氯苯类化合物和重金属对四膜虫的联合毒性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用微量热法研究了氯苯类化合物和重金属的单一及联合毒性,并用ICP-AES探讨细胞中金属离子的积累情况;用ATR-FTIR研究了细胞膜上官能团的变化;用SEM观察细胞受药物作用下表面的破损情况。并探讨了毒性机理。具体结果如下:
     (1)采用微量热法研究了五种氯苯类化合物对四膜虫的毒性效应,在五种氯苯类化合物的作用下,生长速率常数K随着化合物浓度的增加而减小,说明化合物对四膜虫的生长代谢产生了抑制作用。这五种化合物的毒性大小顺序为:1,2,4-三氯苯>邻二氯苯>对二氯苯>间二氯苯>氯苯。其半抑制浓度分别为21、30、37、38、45 mg/L。采用生物显微镜观察发现四膜虫在受到药物作用下,细胞膜慢慢破损,形貌发生明显变化,最终内部物质溢出,改变了细胞膜的渗透性。采用ATR-FTIR研究了四膜虫在氯苯类化合物作用下,细胞膜上的胺基峰和P02ˉ峰变化明显,部分峰消失,说明药物对细胞膜有一定的破坏程度。
     (2)采用微量热法研究了三种重金属离子对四膜虫的毒性效应,随着Cu2+、Cd2+、Cr3+浓度的增加,K值逐渐减小;金属离子不同抑制程度不同,其半抑制浓度分别为150、0.405、100 mg/L,因而这三种重金属离子对四膜虫的毒性大小顺序为:Cd2+>Cr3+>Cu2+。通过ICP-AES研究表明:随着加入金属离子量的增加,四膜虫细胞内金属离子的量也增多,但是达到一个最大值后反而减少,说明足够的药物破坏细胞膜的通透性,细胞内外的金属离子会产生交换。结合四膜虫细胞膜的分子结构,通过ATR-FTIR的研究细胞膜上官能团的变化情况,结果表明:金属离子的加入改变了细胞膜上的官能团,使有些官能团的峰值减少,有些官能团消失,引起了细胞膜的破坏。
     (3)采用微量热法研究了三种重金属离子和氯苯类化合物对四膜虫的联合毒性研究,联合作用下,K也随着药物浓度的增加而减少,抑制率I逐渐增大。不同的联合物质,抑制程度不同,相同的金属离子,不同的氯苯物质,抑制程度也不相同。采用相加指数法对联合毒性进行了评价,结果表明研究的体系都属于协同作用。通过ATR-FTIR的研究细胞膜上官能团的变化发现联合作用同样造成了细胞膜上最外层的亲水端上的胺基和P02ˉ的破坏,且破坏程度比单一毒性明显要强。采用FE-SEM法观察了四膜虫表面细胞膜的微观情况,发现受到毒物的作用后细胞出现明显空洞,足够时间后细胞会有很大程度的受损。
     (4)对氯苯类化合物的毒性进行了定量构效关系的研究,构建了QSAR模型:logIC50=-0.3781ogKow+0.476ELOMO-0.618△QnR-1.804(n=5, R=0.706, SE= 0.132),对毒性机理探讨的结果是氯苯类化合物的毒性作用主要发生在糖蛋白质分子中的—H,—NH—等亲核基团上,它们破坏细胞膜上的磷脂和糖蛋白,氯苯穿过细胞膜进入细胞,与大分子发生电荷转移,从而影响细胞的正常代谢;过量的铜和铬会使形成的金属蛋白,金属核酸络合物过量而引起毒性效应。联合毒性的作用类型为协同作用,可能是由于两者共同存在于生物体内,金属物质形成的络合物、螯合物,及某种金属蛋白酶,能促进氯苯物质进入靶点,从而快速的破坏细胞膜的通透性,造成毒性加强。
In this paper, microcalorimetry was used to study the single toxicity and joint toxicity on Tetrahymena, the accumulation of intracellular heavy metals was studied by ICP-AES, damage of the cell membrane and change of function groups was studied by ATR-FTIR spectra, the cell surface damage on the control of the compounds was observed by SEM, and then, the mechanisms of toxicity was explored. The main results and conclusions are summarized as follows:
     1. The toxicity of five chlorobenzenes to Tetrahymena growth metabolism was studied by microcalorimetry. And the growth constant (k) decreases with the increasing of drug concentration, indicating that the growth metabolism had been inhibited. The results suggest that the order of toxicity is 1,2,4-trichlorobenzene> o-dichlorobenzene> p-dichlorobenzene> m-dichlorobenzene> chlorobenzene.These five compounds half-inhibition concentrations are 21,30,37,38,45 mg/L. Biological microscopy was used to observe the membrane damage slowly, morphology change significantly, until internal material spill. It reflected drugs changed the permeability of cell membrane. ATR-FTIR spectra showed that under the action of chlorobenzenes, the amine and PO2 peak change significantly, and some peaks disappeared, indicating that certain compounds can cause the cell membrane damage.
     2. The toxicity of three heavy metals to Tetrahymena growth metabolism was studied by microcalorimetry. And the growth constant (k) decreased with the increasing of metals concentrations, indicating that the growth metabolism had been inhibited. The results suggest that the order of toxicity is Cd2+>Cr3+>Cu2+.These three metals half-inhibition concentrations are 150、0.405、100 mg/L. By ICP-AES results showed that:with the increase in the amount of added metal ions, Tetrahymena cells also increased the amount of metal ions, but it has decreased after reaching a maximum value, indicating that the enough metal ions damaged the cell membrane permeability, both inside and outside cells metal ions happened the exchange. Tetrahymena with the molecular structure of cell membranes, ATR-FTIR spectra showed that under the action of chlorobenzenes,the amine and PO2peak changed significantly, and some peaks disappeared, indicating that certain metal ions damaged the cell membrane.
     3. The joint toxicity of five chlorobenzenes and three heavy metals to Tetrahymena growth metabolism was studied by microcalorimetry. Under the combined effect, k was also increased with the reduction of mixture concentrations, the inhibition rate I gradually increased. Different joint compounds, different degrees of inhibition, with the same metal ions, and different chlorobenzenes, were not the same degree of inhibition. The joint toxicity was evaluated using Additive Index method. The results showed that the studied system was all synergies. By ATR-FTIR study showed that under the action of joint drug, the amine and PO2-peak of the phospho-lipid phospho-diester, both in the hydrophobic end exposed to the outer layer were changed significantly, and some peaks disappeared, indicating that certain drugs on the cell membrane damage. And damage was significantly stronger than a single toxic. Surface of the cell membrane of Tetrahymena micro-situation was observed by FE-SEM, the role of drugs found to be significant after the empty cells; the cells have sufficient time to a large degree of damage.
     4. The toxicity of chlorobenzene compounds in a quantitative structure-activity relationship was studied, QSAR model is constructed:logIC50 =- 0.378logKOW +0.476 ELOMO-0.618△QπR-1.804 (n= 5, R= 0.706, SE= 0.132). Mechanism of toxicity of chlorobenzenes compounds, mainly happened in the sugar and protein molecules of the-SH,-NH-and other pro-nuclear groups, they damage the cell membrane phospholipids and glycoproteins, chlorobenzenes through the cell membrane into the cells, and then transfer charge with macromolecules, thus affecting the normal metabolism of cells; excess copper and chromium metal will form a protein, nucleic acid complexes, when these were excessive, metal caused toxic effects. synergy type of joint toxicity may be due to both co-exist in vivo, the formation of metals complex, chelate, and a metal protease, can promote the chlorobenzene substances into the target, so fast destruction the permeability of cell membranes, resulting in toxic strengthened.
引文
[1]马宏宇,王忠强.水污染与水域生态系统的保护[J].中国环境管理,2009,3:16-19.
    [2]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001.
    [3]US Environmental Protection Agency. Criteria and standards division:ambient water quality criteriafor chlorinated benzenes, EPA 440-/5-80/028[S]. Washington, D.C. Department of Commerce National Technical Information Service,1980:1-215.
    [4]李建政.环境毒理学[M].北京:化学工业出版社,2006.
    [5]郑振华,周培疆,吴振斌.复合污染研究的新进展[J].应用生态学报,2001,12(3):469-473.
    [6]周启星.复合污染生态学[M].中国环境科学出版社,1995.
    [7]梁继东,周启星.甲胺磷、乙草胺和铜单—与复合污染对蚯蚓的毒性效应研究[J].应用生态学报,2003,14(4):593-596.
    [8]孔繁翔.环境生物学.北京:高等教育出版社,2000.
    [9]Xu S, Nirmalakhandan N. Use of QSAR models in predicting joint effects in multi-compo nent mixtures of organic chemicals[J]. Wat Res,1998,32:2391-2399.
    [10]Prakash J, Mirmalakhandan N, Sun B, et al. Toxicity of binary mixtures of organic chemi-cals to microorganisms[J]. Wat Res,1996,30(6):1459-1463.
    [11]Lange JH, Thomulka KW. Use of the Vibrio haveyi Toxicity Test for Evaluating Mixture Interactions of Nitrobenzene and Dinitrobenzene[J]. Ecotoxicology and Environmental Safety,1997,38:2-12.
    [12]童建,冯致英.环境化学物的联合毒作用[M].上海科学技术文献出版社,1994.
    [13]张毓琪,等.环境生物毒理学[M].天津大学出版社,1993.
    [14]Eifac. Working Party on water quality criteria for European freshwater fish:Revised report on combined effects on freshwater fish and other aquatic life of mixtures of toxicants in water[R]. EIFAC Tech Paper,1987,37:1.
    [15]Knemann, H. Quantitative structure-activity relationships in fish toxicity studies. Part 1: relationships for 50 industrial pollutants[J]. Toxicology,1981,19:209-225.
    [16]高继军,张力平,马梅.应用淡水发光菌研究二元重金属混合物的联合毒性[J].上海环境科学,2003,22(11):772-775.
    [17]王银秋,张迎梅,赵东芹.重金属镉、铅、锌对鲫鱼和泥鳅的毒性[J].甘肃科学学报, 2003,15(1):35-38.
    [18]苏丽敏,袁星,丁蕴铮.用QSAR模型预测苯酚类化合物对发光菌的联合毒性[J].中国环境科学,2003,23(2):148-151.
    [19]Chung-Yuan Chen, Cheng-Liang Lu. An analysis of the combined effects of organic toxicants[J]. TheScience of the Total Environment,2002,289:123-132.
    [20]杜娟.有机磷农药对卤虫的联合毒性研究[J].江苏环境科技,2001,14(1):9-10.
    [21]刘国光,徐海娟,王莉霞,等.锐劲特和高效氯氰菊酯对原生动物群落的联合毒性[J].环境科学,2005,26(1):185-189.
    [22]戴家银,郑微云,王淑红.重金属和有机磷农药对真鲷和平鲷幼体的联合毒性研究[J].环境科学,1997,18(5):44-46,54.
    [23]姚庆祯,臧维玲,戴习林.铜、镉、敌敌畏和甲胺磷对南美白对虾幼虾的急性致毒及相互关系[J].上海水产大学学报,2003,12(2):117-122.
    [24]Eduardo Cyrino de Oliveira-Filho, Renato Matos Lopes. Comparative study on the susceptibility offreshwater species to copper-based pesticides[J]. Chemosphere,2004,56: 369-374.
    [25]Renata Roji, kova-Padrtovaand Blahoslav Mar, alek. Selection and Sensitivity Comparisons of Algal Species for Toxicity Testing[J]. Chemosphere,1999,38:3329-3338.
    [26]WHO(World Health Organization). Copper. Environmental Health Criteria 200[S]. IPCS-International Programme on Chemical Safety, WHO, Geneva,1998.
    [27]Tim Verslycke, Marnix Vangheluwe, Dagobert Heijerick. The toxicity of metal mixtures to the estuarine mysid Neomysis integer(Crustacea:Mysidacea)under changing salinity[J]. Aquatic Toxicology,2003,64:307-315.
    [28]Verhaar, Hjm, Busser, Fjm, Hermens, Jlm. A surrogate parameter for the baseline toxicity content of contaminated water[J]. Environ Sci Technol,1995,29(3):726-734.
    [29]Zhifen Lin, Ping Zhong, Kedong Yin. Quantification of joint effect for hydrogen bond and development of QSARs for predicting mixture toxicity[J]. Chemosphere,2003,52:1199-1208.
    [30]陈碧鹃,袁有宪,王会平.乙醛、对苯二甲酸、乙二醇对鲢、草鱼的联合毒性[J].中国水产科学,2001,8(1):73-76.
    [31]Bliss CF. The toxicity of poisons applied jointly[J]. Ann Appl Biol,1939,26:585-591.
    [32]BerenbaumMC. The exPeetedef feetofa combination of agents:The general solution[J] Jou nral of Theoretical Biology.1985,114:413-431.
    [33]何勇田,熊先哲.复合污染研究进展[J].环境科学,1994,15(6):79-84.
    [34]Nirmalakhandan N, Arulgnanendran V, et al. Toxicity of mixtures of organic chemicals to micro-organisms[J]. Water Research,1994,28(3):543-551.
    [35]HiromiNishizono, KohsukeKubota, ShizuoSuzuki. Aceumulation of heavy metals in cell Walls of Polygonum cusPidatum roots ftom metalliferous habitats[J]. Plant and Cell. Physiology.1989,30(4):595-598.
    [36]Lee C S F. Arsenite enhances DNA double strand breads and cell killing of methyl methane sulfonate reated cells by inhibiting the excisim of alkali-labile sites[J]. Mutat Res.1993,294 (1):21-28.
    [37]杨志敏,华筠,李晶.小麦发芽期锌的毒害作用和钙的去毒害作用的研究[J].环境科学学报,1992,12(2):230-235.
    [38]Stratton G W, et al. The effect of mercuric, cadmium, and nickel ion combinations on a blue-green alga[J]. Chemosphere,1979,8(10):731-740.
    [39]Lamprecht I. The beauties of calorimetry. Journal of Thermal Analysis and Calorimetry,2009, 97:7-10.
    [40]Hemminger W, Hohne G W H. Calorimetry-Fundamentals and Practice. Velag Chemie, Weinheim,1984.
    [41]Calvet E, part H, Skinner H A. Recent Progress in Microcalorimetry. Pergamon Press, London,1963.
    [42]高红梅,平面电磁波与一维强碰撞弱电离等离子体的相互作用[M].大连理工大学,2008.
    [43]王红锋,王水婷.金属材料ICP-AES分析中基体干扰及校正技术[J].材料开发与应用,2003,4:42-46.
    [44]徐琳,王乃岩,等.傅里叶变换衰减全反射红外光谱法的应用与进展[J].光谱学与光谱分析,2004,3:317-319.
    [45]程东杰.红外物理技术[M].西安:西安电子科技大学出版社,1994.
    [46]王宗明,何欣翔,等.实用红外光谱学[M].北京:石油工业出版社,1990.
    [47]潘纯华,张卫红,陈芬,等.ATR红外光谱法在高分子材料表面成份分析上的应用[J].广州化工.2000,3:34-36.
    [48]孙瑞卿,张汉辉,杨融生.一种包装膜的ATR-FTIR的剖析[J].光谱学与光谱分析,2001,1:105-106.
    [49]罗传秋,刘冰,杨继萍,等.表面改性医用橡胶的光谱研究[J].光谱学与光谱分析.1998,4:553-555.
    [50]F. delene mirouze, J.C.bouloun, Dupuy. Quantitative Analysis of Glueose syrups by ATR/FT-IR Speetroseopy[J]. Applied Speetroseopy.1993,8:1187-1191.
    [51]黄明志,邱江,等.ATR/FT-IR监测山梨醇发酵中山梨醇和山梨糖浓度变化[J].华东理 工大学学报.1997,2:200-203.
    [52]武开业,等.扫描电子显微镜原理及特点[J].科技信息,2010,29:57-59.
    [53]高一川,等.扫描电子显微镜在纺织品检测中的应用[J].中国纤检,2006,9:102-105.
    [54]干蜀毅,等.常规扫描电子显微镜的特点和发展[J].分析仪器,2000,1:85-89.
    [55]黎兵,李莉,鲍俊杰,等.扫描电子显微镜在水性聚氨酯材料性能分析中的应用[J].聚氨酯,2009,10:20-25.
    [56]李剑平,等.扫描电子显微镜对样品的要求及样品的制备[J].分析测试技术与仪器,2007,1:66-69.
    [57]叶寒青,杨祥良,等.梨形四膜虫在环境毒理学研究中的应用[J].生物学杂志.2001,5:31-33.
    [58]Ivanciuc, T. Ivanciuc. O, Klein, D.J. Posetic quantitative superstructure activity relationships (QSARs) for chlorobenzenes[J]. J. Chem. Inf. Model,2005,45:870-879.
    [59]Kozani, R.R, Assadi, Y, Shemirani, F, Hosseini M.R.M, Jamali M.R. Part-per-trillion determination of chlorobenzenes in water using dispersive liquid-liquid microextraction combined gas chromatography-electron capture detection[J]. Talanta,2007,72:387-393.
    [60]Tor, A. Determination of chlorobenzenes in water by drop-based liquid-phase micro-extra ction and gas chromatography-electron capture detection[J]. J. Chromatogr. A,2006,1125: 129-132.
    [61]Vogt, C, Simon, D, Alfreider, A, Babel, W. Microbial degradation of chlorobenzene under oxygen-limited conditions leads to accumulation of 3-chlorocatechol[J]. Environ. Toxicol. Chem.2004,23:265-270.
    [62]Belfroid, A, Seinen, W, Vangestel, K, Hermens, J. The acute toxicity of chlorobenzenes for earthworms (Eisenia andrei) in different exposure systems[J]. Chemosphere,1993,26:2265-2277.
    [63]He, Y, Wang, Y, Lee, H.K. Trace analysis of ten chlorinated benzenes in water by headspace solid-phase microextraction[J]. J. Chromatogr. A,2000,874:149-154.
    [64]Ennever F K. The ability of plant genotoxicity assays to predict carcinogenicity [J]. Mutatio n Research/Genetic Toxicology,2001,205:99-105.
    [65]Kong FX, Huw, Liuy. Molecular structure andbiochemical toxicity of four halogeno-benzenes on the unicellular green alga Selenastrum capricornutum[J]. Environ Exp Bot, 1998,40(2):105-111.
    [66]王玉芬,张肇铭,胡筱敏,等.氯苯对球形红细菌的毒性效应研究[J].安全与环境学报,2007,7(1):1-4.
    [67]罗一帆,许旋,郭振飞,等.氯苯化合物对虹鳟鱼毒性的量子化学研究[J].卫生毒理学 杂志,2000,14(1):48-49.
    [68]刘庆余,成毅萍.氯苯类化合物对草履虫的毒性研究[J].环境化学,1995,14(1):58-61.
    [69]李铁军,郭远明,张小军,等.氯苯对四种海洋生物的急性毒性研究[J].水产科学,2009,28(12):737-740.
    [70]Zhou Yu, Yu Hongxia, Ding Xiang, et al. Effect of combined toxicity of chlorobenzenes on zebrafish embryo[J]. Journal of Agro-Environment Science,2003,22 (3):340-34.
    [71]尹伊伟,林嘉,朱永安.苯、氯苯及酚、氯酚对大鳞副泥鳅鱼苗的急性毒性效应[J].暨南大学学报:自然科学版,1994,15(3):106-109.
    [72]Blinova, I, Ivask A, Heinlaan M, Mortimer M, Kahru. A. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ. Pollut.2010,158:41-47.
    [73]Sauvant, M.P, Pepin, D, Piccinni, E. Tetrahymena pyriformis:A tool for toxicological studies. A review. Chemosphere,1999,38:1631-1669.
    [74]Bonnet, J.L, Bonnemoy, F, Dusser, M, Bohatier, J. Toxicity Assessment of the Herbicides Sulcotrione and Mesotrione Toward Two Reference Environmental Microorganisms: Tetrahymena pyriformis and Vibrio fischeri[J]. Arch. Environ. Contam.Toxicol.2008,55:57 6-583.
    [75]St Denis, C.H, Pinheiro, M.D.O, Power, M.E. Effect of salt and urban water samples on bacterivory by the ciliate Tetrahymena thermophila. Environ. Pollut.2010,158:502-507.
    [76]傅诚杰,俞婷,缪炜,等.毒理学与生态毒理学研究中的优良模式生物[J].动物学杂志.2005,40(1):108-113.
    [77]Boldrin F, Santovito G, Irato P, et al. Metal interaction and regulation of Tetrahymena pigmentosa metallothionein genes[J]. Protist.2002,153(3):283-291.
    [78]Wang Y, Zhang M, Wang X. Population growth responses of tetrahymena shanghaiensis inex posure to rare earth elements[J]. Biol Trace Elem Res.2000,75(123):265-275.
    [79]Larsen J, Schultz T W, Rasmussen L, et al. Progress in an ecotoxicological standard protocol with protozoa results from apilot ring test with Tetrahymena pyriformis[J]. Chemosphere. 1997,35:1023-1041.
    [80]Nicolau A, Nicolina D, Manuel M, et al. Trendsintheuse of Protozoa in theassessment of waste water treatment[J]. Res Microbiol.2001,152:621-630.
    [81]Stebbing A.R. Hormesisthe stimulation of growth by low levels of inhibitions[J].1982,22: 213-234.
    [82]高尚德,吴以平.有机锡对海洋微藻的生理效应.1994,25(3):259-265.
    [83]Feltens, Ralph, Moegel, Iljana, Roeder-Stolinski, Carmen. Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro. Toxicol Appl Pharmacol,2010,242(1):100-108
    [84]陈小娟,沈韫芬,刘义,等.利用微量热法研究Cd和Cu对嗜热四膜(Tetrahymena thermophila)的毒性效应[J].应用与环境生物学报.2004,10(6):745-749.
    [85]Kelly C J, Tumsaroj N, Lajoie C A. Assessing wastewater metal toxicity with bacterial bioluminescence in a bench-scale wastewater treatment system[J]. Water Res,2004,38: 423-431.
    [86]Shalaby A M. Responses of arbuscular mycorrhizal fungal spores isolated from heavy metal-polluted and unpolluted soil to Zn,Cd,Pb and their interactions in vitro [J]. Pakistan J Biol Sci,2003,6:1416-1422.
    [87]Ren S J, Robert W M, Paul D F. Using factorial experiments to study the toxicity of metal mixtures[J]. Ecotoxicol Environ Safety,2004,59:38-43.
    [88]Otitoloju A A. Evaluation of the joint-action toxicity of binary mixtures of heavy metals against the mangrove periwinkle Tympanotonus fuscatus var radula[J]. Ecotoxicol Environ Safety,2002,53:404-415.
    [89]Goyer, R A, Clarkson, T. W. Toxic effects of metals. In:Klaassen, C.D.(Ed.), Casarett and Doull's Toxicology:The Basic Science of Poisons[J]. McGraw-Hill,2001:811-867.
    [90]包坚敏,王志铮,陈启恒,杨阳,袁久尧.4种重金属对泥螺的急性毒性和联合毒性研究[J].浙江海洋学院学报(自然科学版),2007,26:252-256.
    [91]高继军,张力平,马梅,王子健.应用淡水发光菌研究二元重金属混合物的联合毒性[J].上海环境科学,2003,22:772-775.
    [92]修瑞琴,许永香,高世荣.砷与钙和锌离子对鱼的联合毒性实验[J].中国环境科学,1998,13(4):349-352.
    [93]傅迎春,修瑞琴,许永香,等.氟与硒对大型溞的联合毒性研究[J].中国环境科学,1995,15(4):280-282.
    [94]陈家长,胡庚东,瞿建宏.铅和铬对鱼类联合毒性的研究[J].浙江水产学院学报,1998,17(3):169-173.
    [95]Thomulka KW, Lange JH. Mixture toxicity of nitrobenzene and trinityrobenzene using the marine bacterium vibrio Harveyi as the test organism[J]. Ecotoxicology and Environmental Safety,1997,36:189-195.
    [96]Virk S, Kaur K. Impact of mixture of nikel and chromium on the protein content of flash and liver of cgprinus carpio during spawning and post spawning phases[J]. Bull Environ Contam Toxicol,1999,63(5):499-502.
    [97]Sprsgue JB, Ramsay BA. Lethal levels of mixed copper-zinc solutions for juvenile salmon [J]. Fish Res Bd Can,1965,22:425-432.
    [98]Marking LL. Method for assessing additive toxicity of chemical mixtures. Aquatic toxici cology and hazard evaluation[J]. ASTM STP Publication,1977,634:99-108.
    [99]沈锡祺.上海四膜虫细胞膜和纤毛的蛋白质研究[J].上海师范大学学报,1996,25:105-108.
    [100]Kaiser K L E. Evolution of the international workshops on quantitative structure-activity relationships (QSARs) in environmental toxicology[J]. SAR QSAR Environ Res,2007,18 (1-2):3-20.
    [101]Kamlet M J, et al.Linear solvation energy relationships.46.An improved equation for correlation and prediction of octanol/water partition coefficients of organic nonelectrolytes(Including strong hydrogen bond donor solutes) [J]. J Phys Chem,1989,92:5244-5255.
    [102]Tunkel J, Mayo K, Austin C, et al. Practical considerations on the use of predictive models for regulatory purposes[J]. Environ Sci Technol,2005,39(7):2188-2199.
    [103]王连生.环境化学进展[M].北京:化学工业出版社,1993.
    [104]Hammett L P. Some relations between reaction rates and equilibrium constants [J]. Chem Rev,1935,17(1):125-136.
    [105]Hammett L P. The effect of structure upon the reactions of organic compounds[J]. Benzene derivatives. J Am Chem Soc,1937,59(1):96-103.
    [106]Hansch C, Fujita T. Chem.Soc,1964,86:1616.
    [107]王连生.有机污染化学(上册)[M].北京:科学出版社,1990.
    [108]Cronin MTD, Schulta TW. Structure-toxicity relationships for phenols to Tetrahymena pyriformis[J]. Chemosphere,1996,32(8):1453-1468.
    [109]Hall L H, Kier L B, Phipps G. Structure-activity relation-ships studies on the toxicities of benzenes derivatives:3 Prediction and extension to new substituents[J]. Environ. toxicol. chem.1989,8:431-436.
    [110]张颖.酚类化合物对水生生物的毒性研究[M].长春:东北师范大学,2000,19(3):230-234.
    [111]Donald, A. Statistical analysis of binary data from matched designs that require multiple observations on the same herd, litter or animal[J]. Acta Vet Scand Suppl,1988,84:446-448.
    [112]陈景文,廖宜勇,等.取代苯胺和苯酚类化合物对大型溲的定量结构-活性关系研究[J].环境科学学报,1997,17(3):365-371.
    [113]冯长君,秦正龙,唐自强.取代芳烃对某些生物的急性毒性的拓扑学研究[J].化学研究,2003,14(2):65-69.
    [114]Tatiana V, Voronina T, Lubov N. Effects of Afobazol in a model of haemorrhagic stroke[J]. Acta Pharmacologica Sinica,2006,27:74-75.
    [115]Tatiana I. Netzeva,John C. Dearden,Robert Edwards, et al. QSAR Analysis of the Toxieity of Aromatic Compounds to Chlorella Vulgaris in a Novel Short-Term Ast[J]. J. Chem Inf. Comput Sci.2004,44:258-265.
    [116]Verhaar H T M, LeeuwenC J V, Hermens J L M, Classic environmental pollutants [J]. Chemosphere,1992,25(4):471-491.
    [117]Blum D J W, Speece RE. Determ chemecal toxicity to aquatic species[J]. Environmental Technology,1990,24(3):284-293.
    [118]Ei-lchiro Ochiai. Toxicity of Heavy Metals and Biologica Defense[J]. Chem Educ.1995, 72(6):479.
    [119]Preston S, Coad N. Biosensing the acute toxicity of metal interactions:are they additive, synergistic or antagonistic[J]. Environmental Toxicology and Chemistry.2000,19(3): 775-779.
    [120]Peng Liu, Weiying Zhang, Xi Li, et al. Microcalorimetric study on the toxic effect of Pb2+ to Tetrahymena[J]. Biol Trace Elem Res,2007,2(119):175-182.
    [121]廖自荃.微量元素的环境化学及生物效应[M].中国科学环境出版社,1992,288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700