州理工大学, 2007.
    [91]杨晶晶.基于肌电信号的人体上肢动作辨识与轨迹预测方法研究: [硕士学位论文].天津:天津大学, 2006.
    [92]张娴.基于肌电信号的人机交互技术研究: [硕士学位论文].南京:东南大学, 2006.
    [93]刘加海.基于sEMG信号非线性动力学分析的肌肉功能状态评价研究: [博士学位论文].杭州:浙江大学, 2001.
    [94] Ozturk N, Fardanesh B. Multivariable control of the robot manipulator in the presence of time delay. In: ICIECI’91, 2: 1191-1193
    [95]刘曙光,周宗锡,杨锋.遥操作机器人系统的变时延控制.控制工程, 2006, 13(S): 179-182
    [96]陈启军,张宏辉,王月娟等.一种简单的机器人鲁棒自适应轨迹跟踪控制算法.华中科技大学学报(自然科学版), 2004, 32(S): 52-54
    [97]李晓理,王书宁.多模型自适应控制在机器人手臂控制当中应用.机器人, 2002, 24(1): 16-19
    [98]高道祥,薛定宇.基于MATLAB/Simulink机器人鲁棒自适应控制系统仿真研究.系统仿真学报, 2006, 18(7): 2022-2025
    [99] Man Zhihong, Paplinski AP. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Automat. Contr., 1994, 39: 2464-2469
    [100]许春山,孙兴进,曹广益.一种新的机器人轨迹跟踪滑模变结构控制.计算机仿真, 2004, 21(7): 115-118
    [101]刘金琨.滑模变结构控制Matlab仿真.北京:清华大学出版社, 2005
    [102] Song Junbo, Ishida Y. A robust sliding mode control for pneumatic servo systems. Int. J. Engng Sci., 1997, 35: 711-723
    [103]公茂法,李兴平,周景雷.基于Backstepping方法的机器人鲁棒跟踪控制.山东科技大学学报(自然科学版), 2006, 25(3): 32-35
    [104]申铁龙.机器人鲁棒控制基础.北京:清华大学出版社, 2000
    [105]王炜.基于生物肌肉的仿生驱动装置研究: [硕士学位论文].西安:西北工业大学, 2004.
    [106] Caldwell DG, Medrano-Cerda GA, Goodwin M. Control of Pneumatic muscle actuators. IEEE Control Systems, 1995, : 40-48
    [107] Lilly JH. Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations. IEEE Trans. Neural Systems and Rehabilitation Engineering, 2003, 11(3): 333-339
    [108] Lilly JH, Quesada PM. A two-input sliding-mode controller for a planar arm actuated by four pneumatic muscle groups. IEEE Trans. Neural Systems and Rehabilitation Engineering, 2004, 12(3): 349-359
    [109] Chen SW, Lilly JH. Fuzzy PD+I learning control for a pneumatic muscle. In: ICFS’03, 2003, 1: 278-283
    [110] Carbonell P, Jiang ZP, Repperger DW. A fuzzy backstepping controller for a pneumatic muscle actuator system. In: ISIC’01, 2001, 1: 353-358
    [111]刘金琨.智能控制.第1版.北京:电子工业出版社, 2005. 117-181
    [112]张西伟.基于手臂运动学模型的手语合成系统研究: [硕士学位论文].长沙:中南大学, 2007.
    [113] Flash T. The organization of human arm trajectory control. Multiple muscle system: Biomechanics and movement organization. New York: Springer-Verlag, 1990, 282-301
    [114]蔡自兴.机器人学.北京:清华大学出版社, 2000
    [115] Niku SB.机器人学导论-分析、系统及应用.孙富春等译.北京:电子工业出版社, 2004. 26-130
    [116] Brown IE, Cheng EJ, Leob G.. Measured and modeled properties of mammalian skeletal muscle. II. the effects of stimulus frequency on force-length and force-velocity relationships. J. of Muscle Research and Cell Motility, 1999, 20: 627-643
    [117] Hagan MT, Demuth HB, Beale MH. Neural network design. Boston, MA: PWS Publishing.1996
    [118]王永骥,涂健.神经元网络控制.北京:机械工业出版社. 1998. 7-20, 329-342
    [119] Katayama M, Inoue S, Kawato M. A strategy of motor learning using adjustable parameters for arm movement. In: Proc. 20th IEEE EMBS, 1998, 20: 2370-2373
    [120] Cheng EJ, Brown LE, Loeb GE. Virtual muscle: a computational approach to understanding the effects of muscle properties on motor control. J. of Neuroscience Methods, 2000, 101: 117-130
    [121] Albus JS. A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J. Dyn. Syst. Meas. Control, 1975, 9: 220-227
    [122] Miller WT III, Hewes RP, Glanz FH, et al. Real-time dynamic control of an industrial manipulator using a neural network-based learning controller. IEEE Trans. Robotics and Automation, 1990, 6(1): 1-9
    [123] Kun AL, Miller WT III. Control of variable speed gaits for a biped robot. IEEE Robotics and Automation Magazine, 1999, 6(3): 19-29
    [124]苏刚,陈增强,袁著祉.小脑模型关节控制器(CMAC)理论及应用.仪器仪表学报, 2003, 24(4增刊): 269-273
    [125]李辉.一种自适应CMAC在交流励磁水轮机发电系统中仿真研究.控制与决策, 2005, 20(7): 778-785
    [126]李伟,张恒喜,谢锋.航空发动机的CMAC与PID并行控制.弹箭与制导学报, 2006, 26(3): 95-97
    [127] Chiang CT, Lin CS. CMAC with general basis functions. J. Neural Networks, 1996, 9(7): 1119-1211
    [128]施小成,徐箭雨,陈强,等.模糊CMAC神经网络在潜艇深度及纵倾控制中的应用.哈尔滨工程大学学报, 2004, 25(1): 13-18
    [129]王耀南.机器人智能控制工程.北京:科学出版社, 2004. 83-109
    [130]陈涌,马勇,陈涛. FCMAC实现的再励学习稳定控制系统设计.电机与控制学报, 2001, 5(4): 263-266
    [131]孙炜,王耀南.模糊CMAC及其在机器人轨迹跟踪控制中的应用.控制理论与应用, 2006, 23(1): 38-42
    [132] Kraft LG, Campagna DP. A comparison between CMAC neural network control and two traditional adaptive control systems. IEEE Control System Magazine, 1990, : 36-43
    [133] Cotter NE, Guillerm TJ. The CMAC and a theorem of Kolmogorov. Neural Networks, 1992, 5: 221-228
    [134] Ellison D. On the convergence of the multidimensional Albus perceptron. Int. J. Robotics Research, 1991, 10(4): 338-357
    [135] Ananthraman S, Garg DP. Training backpropagation and CMAC neural networks for control of a SCARA robot. Engng. Applied Artif. Intell., 1993, 6(2): 105-115
    [136] Feng Y, Yu XH, Man ZH. Non-singular terminal sliding mode control of rigid manipulators. Automatica, 2000, 38: 2159-2167
    [137] Huang SJ, Huang KS, Chiou KC. Development and application of a novel radial basis function sliding mode controller. Mechatronics, 2003, 13: 313-329
    [138] Kaynak O, Erbatur, Ertugrul M. The fusion of computationally intelligent methodologies and sliding-mode control– a survey. IEEE Trans. Ind. Electron, 2001, 48(1): 4-17
    [139] Chang WD, Hwang RC, Hsieh JG. Application of an auto-tuning neuron to sliding mode control. IEEE Trans. Syst., Man, Cybern, 2002, 32(4): 517-522
    [140] Draye JPS, Pavisic DA, Cheron GA, et al. Dynamic recurrent neural networks: a dynamic analysis. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 1996, 26(5): 692-706
    [141] Ku CC, Lee KY. Diagonal recurrent neural networks for dynamic system control. IEEE Trans. Neural Networks, 1995, 6: 144-156
    [142]魏海坤.神经网络结构设计的理论与方法.北京:国防工业出版社, 2005. 100-150
    [143] Yao Xin. Evolving artificial neural network. Proc. IEEE, 1999, 87: 1423-1477
    [144] Castillo PA, Merelo JJ, Arenas MG, et al. Comparing evolutionary hybrid systems for design and optimization of multilayer perceptron structure along training parameters. Information Science, 2007, 177: 2884-2905
    [145] Yao X, Liu Y. A new evolutionary system for evolving artificial neural networks. IEEE Trans on Neural Network, 1997, 8(3): 694-713
    [146] Kumagai T, Wada M, Mikami S, et al. Structured learning in recurrent neural network using genetic algorithm with internal copy operator. In: Proc. ICEC’97. New Jersey: IEEE Press, 1997. 651-656
    [147] Hussenin SB, Jamaluddin H, Mailah M, et al. A hybrid intelligent active force controller for robot arms using evolutionary neural networks. In: Proc. CEC’00, 2000, 1: 117-130
    [148] Pasemann F, Steinmetz U, Martin H, et al. Robot control and the evolution of modular neurodynamics. Theory in Bioscience, 2001, 120: 311-326
    [149] White D, Ligomenides P. GANNet: a genetic algorithm for optimizing topology and weights in neural network design. In: Proc. IWANN’93, Lecture Notes in Computer Science, 1993, 686: 322-327
    [150] Liu Y, Yao X. Evolutionary design of artificial neural networks with different nodes. In: Proc. ICEC’96, 1996, 1: 670-675
    [151] Nakazono K, Katagiri M, Kinjo H, et al. Force and position control of robot manipulator usingneurocontroller with GA based training. In: Proc. CIRA 03, 2003, 3: 1354-1357
    [152] Wang Pan, Li Youfeng, Feng Shan, et al. Convergence of diagonal recurrent neural networks’learning. In: Proc. WCICA’02, 2002, 3: 2365-2369
    [153] Kolen JF, Pollack BJ. Back propagation is sensitive to initial conditions. NIPS 3, 1991: 860-867
    [154] Butefisch C, Hummelsheim H, Denzler P, et al. Repetitive training of isolated movement improves the outcome of motor rehabilitation of centrally paretic hand. Journal of the Neurological Science, 1995, 130: 59-68
    [155] Taub E, Miller N, Novack T, et al. Technique to improve chronic motor deficit after stroke. Archives of Physical Medicine and Rehabilitation, 1993, 74(4): 347-354
    [156]王翠红,黄天民,杨瑞.不确定奇异系统的变结构控制.微计算机信息. 2007, 3: 222-223
    [157] MathWorks. simMechanics for use with simulink user’s guide. Version 2, 2002. 35-102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700