共生掺杂及磁性离子基团植入对铋层状材料电磁性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铋系层状钙钛矿结构的铁电材料在非易失性铁电存储器和高温压电陶瓷方面具有潜在的应用前景。这种材料反转速度快,抗疲劳性能好,具有较高的铁电居里温度(Tc)和不含铅污染的优点。然而,由于自发极化被限制在ab平面内,典型的铋层状材料如B4Ti3O12 (BIT, 2Pr = 15μC/cm2)和SrBi4Ti4O15 (SBTi, 2Pr = 6.2– 13.0μC/cm2)存在着剩余极化小、压电活性低等不足,尚不能取代目前工业上广泛使用的PZT来满足工业化生产高密度存储器和压电传感器的需要。为了改善铋层状材料的性能,人们想出来许多办法来改善它的性能。本论文主要工作是基于铋层状材料的改性研究,包括共生掺杂和磁性离子基团植入两大部分,具体说来可以分为下面几个部分:
     (1) A位Nd离子掺杂:我们用传统固相反应法制备了系列Nd掺杂BIT-SBTi陶瓷样品,并研究了其相应的铁电、压电、介电行为。借助于XRD和Raman散射,研究了Nd掺杂对其晶体结构和离子占位的影响。研究显示,当Nd离子掺杂量为0.5时,材料的剩余极化和压电系数同步达到最大值,分别为33.2μC/cm2和14 pC/N。同比不掺杂的BIT-SBTi陶瓷,其增幅分别达到1.7倍和75%,进一步增加Nd掺杂量,材料的性能出现下降趋势。借助于材料的复阻抗谱,发现材料的传导激活能随掺杂量的增加而而增加,这可以被看成是材料中氧空位浓度下降的直接证据。介电常数和介电损耗的温度谱显示,随Nd掺杂量的增加,介电峰出现介电弥散的现象,但是在损耗的温度谱中没有能发现明显的介电驰豫峰。和La掺杂相比,Nd掺杂并没有引起所谓的驰豫铁电体的特征,并初步给出了解释。
     (2) B位高价掺杂:本章研究了Nb、V和W掺杂Bi4Ti3O12-MBi4Ti4O15(BIT-MBTi, M = Ca, Sr)陶瓷材料的电性能。研究结果显示,这样的高价施主掺杂显著增强了BIT-MBTi材料的铁电剩余极化和压电系数。其中W掺杂对BIT-SBTi材料的铁电剩余极化提升最大,而Nb掺杂BIT-SBTi材料的压电性能提升最为明显。Nb掺杂同样也提升了BIT-CBTi的剩余极化和压电系数,但没有对BIT-SBTi的影响来得显著。BIT-CBTi薄膜也表现出了较高的铁电剩余极化值39μC/cm2。电性能的增强是由于材料内部氧空位浓度的降低和动性的减弱所引起。材料内部传导激活能随掺杂量的增加直接给出了氧空位浓度减低的证据。在V掺杂BIT-SBTi的研究中发现了剩余极化的最大值和压电系数的最大值不出现在同一掺杂量上,这被认为是V掺杂对材料内部畴壁的结构和密度的影响要比对氧空位浓度的影响来得更为显著所致。BIT-CBTi的变温介电谱出现了双介电峰,分别位于658°C和728°C。对应于低温的介电峰可能和材料中BIT组元的规整化有关,而高温的介电峰则于材料的铁电顺电相变有关。
     (3)用湿化学方法制备了含磁性离子基团的铋层状材料Bi5FeTi3O15(BFTO)。用XRD谱和Raman谱分析了其晶体结构。用AFM和FESEM观察了其表面和断面形貌。研究发现,在~570 kV/cm外电场下,材料的铁电剩余极化(2Pr)和矫顽场(Ec)分别达到35.5μC/cm2和171 kV/cm。剩余极化在285 kV/cm外场下经过5.2×109反转后降为66%,BFTO和SBTi材料在Raman谱和铁电响应方面进行了对比分析。漏电流机制的研究发现,在~50 kV/cm到~200 kV/cm的外场范围内主要是Schottky发射机制起主导作用,在高于~200 kV/cm的外场时,漏电流机制可能是多种混合机制共同起作用。
     制备了基于传统固相烧结工艺制备的Bi5Fe0.5Co0.5Ti3O15(BFCT)陶瓷,XRD和HRTEM显示其层状钙钛矿Aurivillius相已经形成。其在230 kV/cm电场下的电滞回线显示样品的2Pr约为~13μC/cm2,矫顽场约为~140 kV/cm。这可能是局域Fe-O-Co基团的形成从而导致了它们之间的铁磁耦合相互作用形成了BFCT较强的磁性能。这样一种局域铁磁耦合也是材料中出现自旋玻璃态的原因之一。
The Aurivillius family of bismuth-containing oxides encompasses many promising materials of potential use in non-volatile ferroelectric random-access memory and high-temperature piezoelectric devices due to their well-known fast switching speed, fatigue-free properties, relatively high Curie point (Tc) and lead-free chemical composition. However, as the spontaneous polarization movements are confined to the a(b) plane, the relatively smaller remanent polarization (2Pr) and lower piezoelectric activity of pure Aurivillius members such as B4Ti3O12 (BIT, 2Pr = 15μC/cm2) and SrBi4Ti4O15 (SBTi, 2Pr = 6.2– 13.0μC/cm2) are not so satisfactory when compared with PZT film in high-density integration of memory cell and pressure sensors applications. The main purposes of this dissertation are aimed at the modification of such Aurivillius phases and, briefly speaking, it can be summarized into following three parts:
     (1) Effect of Nd modification on ferro-, piezo- and dielectric properties of intergrowth Bi4Ti3O12-SrBi4Ti4O15 ceramics were investigated. X-ray diffraction and Raman scattering were used to identify the crystal phase and to distinguish the doping sites. With increasing Nd content up to 0.50, both remanent polarization (2Pr) and piezoelectric coefficient (d33) were found to increase and reach the maximum value of 33.2μC/cm2 and 14 pC/N, respectively, which gained an enlargement over 1.7 times in 2Pr and a desirable 75% increment in d33 value. However, further Nd modification starts to deteriorate the ferro- and piezoelectric behavior. Impedance spectroscopy shows the activation energy of conductivity increased with increasing Nd content, which can be regarded as direct proof of the restraint of oxygen vacancies. The thermal variations of dielectric permittivity and loss tanδwith Nd content show the characteristic of diffuse phase transformation while the convincible defect-related relaxation phenomenon was not found. Interestingly, in contrast to La modification, Nd modification does not induce the relaxor behavior even at very high doping content.
     (2) Electrical properties of Nb-, V-, and W-doped Bi4Ti3O12-MBi4Ti4O15 (BIT-MBTi, M = Ca, Sr) compounds were investigated. The remanent polarization (2Pr) and piezoelectric coefficient (d33) of BIT-MBTi are greatly increased by such donor doping. W-doped and Nb-doped BIT-SBTi exhibited the greatest enlargement in 2Pr and d33, respectively. Nb doping also increases 2Pr and d33 of BIT-CBTi though not that much as in BIT-SBTi case. BIT-CBTi thin film shows a high 2Pr value of 39μC/cm2. The enhanced properties are thought to stem from the reduced concentration and weakened mobility of oxygen vacancies. Increased activation energy of conduction further confirmed the restraint of oxygen vacancies. The different optimal V-doping content for 2Pr and d33 in BIT-SBTi might be related to the fact that V-doping could affect the structure and density of domain more apparently than the concentration of oxygen vacancies. The thermal variation of dielectric constant of BIT-CBTi shows a distinctive double anomaly at 658°C and 728°C. The first dielectric anomaly is related to the regulation of BIT parts and the second one corresponds to the ferro-paraelectric phase transition.
     (3) Thin films of Fe-containing Aurivillius phase Bi5FeTi3O15 (BFTO) were prepared using chemical solution deposition method. The structures of the films were analyzed using x-ray diffraction and Raman spectroscopy. The surface topography and crystal microstructure were characterized by AFM and FESEM. The remanent polarization (2Pr) and coercive field (Ec) of BFTO thin films under an electric field of ~570 kV/cm are determined to be 35.5μC/cm2 and 171 kV/cm, respectively. The normalized polarization of BFTO thin films under 285 kV/cm decreased to 66% after being subjected to 5.2×109 read/write cycles. Comparison between BFTO and SrBi4Ti4O15 in Raman spectra and ferroelectric behavior is also presented. The leakage current density measurement reveals the conduction mechanism of BFTO thin films in the intermediate electric field range from ~50 kV/cm to ~200 kV/cm is dominated by Schottky emission. With electric field higher than ~200 kV/cm, the leakage behavior is mingled with different conduction mechanisms.
     We have also synthesized Bi5Fe0.5Co0.5Ti3O15 ceramics by a multi-calcination-method. The Aurivillius structure with four-octahedra in between two Bi-O layers is confirmed by the XRD pattern and HRTEM image. The BFCT sample exhibits the coexistence of ferroelectric and ferromagnetic orders above room temperature, with its 2Pr and 2Mr at RT of 13μC/cm2 and 7.8 memu/g, respectively. The magnetic behavior below 275°C is spin-glass type and the Curie temperature is determined at ~ 345°C.
引文
1 J. R. Anderson, "Ferroelectric storage elements for digital computers and switching system," Electr. Engineering 71, 916 (1952).
    2 James F. Scott and Carlos A. Paz DE Araujo, "Ferroelectric Memories," Science 246, 1400 (1989).
    3 J. F. Scott, "The physics of ferroelectric ceramic thin films for memory applications," Ferroelectric Review 1, 1 (1998).
    4 D. Bondurant, "Ferroelectric RAM memory family for critical data storage," Ferroelectrics 112, 273 (1990).
    5 Lines, M. E. Glass, and A. M., "Principles and applications of ferroelectrics and related materials," Clarendon (1977).
    6钟维烈, "《铁电物理学》,"科学出版社(1976).
    7 Y. Shimakawa, Y. Kubo, Y. Nakagawa et al., "Crystal structure and ferroelectric properties of ABi2Ta2O9 (A=Ca, Sr, and Ba)," Physical Review B 61 (10), 6559 (2000).
    8 Y. Shimakawa, Y. Kubo, Y. Nakagawa et al., "Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr 0.8B2.2Ta2O9," Applied Physics Letters 74 (13), 1904-1906 (1999).
    9 Hiroshi Irie, Masaru Miyayama, and Tetsuichi Kudo, "Structuredependence of ferroelectric properties of bismuth layer-structured ferroelectric single crystals," Journal of Applied Physics 90 (8), 4089-4094 (2001).
    10 T. Friessnegg, S. Aggarwal, R. Ramesh et al., "vacancy formation in (Pb, La)(Zr, Ti)O3 capacitors with oxygen deficiency and the effect on voltage offset," Applied Physics Letters 77, 127 (2000).
    11 E. L. Colla, D. V. Taylor, A. K. Tagantsev et al., "Discrimination between bulk and interface scenarios for the suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin films capacitors with Pt electrodes," Applied Physics Letters 72 (19), 2478-2480 (1998).
    12 J. F. Scott, C. A. Araujo, B. M. Melnick et al., "Quantitative measurement of space-charge effects in lead zirconate-titanate memories," Journal of Applied Physics 70 (1), 382-388 (1991).
    13 Matthew Dawber and J. F. Scott, "A model for fatigue in ferroelectric perovskite thin films," Applied Physics Letters 76 (8), 1060-1062 (2000).
    14 A. K. Tagantsev and I. A. Stolichnov, "Injection-controlled size effect on switching of ferroelectric thin films," Applied Physics Letters 74 (9), 1326-1328 (1999).
    15 I. Stolichnov, A. Tagantsev, E. Colla et al., "Downscaling of Pb(Zr,Ti)O[sub 3] film thickness for low-voltage ferroelectric capacitors: Effect of charge relaxation at the interfaces," Journal of Applied Physics 88 (4), 2154-2156 (2000).
    16李伟, "博士毕业论文,"南京大学(2005).
    17陈小兵, "博士毕业论文,"南京大学(2000).
    18 Apurba Laha and S. B. Krupanidhi, "Leakage current conduction of pulsed excimer laser ablated BaBi2Nb2O9 thin films," Journal of Applied Physics 92 (1), 415-420 (2002).
    19 Masatake Takahashi, Yuji Noguchi, and Masaru Miyayama, "Electrical Conduciton Mechanism in Bi4Ti3O!2 single crystal," Jpn. J. Appl. Phys. 41, 7053-7056 (2002).
    20 Hao Yang, Kun Tao, Bin Chen et al., "Leakage mechanism of (Ba0.7Sr0.3TiO3 thin films in the low-temperature range," Applied Physics Letters 81 (25), 4817-4819 (2002).
    21 Takayuki Watanabe, Hiroshi Funakubo, Minoru Osada et al., "Effect of cosubstitution of La and V in Bi[sub 4]Ti[sub 3]O[sub 12] thin films on the low-temperature deposition," Applied Physics Letters 80 (1), 100-102 (2002).
    22 Minoru Osada, Masaru Tada, Massato Kakihana et al., "Cation Distribution and Structural Instability in Bi4-xLaxTi3O12," Jpn. J. Appl. Phys. 40, 5572-5575 (2001).
    23 Y. Shimakawa, Y. Kubo, Y. Tauchi et al., "Crystal and electronic structures of Bi4 - xLaxTi3O12 ferroelectric materials," Applied Physics Letters 79 (17), 2791-2793 (2001).
    24 Yuji Noguchi, Masaru Miyayama, and Tetsuichi Kudo, "Direct evidence of A-site-deficient strontium bismuth tantalate and its enhanced ferroelectric properties," Physical Review B 63 (21), 214102 (2001).
    25 Sei Ki Kim, Masaru Miyayama, and Hiroaki Yanagida, "Electrical anisotropy and a plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal," Materials Research Bulletin 31 (1), 121-131 (1996).
    26 Tadashi Takenaka, Takahiro Goton, Sigeo Mutoh et al., "A New Series of Bismuth Layer-Structured Ferroelectrics," Jpn. J. Appl. Phys. 34, 5384-5388 (1995).
    27 Haixue Yan, Chengen Li, Jiaguang Zhou et al., "A-Site(MCe) SubstitutionEffects on the Structures and Properties of CaBi4Ti4O15 ceramics," Jpn. J. Appl. Phys. 39, 6339-6342 (2000).
    28 Uong Chon, Ki-Bum Kim, Hyun M. Jang et al., "Fatigue-free samarium-modified bismuth titanate Bi4-xSmxTi3O12 film capacitors having large spontaneous polarizations," Applied Physics Letters 79 (19), 3137-3139 (2001).
    29 B. H. Park, B. S. Kang, S. D. Bu et al., "Lanthanum-substitued bismuth titanate for use in non-volatile memories," Nature 401, 682 (1999).
    30 Hiroshi Maiwa, Naoya Iizawa, Daichi Togawa et al., "Electromechanical properties of Nd-doped Bi4Ti3O12 films: A candidate for lead-free thin-film piezoelectrics," Applied Physics Letters 82 (11), 1760-1762 (2003).
    31 Takehiro Noguchi, Takashi Hase, and Yoichi Miyasaka, "Analysis of the Dependence of Ferroelectric Properties of Strontium Bismuth Tantalate (SBT) Thin Films on the Composition and ocess Temperature," Jpn. J. Appl. Phys. 35, 4900-4904 (1996).
    32 Takayuki Watanabe, Takashi Kojima, Tomohiro Sakai et al., "Large remanent polarization of Bi[sub 4]Ti[sub 3]O[sub 12]-based thin films modified by the site engineering technique," Journal of Applied Physics 92 (3), 1518-1521 (2002).
    33 Jun Zhu, Wang-ping Lu, Xiang-yu Mao et al., "Study on properties of lanthanum doped SrBi4Ti4O15 and Sr2Bi4Ti5O18 ferroelectric ceramics," Jpn. J. Appl. Phys 42, 5165-5168 (2003).
    34 Wei Wang, Jun Zhu, Xiang-yu Mao et al., "Properties of Nd-substituted SrBi4Ti4O15 ferroelectric ceramics," J. Phys. D: Appl. Phys. 39, 370-374 (2006).
    35 Hui Sun, Xiao-bing Chen, Jun Zhu et al., "Notable enlargement ofremanent polarization for fatigue-free SrBi4Ti4O15 thin films by La-substitution," J Sol-Gel Sci Technol 43, 125-129 (2007).
    36 Yuji Noguchi and Masaru Miyayama, "Large remanent polarization of vanadium-doped Bi[sub 4]Ti[sub 3]O[sub 12]," Applied Physics Letters 78 (13), 1903-1905 (2001).
    37 Y. Noguchi, I. Miwa, Y. Goshima et al., "Defect control for large remanent polarization in bismuth titanate ferroelectrics-Doping effect of higher-valent cations," Jpn. J. Appl. Phys. 39, L1259-L1262 (2000).
    38 Jun Zhu, Xiang-yu Mao, and Xiao-bing Chen, "Properties of vanadium-doped SrBi4Ti4O15 ferroelectric ceramics," Solid State Communications 129 (11), 707-710 (2004).
    39 Wang-ping Lu, Xiang-yu Mao, and Xiao-bing Chen, "Dielectric loss study of oxygen vacancies and domain walls in Sr2Bi4 - x/3Ti5 - xVxO18 ceramics," Journal of Applied Physics 95 (4), 1973-1976 (2004).
    40 Hui Sun, Jun Zhu, Hong Fang et al., "Large remnant polarization and excellent fatigue property of vanadium-doped SrBi4Ti4O15 thin films," Journal of Applied Physics 100 (7), 074102 (2006).
    41 Hong Fang, Hui Sun, Jun Zhu et al., "Effect of vanadium-modification on structural and electrical properties of Sr2Bi4Ti5O18," J. Phys. D: Appl. Phys. 39, 5300-5304 (2006).
    42 Yuji Noguchi, Masaru Miyayama, and Tetsuichi Kudo, "Ferroelectric properties of intergrowth Bi[sub 4]Ti[sub 3]O[sub 12]--SrBi[sub 4]Ti[sub 4]O[sub 15] ceramics," Applied Physics Letters 77 (22), 3639-3641 (2000).
    43 Z. G. Yi, Y. X. Li, Y. Wang et al., "Two distinct dielectric relaxation mechanisms in the low-frequency range in Bi[sub 5]TiNbWO[sub 15] ceramics," Applied Physics Letters 88 (16), 162908 (2006).
    44 Jun Zhu, Xiao-Bing Chen, Wang-Ping Lu et al., "Properties of lanthanum-doped Bi4Ti3O12--SrBi4Ti4O15 intergrowth ferroelectrics," Applied Physics Letters 83 (9), 1818-1820 (2003).
    45 Wang Xiao-juan, Gong Zhi-qiang, Ya-feng Qian et al., "Oxygen-vacancy-related dielectric relaxation and conduction mechanisms in Bi5TiNbWO15 ceramics," Chinese Physics 16, 1009-1963 (2007).
    46 S. B. Desu, P. C. Joshi, X. Zhang et al., "Thin films of layered-structure (1 - x)SrBi[sub 2]Ta[sub 2]O[sub 9] - xBi[sub 3]Ti(Ta[sub 1 - y]Nb[sub y])O[sub 9] solid solution for ferroelectric random access memory devices," Applied Physics Letters 71 (8), 1041-1043 (1997).
    47 S. O. Ryu, P. C. Joshi, and S. B. Desu, "Low temperature processed 0.7SrBi[sub 2]Ta[sub 2]O[sub 9]--0.3Bi[sub 3]TaTiO[sub 9] thin films fabricated on multilayer electrode-barrier structure for high-density ferroelectric memories," Applied Physics Letters 75 (14), 2126-2128 (1999).
    48 J. S. Zhu, H. X. Qin, Z. H. Bao et al., "X-ray diffraction and Raman scattering study of SrBi[sub 2]Ta[sub 2]O[sub 9] ceramics and thin films with Bi[sub 3]TiNbO[sub 9] addition," Applied Physics Letters 79 (23), 3827-3829 (2001).
    49 R. RAMESH, A. INAM, W. K. CHAN et al., "Epitaxial Cuprate Superconductor/Ferroelectric Heterostructures," Science 252 (5008), 944-946 (1991).
    50 Ho Nyung Lee, Dietrich Hesse, Nikolai Zakharov et al., "Ferroelectric Bi3.25La0.75Ti3O12 Films of Uniform a-Axis Orientation on Silicon Substrates," Science 296 (5575), 2006-2009 (2002).
    51毛翔宇,王伟,王玮et al., "不同晶粒取向钛酸铋陶瓷的铁电和压电性能,"硅酸盐学报35 (3), 312-316 (2007).
    52 Nicola A. Spaldin and Manfred Fiebig, "The Renaissance of Magnetoelectric Multiferroics," Science 309, 391-392 (2005).
    53 S. R. Shannigrahi, A. Huang, N. Chandrasekhar et al., "Sc modified multiferroic BiFeO3 thin films prepared through a sol-gel process," Applied Physics Letters 90 (2), 022901 (2007).
    54 X. Chen F. Gao, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, J.-M. Liu,, "Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles," Advanced Materials 19 (19), 2889-2892 (2007).
    55 Kouhei Takahashi, Noriaki Kida, and Masayoshi Tonouchi, "Terahertz Radiation by an Ultrafast Spontaneous Polarization Modulation of Multiferroic BiFeO3 Thin Films," Physical Review Letters 96 (11), 117402 (2006).
    56 J. D. Bucci, B. K. Robertson, and W. J. James, "The precision determination of the lattice parameters and the coefficients of thermal expansion of BiFeO3," Journal of Applied Crystallography 5 (3), 187-191 (1972).
    57 James R. Teague, Robert Gerson, and W. J. James, "Dielectric hysteresis in single crystal BiFeO3," Solid State Communications 8 (13), 1073-1074 (1970).
    58 T. Zhao, A. Scholl, F. Zavaliche et al., "Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature," Nat Mater 5 (10), 823-829 (2006).
    59 Dongeun Lee, Min G. Kim, Sangwoo Ryu et al., "Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films," Applied Physics Letters 86 (22), 222903 (2005).
    60 Fengzhen Huang, Xiaomei Lu, Weiwei Lin et al., "Effect of Nd dopant on magnetic and electric properties of BiFeO3 thin films prepared by metalorganic deposition method," Applied Physics Letters 89 (24), 242914 (2006).
    61 G. D. Hu, X. Cheng, W. B. Wu et al., "Effects of Gd substitution on structure and ferroelectric properties of BiFeO3 thin films prepared using metal organic decomposition," Applied Physics Letters 91 (23), 232909 (2007).
    62 Zuci Quan, Wei Liu, Hao Hu et al., "Microstructure, electrical and magnetic properties of Ce-doped BiFeO3 thin films," Journal of Applied Physics 104 (8), 084106 (2008).
    63 S. R. Shannigrahi, A. Huang, N. Chandrasekhar et al., "Sc modified multiferroic BiFeO[sub 3] thin films prepared through a sol-gel process," Applied Physics Letters 90 (2), 022901 (2007).
    64 Yao Wang and Ce-Wen Nan, "Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films," Applied Physics Letters 89 (5), 052903 (2006).
    65 Yao Wang and Ce-Wen Nan, "Structural and Ferroic Properties of Zr-doped BiFeO3 Thin Films," Ferroelectrics 357 (1), 172 - 178 (2007).
    66 Xiaoding Qi, Joonghoe Dho, Rumen Tomov et al., "Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3," Applied Physics Letters 86 (6), 062903 (2005).
    67 V. R. Palkar, K. Ganesh Kumara, and S. K. Malik, "Observation of room-temperature magnetoelectric coupling in pulsed-laser-deposited Bi0.6Tb0.3La0.1FeO3thin films," Applied Physics Letters 84 (15), 2856-2858 (2004).
    68 Zhenxiang Cheng, Xiaolin Wang, Shixue Dou et al., "Improved ferroelectric properties in multiferroic BiFeO3 thin films through La and Nb codoping," Physical Review B (Condensed Matter and MaterialsPhysics) 77 (9), 092101 (2008).
    69 F. Kubel and H. Schmid, "X-ray room temperature structure from single crystal data, powder diffraction measurements and optical studies of the Aurivillius phase Bi5Ti3FeO15," Ferroelectrics 129, 101-112 (1992).
    70 A Srinivas, S V Suryanarayana, G S Kumar et al., "Magnetoelectric measurements on Bi5FeTi3O15 and Bi6Fe2Ti3O18," J. Phys.: Condens. Matter 11, 3335-3340 (1999).
    71 R. Singh, T. Bhimasankaram, G. S. Kumar et al., "Dielectric and magnetoelectric properties of Bi5FeTi3O15," Solid State Communications 91, 567-569 (1994).
    72 W Prellier, M P Singh, and P Murugavel, "The single-phase multiferroic oxideds: from bulk to thin film," J. Phys.: Condens. Matter 17, R803-R832 (2005).
    73 A. Srinivas, Dong-Wan Kim, and Kug Sun Hong, "Signifcant changes in the ferroelectric properties of BiFeO3 modified SrBi2Ta2O9," Applied Physics Letters 83, 1602 (2003).
    74 A. Srinivas, F. Boey, T. Sritharan et al., "Study of piezoelectric, magnetic and magnetoelectric measurements on SrBi3Nb2FeO12 ceramic," Ceramics International 30, 1431-1433 (2004).
    75 X. W. Dong, K. F. Wang, J. G. Wan et al., "Magnetocapacitance of polycrystalline Bi5Ti3FeO15 prepared by sol-gel method," Journal of Applied Physics 103, 094101 (2008).
    1.曲远方主编,功能陶瓷及应用,化学工业出版社,2003年3月第一版.
    2.王世敏、许祖勋、傅晶编著,纳米材料制备技术,化学工业出版社,2002年第一版.
    3.李伟,南京大学博士论文,2005.
    4.吴迪,南京大学博士论文,2000.
    5.B.J. J. Zelinski, et al. J. Phys. Chem. Solids. 45, 1069 (1984).
    6.孙慧,扬州大学硕士论文,2006.
    7.杨邦朝,王文生,薄膜物理与技术,1994年第一版,电子科技大学出版社.
    8.B. A. Tuttle and R. W. Schwartz, Mater. Res. Bull. 49, (1996).
    9.李树棠,晶体X射线衍射学基础,1998年第一版,冶金工业出版社.
    10.马礼敦主编,高等结构分析(第二版),2006年,复旦大学出版社.
    11.殷之文主编,电介质物理学(第二版),2003年,科学出版社.
    12. http://www.ferrodevices.com/Assets/appnote/gappresentation.pdf美国Radiant Technology公司在线帮助手册
    13. RT66A Standard Ferroelectric Test System V2.1, Operating Manual, Radiant Tech.
    14.张福学主编,现代压电学,2001年,科学出版社.
    15.钟维烈,铁电物理学,2000年,科学出版社.
    1 M. D. Maeder and D. Damjanovic, "Piezoelectric Materials in Devices," edited by N. Setter (EPFL, Lausanne), 289 (2002).
    2 B. H. Park, B. S. Kang, S. D. Bu et al., "Lanthanum-substitued bismuth titanate for use in non-volatile memories," Nature 401, 682 (1999).
    3 B. Aurivillius, "Bismuth oxides with layer-type structure," Arkiv Kemi, 463-465 (1949).
    4 R. A. Armstrong and R. E. Newnham, "Bismuth titanate solid solutions," Materials Research Bulletin 7 (10), 1025-1034 (1972).
    5 P. C. Joshi, S. B. Krupanidhi, and Abhai Mansingh, "Rapid thermallyprocessed ferroelectric Bi[sub 4]Ti[sub 3]O[sub 12] thin films," Journal of Applied Physics 72 (11), 5517-5519 (1992).
    6 Shan-Tao Zhang, Bin Yang, Yan-Feng Chen et al., "SrBi[sub 4]Ti[sub 4]O[sub 15] thin films and their ferroelectric fatigue behaviors under varying switching pulse widths and frequencies," Journal of Applied Physics 91 (5), 3160-3164 (2002).
    7 D. S. Sohn, W. X. Xianyu, W. I. Lee et al., "Ferroelectric SrBi[sub 4]Ti[sub 4]O[sub 15] thin films with high polarization grown on an IrO[sub 2] layer," Applied Physics Letters 79 (22), 3672-3674 (2001).
    8 T. Kikuchi, A. Watanabe, and K. Uchida, "A family of mixed-layer type bismuth compounds," Materials Research Bulletin 12 (3), 299-304 (1977).
    9 Yuji Noguchi, Masaru Miyayama, and Tetsuichi Kudo, "Ferroelectric properties of intergrowth B4Ti3O12--SrBi4Ti4O15 ceramics," Applied Physics Letters 77 (22), 3639-3641 (2000).
    10 David A. Jefferson, M. K. Uppal, C. N. R. Rao et al., "Elastic strain at the solid-solid interface in intergrowth structures : A novel example of partial structure refinement by HREM," Materials Research Bulletin 19 (11), 1403-1409 (1984).
    11 R. E. Melgarejo, M. S. Tomar, S. Bhaskar et al., "Large ferroelectric response in Bi4-xNdxTi3O12 films prepared by sol--gel process," Applied Physics Letters 81 (14), 2611-2613 (2002).
    12 Takayuki Watanabe, Hiroshi Funakubo, Manabu Mizuhira et al., "Site definition and characterization of La-substituted Bi4Ti3O12 thin films prepared by metalorganic chemical vapor deposition," Journal of Applied Physics 90 (12), 6533-6535 (2001).
    13 Uong Chon, Hyun M. Jang, M. G. Kim et al., "Layered Perovskites with Giant Spontaneous Polarizations for Nonvolatile Memories," PhysicalReview Letters 89 (8), 087601 (2002).
    14 J. S. Zhu, D. Su, X. M. Lu et al., "La-doped effect on the ferroelectric properties of Bi4Ti3O12--SrBi4Ti4O15 thin film fabricated by pulsed laser deposition," Journal of Applied Physics 92 (9), 5420-5424 (2002).
    15 Jun Zhu, Rong Hui, Xiang Yu Mao et al., "Properties and lanthanum distribution of Bi4-xLaxT3O12-SrBi 4-yLayTi4O15 intergrowth ferroelectrics," Journal of Applied Physics 94 (8), 5143-5146 (2003).
    16 Z. G. Yi, Y. X. Li, Y. Wang et al., "Dielectric and ferroelectric properties of intergrowth Bi[sub 7 - x]La[sub x]Ti[sub 4]NbO[sub 21] ceramics," Applied Physics Letters 88 (15), 152909 (2006).
    17 Z. G. Yi, Y. X. Li, J. T. Zeng et al., "Lanthanum distribution and dielectric properties of intergrowth Bi[sub 5 - x]La[sub x]TiNbWO[sub 15] ferroelectrics," Applied Physics Letters 87 (20), 202901 (2005).
    18 A. Garg, A. Snedden, P. Lightfoot et al., "Investigation of structural and ferroelectric properties of pulsed-laser-ablated epitaxial Nd-doped bismuth titanate films," Journal of Applied Physics 96 (6), 3408-3412 (2004).
    19 J. H. Li, Y. Qiao, X. L. Liu et al., "Microstructure and ferroelectric properties of sol-gel derived Bi[sub 3.15]Nd[sub 0.85]Ti[sub 3]O[sub 12] thin films on Pt/Ti/SiO[sub 2]/Si(100)," Applied Physics Letters 85 (15), 3193-3195 (2004).
    20 X. L. Zhong, J. B. Wang, X. J. Zheng et al., "Structure evolution and ferroelectric and dielectric properties of Bi[sub 3.5]Nd[sub 0.5]Ti[sub 3]O[sub 12] thin films under a moderate temperature annealing," Applied Physics Letters 85 (23), 5661-5663 (2004).
    21 Wei Wang, Jun Zhu, Xiang-yu Mao et al., "Properties of Nd-substituted SrBi4Ti4O15 ferroelectric ceramics," J. Phys. D: Appl. Phys. 39, 370-374 (2006).
    22 R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen, Crystallogr. 32, 751 (1976).
    23 Hiroshi Uchida, Hiroki Yoshikawa, Isao Okada et al., "Approach for enhanced polarization of polycrystalline bismuth titanate films by Nd[sup 3+]/V[sup 5+] cosubstitution," Applied Physics Letters 81 (12), 2229-2231 (2002).
    24 Jun Zhu, Xiao-bing Chen, Zeng-ping Zhang et al., "Raman and X-ray photoelectron scattering study of lanthanum-doped strontium bismuth titanate," Acta Materialia 53 (11), 3155-3162 (2005).
    25 Xiang-yu Mao, Fu-wen Mao, and Xiao-bing Chen, "Ferroelectric and Dielectric Properties of Bi4-xNdxTi3O12 Ceramics," Integrated Ferroelectrics 79, 155-161 (2006).
    26 Minoru Osada, Masaru Tada, Massato Kakihana et al., "Cation Distribution and Structural Instability in Bi4-xLaxTi3O12," Jpn. J. Appl. Phys. 40, 5572-5575 (2001).
    27 R. Maalal, M. Manier, and J. P. Mercurio, "Dielectric Properties of the Mixed Aurivillius Phases MIIBi8Ti7O27(MII=Ca, Sr, Ba and Pb)," J. Eur. Ceram.Soc. 15, 1135-1140 (1995).
    28 A. F. Devonshire, Philos. Mag. 42, 1065 (1951).
    29 Veng Cheong Lo, "Modeling the role of oxygen vacancy on ferroelectric properties in thin films," Journal of Applied Physics 92 (11), 6778-6786 (2002).
    30 Y. Y. Yao, C. H. Song, P. Bao et al., "Doping effect on the dielectric property in bismuth titanate," Journal of Applied Physics 95 (6), 3126-3130 (2004).
    31 Jung-Kun Lee, Chang-Hoon Kim, Hee-Sang Suh et al., "Correlation between internal stress and ferroelectric fatigue in Bi[sub 4 - x]La[subx]Ti[sub 3]O[sub 12] thin films," Applied Physics Letters 80 (19), 3593-3595 (2002).
    32 O. Bidault, P. Goux, M. Kchikech et al., "Space-charge relaxation in perovskites," Physical Review B 49 (12), 7868 (1994).
    33 Chen Ang, Zhi Yu, and L. E. Cross, "Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3," Physical Review B 62 (1), 228 (2000).
    34 Zhiyong Zhou, Xianlin Dong, Haixue Yan et al., "Doping effects on the electrical conductivity of bismuth layered Bi[sub 3]TiNbO[sub 9]-based ceramics," Journal of Applied Physics 100 (4), 044112 (2006).
    35 W. L. Warren, G. E. Pike, K. Vanheusden et al., "Defect-dipole alignment and tetragonal strain in ferroelectrics," Journal of Applied Physics 79 (12), 9250-9257 (1996).
    36 Rainer Waser, "Bulk Conductivity and Defect Chemistry of Acceptor-Doped Strontium Titanate in the Quenched State," Journal of the American Ceramic Society 74 (8), 1934-1940 (1991).
    37 Y. J. Qi, C. J. Lu, J. Zhu et al., "Ferroelectric and dielectric properties of Ca[sub 0.28]Ba[sub 0.72]Nb[sub 2]O[sub 6] single crystals of tungsten bronzes structure," Applied Physics Letters 87 (8), 082904 (2005).
    38 Wei Li, Aiping Chen, Xiaomei Lu et al., "Collective domain-wall pinning of oxygen vacancies in bismuth titanate ceramics," Journal of Applied Physics 98 (2), 024109 (2005).
    39 Di Wu, Aidong Li, and Naiben Ming, "Dielectric characterization of Bi[sub 3.25]La[sub 0.75]Ti[sub 3]O[sub 12] thin films," Applied Physics Letters 84 (22), 4505-4507 (2004).
    40 Y. Shimakawa, Y. Kubo, Y. Nakagawa et al., "Crystal structure and ferroelectric properties of ABi2Ta2O9 (A=Ca, Sr, and Ba)," PhysicalReview B 61 (10), 6559 (2000).
    41 Sei Ki Kim, Masaru Miyayama, and Hiroaki Yanagida, "Electrical anisotropy and a plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal," Materials Research Bulletin 31 (1), 121-131 (1996).
    42 Yuji Noguchi, Hiroyuki Shimizu, Masaru Miyayama et al., "Ferroelectric properties and Structure distortion in A-site-modified SrBi2Ta2O9," Jpn. J. Appl. Phys. 40, 5812-5815 (2001).
    43 Rasmi R. Das, P. Bhattacharya, W. Perez et al., "High remanent polarization in Sr[sub 1 - x]Ca[sub x]Bi[sub 2]Ta[sub 2]O[sub 9] ferroelectric thin films," Applied Physics Letters 81 (21), 4052-4054 (2002).
    44 Y. P. Chen, Y. Y. Yao, Z. H. Bao et al., "Study on ferroelectric and dielectric properties of La-doped SrBi4Ti4O15 ceramics," Materials Letters 57 (22-23), 3623-3628 (2003).
    45 Hiroshi Irie, Masaru Miyayama, and Tetsuichi Kudo, "Enhanced Ferroelectric Properties of V-Doped BaBi4Ti4O15 Single Crystal," Jpn. J. Appl. Phys. 40, 239-243 (2001).
    46 Xiao-Bing Chen, Rong Hui, Jun Zhu et al., "Relaxor properties of lanthanum-doped bismuth layer-structured ferroelectrics," Journal of Applied Physics 96 (10), 5697-5700 (2004)
    1 B. Aurivillius, "Bismuth oxides with layer-type structure," Arkiv Kemi, 463-465 (1949).
    2 B. H. Park, B. S. Kang, S. D. Bu et al., "Lanthanum-substitued bismuth titanate for use in non-volatile memories," Nature 401, 682 (1999).
    3 E. C. Subbarao, "A family of ferroelectric bismuth compounds," Journal of Physics and Chemistry of Solids 23 (6), 665-676 (1962).
    4 James F. Scott and Carlos A. Paz de Araujo, "Ferroelectric Memories,"Science 246 (4936), 1400-1405 (1989).
    5 Su Jae Kim, Chikako Moriyoshi, Sayaka Kimura et al., "Direct observation of oxygen stabilization in layered ferroelectric Bi[sub 3.25]La[sub 0.75]Ti[sub 3]O[sub 12]," Applied Physics Letters 91 (6), 062913 (2007).
    6 Y. Noguchi, I. Miwa, Y. Goshima et al., "Defect control for large remanent polarization in bismuth titanate ferroelectrics-Doping effect of higher-valent cations," Jpn. J. Appl. Phys. 39, L1259-L1262 (2000).
    7 Yuji Noguchi and Masaru Miyayama, "Large remanent polarization of vanadium-doped Bi[sub 4]Ti[sub 3]O[sub 12]," Applied Physics Letters 78 (13), 1903-1905 (2001).
    8 T. Kikuchi, A. Watanabe, and K. Uchida, "A family of mixed-layer type bismuth compounds," Materials Research Bulletin 12 (3), 299-304 (1977).
    9 R. Maalal, M. Manier, and J. P. Mercurio, "Dielectric Properties of the Mixed Aurivillius Phases MIIBi8Ti7O27(MII=Ca, Sr, Ba and Pb)," J. Eur. Ceram.Soc. 15, 1135-1140 (1995).
    10 Wei Wang, Jun Zhu, Xiang-Yu Mao et al., "Properties of tungsten-doped Bi4Ti3O12-SrBi4Ti4O15 intergrowth ferroelectrics," Materials Research Bulletin 42 (2), 274-280 (2007).
    11 Yuji Noguchi, Masaru Miyayama, and Tetsuichi Kudo, "Ferroelectric properties of intergrowth B4Ti3O12--SrBi4Ti4O15 ceramics," Applied Physics Letters 77 (22), 3639-3641 (2000).
    12 J. S. Zhu, H. X. Qin, Z. H. Bao et al., "X-ray diffraction and Raman scattering study of SrBi[sub 2]Ta[sub 2]O[sub 9] ceramics and thin films with Bi[sub 3]TiNbO[sub 9] addition," Applied Physics Letters 79 (23), 3827-3829 (2001).
    13 Can Jin, Chen-peng Du, Jun Zhu et al., "Ferroelectric and dielectricproperties of niobium-doped SrBi4Ti4O15 ceramics," J. Phys. D: Appl. Phys. 39, 2415-2418 (2006).
    14 R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen, Crystallogr. 32, 751 (1976).
    15 Y. Y. Yao, C. H. Song, P. Bao et al., "Doping effect on the dielectric property in bismuth titanate," Journal of Applied Physics 95 (6), 3126-3130 (2004).
    16 Jun Zhu, Xiao-Bing Chen, Jun-hui He et al., "Investigations on Raman and X-ray photoemission scattering patterns of vanadium-doped SrBi4Ti4O15 ferroelectric ceramics," Physics Letters A 362 (5-6), 471-475 (2007).
    17 Wei Wang, Shi-Pu Gu, Xiang-Yu Mao et al., "Effect of Nd modification on electrical properties of mixed-layer Aurivillius phase Bi[sub 4]Ti[sub 3]O[sub 12]-SrBi[sub 4]Ti[sub 4]O[sub 15]," Journal of Applied Physics 102 (2), 024102 (2007).
    18 Yuji Noguchi, Masaru Miyayama, and Tetsuichi Kudo, "Direct evidence of A-site-deficient strontium bismuth tantalate and its enhanced ferroelectric properties," Physical Review B 63 (21), 214102 (2001).
    19 Wei Li, Yuan Yin, Dong Su et al., "Ferroelectric properties of polycrystalline bismuth titanate films by Nd[sup 3+]/W[sup 6+] cosubstitution," Journal of Applied Physics 97 (8), 084102 (2005).
    20 T. Sakai, T. Watanabe, M. Osada et al., "Crystal Structure and Ferroelectric Property of Tungsten-sbustituted Bi4Ti3O!2 Thin Films Prepared by Metal-Organic Chemical Vapor Deposition," Jpn. J. Appl. Phys. 42, 2850-2852 (2003).
    21 A. F. Devonshire, Philos. Mag. 42, 1065 (1951).
    22 Q. M. Zhang, W. Y. Pan, S. J. Jang et al., "Domain wall excitations and their contributions to the weak-signal response of doped lead zirconatetitanate ceramics," Journal of Applied Physics 64 (11), 6445-6451 (1988).
    23 Q. M. Zhang, H. Wang, N. Kim et al., "Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics," Journal of Applied Physics 75 (1), 454-459 (1994).
    24 W. P. Lu, J. Zhu, H. Sun et al., "Dielectric loss of niobium-doped and undoped polycrystalline Sr2Bi4Ti5O18," J. Mater. Res. 20, 971-974 (2005).
    25 D. Y. Suarez, J. Mater. Res. 16, 3139 (2001).
    26 B. H. Park, S. J. Hyun, S. D. Bu et al., "Differences in nature of defects between SrBi[sub 2]Ta[sub 2]O[sub 9] and Bi[sub 4]Ti[sub 3]O[sub 12]," Applied Physics Letters 74 (13), 1907-1909 (1999).
    27 D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998).
    28 R. Maalal, Ml. Manier, J. P. Mercurio et al., Silic. Ind. 5-6, 161 (1994).
    29 Ismunandar, T. Kamiyama, A. Hoshikawa et al., "Structural studies of five layer Aurivillius oxides: A2Bi4Ti5O18 (A=Ca, Sr, Ba and Pb)," Journal of Solid State Chemistry 177 (11), 4188-4196 (2004).
    1 W. Prellier, M. P. Singh, and P. Murugavel, "The single-phase multiferroic oxides: from bulk to thin film," J. Phys.: Condens. Matter 17, R803-R832 (2005).
    2 R. Ramesh and Nicola A. Spaldin, "Multiferroics: progress and prospects in thin films," Nature Materials 6, 21-29 (2007).
    3 G. A. Smolenskii and I. Chupis, Sov. Phys. Usp. 25, 475 (1982).
    4 James R. Teague, Robert Gerson, and W. J. James, "Dielectric hysteresis in single crystal BiFeO3," Solid State Communications 8 (13), 1073-1074 (1970).
    5 G. L. Yuan, Siu Wing Or, J. M. Liu et al., "Structural transformation and ferroelectromagnetic behavior in single-phase Bi[sub 1 - x]Nd[sub x]FeO[sub 3] multiferroic ceramics," Applied Physics Letters 89 (5), 052905 (2006).
    6 Kenji Ueda, Hitoshi Tabata, and Tomoji Kawai, "Coexistence of ferroelectricity and ferromagnetism in BiFeO[sub 3]--BaTiO[sub 3] thin films at room temperature," Applied Physics Letters 75 (4), 555-557(1999).
    7 Y. P. Wang, L. Zhou, M. F. Zhang et al., "Room-temperature saturated ferroelectric polarization in BiFeO[sub 3] ceramics synthesized by rapid liquid phase sintering," Applied Physics Letters 84 (10), 1731-1733 (2004).
    8 B. H. Park, B. S. Kang, S. D. Bu et al., "Lanthanum-substitued bismuth titanate for use in non-volatile memories," Nature 401, 682 (1999).
    9 Sei Ki Kim, Masaru Miyayama, and Hiroaki Yanagida, "Electrical anisotropy and a plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal," Materials Research Bulletin 31 (1), 121-131 (1996).
    10 F. Kubel and H. Schmid, "X-ray room temperature structure from single crystal data, powder diffraction measurements and optical studies of the Aurivillius phase Bi5(Ti3Fe)O15," Ferroelectrics 129, 101-112 (1992).
    11 R. S. Singh, T. Bhimasankaram, G. S. Kumar et al., "Dielectric and magnetoelectric properties of Bi5FeTi3O15," Solid State Communications 91 (7), 567-569 (1994).
    12 A. Srinivas, S. V. Suryanarayana, G. S. Kumar et al., "Magnetoelectric measurements on Bi5FeTi3O15 and Bi6Fe2Ti3O18," J. Phys.: Condens. Matter 11, 3335-3340 (1999).
    13 M. S. Tomar, R. E. Melgarejo, A. Hidalgo et al., "Structural and ferroelectric studies of Bi[sub 3.44]La[sub 0.56]Ti[sub 3]O[sub 12] films," Applied Physics Letters 83 (2), 341-343 (2003).
    14 Jun Zhu, Xiao-bing Chen, Zeng-ping Zhang et al., "Raman and X-ray photoelectron scattering study of lanthanum-doped strontium bismuth titanate," Acta Materialia 53 (11), 3155-3162 (2005).
    15 S. Kojima, R. Imaizumi, Hamazaki S et al., "Raman Scattering Study ofBismuth Layer-Structure Ferroelectrics," Jpn. J. Appl. Phys. 33, 5559-5564 (1994).
    16 Minoru Osada, Masaru Tada, Massato Kakihana et al., "Cation Distribution and Structural Instability in Bi4-xLaxTi3O12," Jpn. J. Appl. Phys. 40, 5572-5575 (2001).
    17 Wei Wang, Shi-Pu Gu, Xiang-Yu Mao et al., "Effect of Nd modification on electrical properties of mixed-layer Aurivillius phase Bi[sub 4]Ti[sub 3]O[sub 12]-SrBi[sub 4]Ti[sub 4]O[sub 15]," Journal of Applied Physics 102 (2), 024102 (2007).
    18 Monica Popa, Johannes Frantti, and Masato Kakihana, "Characterization of LaMeO3 (Me: Mn, Co, Fe) perovskite powders obtained by polymerizable complex method," Solid State Ionics 154-155, 135-141 (2002).
    19 Manoj K. Singh, Hyun M. Jang, Sangwoo Ryu et al., "Polarized Raman scattering of multiferroic BiFeO[sub 3] epitaxial films with rhombohedral R3c symmetry," Applied Physics Letters 88 (4), 042907 (2006).
    20 Shan-Tao Zhang, Bin Yang, Yan-Feng Chen et al., "SrBi[sub 4]Ti[sub 4]O[sub 15] thin films and their ferroelectric fatigue behaviors under varying switching pulse widths and frequencies," Journal of Applied Physics 91 (5), 3160-3164 (2002).
    21 Digamber G. Porob and Paul A. Maggard, "Synthesis of textured Bi5Ti3FeO15 and LaBi4Ti3FeO15 ferroelectric layered Aurivillius phases by molten-salt flux methods," Materials Research Bulletin 41 (8), 1513-1519 (2006).
    22 C. Y. Yau, R. Palan, K. Tran et al., "Raman study of Bi site-occupancy effect on orientation and polarization in Bi[sub 4]Ti[sub 3]O[sub 12] thin films," Applied Physics Letters 85 (20), 4714-4716 (2004).
    23 Jun Zhu, Xiao-Bing Chen, Jun-hui He et al., "Investigations on Raman and X-ray photoemission scattering patterns of vanadium-doped SrBi4Ti4O15 ferroelectric ceramics," Physics Letters A 362 (5-6), 471-475 (2007).
    24 A. Hushur, J. Ko, S. Kojima et al., "Raman Scattering Study of A- and B-site Substitutions in Ferroelectric Bi4Ti3O!2," J. Kor. Phys. Soc. 41, 763-768 (2002).
    25 H. Watanabe, T. Mihara, H. Yoshimori et al., "Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds," Jpn. J. Appl. Phys. 34, 5240-5244 (1995).
    26 Hui Sun, Jun Zhu, Hong Fang et al., "Large remnant polarization and excellent fatigue property of vanadium-doped SrBi4Ti4O15 thin films," Journal of Applied Physics 100 (7), 074102 (2006).
    27 Shan-Tao Zhang, Yi Zhang, Ming-Hui Lu et al., "Substitution-induced phase transition and enhanced multiferroic properties of Bi[sub 1 - x]La[sub x]FeO[sub 3] ceramics," Applied Physics Letters 88 (16), 162901 (2006).
    28 G. L. Yuan, Siu Wing Or, Helen Lai Wa Chan et al., "Reduced ferroelectric coercivity in multiferroic Bi[sub 0.825]Nd[sub 0.175]FeO[sub 3] thin film," Journal of Applied Physics 101 (2), 024106 (2007).
    29 Gary W. Pabst, Lane W. Martin, Ying-Hao Chu et al., "Leakage mechanisms in BiFeO[sub 3] thin films," Applied Physics Letters 90 (7), 072902 (2007).
    30 Hai-Xia Lu, Xiang-yu Mao, Wei Wang et al., "Structural and Multiferroic Properties of BiFe0.5Co0.5O3 Ceramics," Progress In Electromagnetics Research Symposium Proceedings March 24-28, 1093-1096 (2008).
    31 X. Y. Mao, W. Wang, and X. B. Chen, "Electrical and magnetic properties of Bi5FeTi3O15 compound prepared by inserting BiFeO3 intoBi4Ti3O12," Solid State Communications 147 (5-6), 186-189 (2008).
    32 P. S. Anil Kumar, P. A. Joy, and S. K. Date, "Origin of the cluster-glass-like magnetic properties of the ferromagnetic system," Journal of Physics: Condensed Matter 10 (29), L487-L493 (1998).
    33 M-Q Cai, J-C Liu, G-W Yang et al., "First-principles study of structural, electronic, and multiferroic properites in BiCoO3," J. Chem. Phys. 126, 154708 (2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700