无机纳米材料在生物分子和金属离子检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有独特的光学、电学、磁学特性,纳米材料已被广泛应用在了环境、食品、生物、医药、催化等多个重要领域,并且有望进入其它更多的研究领域。基于此,本文探讨了具有高催化活性和生物相容性的无机纳米材料(碳材料和贵金属纳米材料)的性质,及其在生物分子和重金属离子检测方面的应用。具体研究内容如下:
     1.金纳米颗粒用于精氨酸的检测。不同于其它氨基酸,精氨酸是唯一含有胍基的氨基酸,并具有最高的等电点。在pH 9.62的酸度下,负电荷的柠檬酸根包被的金纳米颗粒由于静电排斥作用具有较好的分散性,溶液为红色。当向体系中加入精氨酸后,正电荷的精氨酸(pH     2.金纳米颗粒用于Hg2+的检测。没有Hg2+存在时,黄嘌呤(xanthine)的酰亚胺基团通过Au-N键的作用取代金纳米颗粒表面的柠檬酸根,诱导金纳米颗粒发生聚集,溶液变为蓝色。当有Hg2+存在时,Hg2+选择性的和黄嘌呤发生配位作用生成类似于T-Hg2+-T的xanthine-Hg2+-xanthine复合物,阻止黄嘌呤诱导金纳米颗粒发生聚集,溶液颜色逐渐由蓝变红。基于此,本文建立了一种可视化检测Hg2+的新方法。该方法用于合成样中Hg2+的测定,回收率在96.3%-101.7%之间。与其它使用富T的DNA序列来检测Hg2+的方法相比,该方法简便、快捷、价格低廉。
     3.氧化石墨烯用于三磷酸腺苷(ATP)的检测。由于富含π电子,氧化石墨烯可以通过π-π堆积作用吸附单链DNA (ssDNA),而不与双链DNA (dsDNA)发生作用。基于此,在本文中我们建立了一种检测ATP的新方法。当没有ATP存在时,ATP的核酸适配体(aptamer)与荧光素标记的互补链(FAM-DNA)杂交成为具有荧光的双链DNA(FAM-dsDNA)。加入氧化石墨烯后,由于氧化石墨烯对FAM-dsDNA吸附作用弱,溶液具有较强的荧光。当有ATP时,由于aptamer与ATP的强作用抑制了FAM-DNA与aptamer的杂交,此时FAM-DNA仍以单链的形式存在。加入氧化石墨烯后,氧化石墨烯吸附没有杂交的FAM-DNA,从而猝灭染料的荧光。基于此建立了检测ATP的新的新方法。
Owing to the unique optical properties, electrical properties and magnetic properties, nanomaterials have been widely applied in the fields of environment, food, biology, medicine, catalysis, etc, and are expected to enter other more fields of research. For those reasons, in this dissertation, we investigate the properties of inorganic nanomaterials (carbon materials and noble metal nanomaterials), with electrocatalytic activity and high biocompatibility, and explored their applications in the detection of biomolecules and metal ions. The main contents are as follows:
     1. Gold nanoparticles (AuNPs) used for arginine detection. Different from other amino acids, arginine is the only one that contains guanidine group, and has the highest isoelectronic point (pI). At pH 9.62, negatively charged citrate-capped AuNPs are well dispersed because of strong electrostatic repulsion, and the color of the solution is red. In the presence of arginine, however, positively charged arginine (pH     2. AuNPs used for Hg2+detection. In the absence of Hg2+, imide group of xanthine easily adsorbs onto the surface of AuNPs through Au-N bond and induces aggregation of AuNPs, resulting in a blue color. In the presence of Hg2+, however, Hg2+can specifically bind with xanthine to form xanthine-Hg2+-xanthine complex, which prevents the AuNPs against xanthine-induced aggregation, resulting in a visible color change from blue to red depend on the concentration of Hg2+. Therefore, a new method can be established for Hg2+visual detection. Hg2+in synthetic samples could be detected with the recovery between 96.3% and 101.7%. Compared with other methods that employ thymine-rich DNA, our method is simple, fast, cost-effective.
     3. Graphene oxide (GO) used for adenosine triphosphate (ATP) detection. Because of the riched-πelectrons, GO can bind with single-stranded DNA (ssDNA) throughπ-πstacking, but can not with double-stranded DNA (dsDNA). Based on the features, we developed a new method for the detection of ATP. The hybrid of ATP aptamer with its fluorescein (FAM)-labelled complementary DNA (FAM-DNA) demonstrated weak affinity for GO, exhibiting strong fluorescence of FAM-DNA. If ATP was presented, however, the strong fluorescence of FAM-DNA got quenched, for the binding of ATP with its aptamer greatly inhibited the hybridization of the aptamer with FAM-DNA and the unhybridized FAM-DNA was adsorbed on the surface of GO. Therefore, a new method is established for the determination of ATP.
引文
[1]白春礼,纳米科技及其发展前景.科学通报.2001,46,89-92.
    [2]曹茂盛;蒋成禹;田永君,纳米材料导论.哈尔滨:哈尔滨工业大学出版社.2001,12-14.
    [3]刘焕彬;陈小泉,纳米科学与技术导论.化学工业出版社.2006,7-10.
    [4]刘吉平;廖莉玲,无机纳米材料.科学出版社2004,17-22.
    [5]刘吉平;廖莉玲,无机纳米材料.科学出版社2003,16-21.
    [6]Karan, S.; Mallik, B., Nanoflowers Grown from Phthalocyanine Seeds:Organic Nanorectifiers. J. Phys. Chem. C.2008,112,2436-2447.
    [7]Trchova, M.; Sedenkova, I.; Konyushenko, E. N.; Stejskal, J.; Holler, P.; Ciric-Marjanovic, G., Evolution of Polyaniline Nanotubes:The Oxidation of Aniline in Water. J. Phys. Chem. B.2006, 110,9461-9468.
    [8]Li, X. G.; Li, A.; Huang, M. R., Facile High-Yield Synthesis of Polyaniline Nanosticks with Intrinsic Stability and Electrical Conductivity. Chem. Eur. J.2008,14,10309-10317.
    [9]Tran, H. D.; Wang, Y.; D'Arcy, J. M.; Kaner, R. B., Toward an Understanding of the Formation of Conducting Polymer Nanofibers. Acs. Nano.2008,2,1841-1848.
    [10]Sau, T. K.; Murphy, C. J., High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution.J. Am. Chem. Soc.2004,126,8648-8649.
    [11]Sun, Y.; Xia, Y., Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science.2002,298, 2176-2179.
    [12]Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic Metal Nanoparticles:Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B. 2005,109,13857-13870.
    [13]Narayanaswamy, A.; Xu, H.; Pradhan, N.; Kim, M.; Peng, X., Formation of Nearly Monodisperse In2O3 Nanodots and Oriented-Attached Nanoflowers:Hydrolysis and Alcoholysis vs Pyrolysis. J. Am. Chem. Soc.2006,128,10310-10319.
    [14]Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S.Y., Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc.2006,128,7756-7757.
    [15]Niyogi, S.; Hamon, M. A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M. E.; Haddon, R. C., Chemistry of Single-Walled Carbon Nanotubes. Acc. Chem. Res.2002,35,1105-1113.
    [16]Saidane, K.; Razafinimanana, M.; Lange, H.; Huczko, A.; Baltas, M.; Gleizes, A.; Meunier, J.L. Fullerene synthesis in the graphite electrode arc process:local plasma characteristics and correlation with yield. J. Phys. D:Appl. Phys.2004,37,232-239.
    [17]Bunch, J.S,; van der Zande, A.M,; Verbridge, S.S,; Frank, I.W,; Tanenbaum, D.M,; Parpia, J.M,; Craighead, H.G,; McEuen, P.L., Electromechanical Resonators from Graphene Sheets. Science.2007, 315,490-493.
    [18]Faraday, M., Other Metals to Light The Bakerian Lecture:Experimental Relations of Gold. Phil. Trans. R. Soc. Lond.1857,147,145-181.
    [19]Mie., G., A contribution to the optics of turbid media:special colloidal metal solutions. Annals of Physics.1908,25,377-445.
    [20]Du, Y.; Li, B.; Wang, E., Analytical potential of gold nanoparticles in functional aptamer-based biosensors. Bioanal Rev 2010,1,187-208.
    [21]Daniel, M. C.; Astruc, D., Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis,and Nanotechnology. Chem. Rev. 2004,104,293-346.
    [22]Katz, E.; Willner, I., Integrated Nanoparticle-Biomolecule Hybrid Systems:Synthesis, Properties, and Applications. Angew. Chem. Int. Ed.2004,43,6042-6108.
    [23]Corti, C. W.; Holliday, R. J., Commercial aspects of gold applications:From materials science to chemical science. Gold Bull.2004,37,20-26.
    [24]Haruta, M., Gold as a novel catalyst in the 21 st century:preparation, working mechanism and applications. Gold. Bull.2004,37,27-36.
    [25]Sepulveda, B.; Angelome, P. C.; Lechuga, L. M.; Liz-Marzan, L. M., LSPR-based nanobiosensors Nano Today.2009,4,244-251.
    [26]Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T, Anisotropic Metal Nanoparticles:Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B. 2005,109,13857-13870.
    [27]Dong, S. A.; Zhou, S. P., Photochemical synthesis of colloidal gold nanoparticles. Mat. Sci. Eng. 2007,140,153-159.
    [28]Wang, L.; Wei, G.; Guo, C.; Sun, L.; Sun, Y.; Song, Y.; Yang, T.; Li, Z., Photochemical synthesis and self-assembly of gold nanoparticles. Coll. Surf. A:Physicochem. Eng. Asp.2008,312,148-153.
    [29]Zhou, Y.; Wang, C. Y.; Zhu, Y. R.; Chen, Z. Y, A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature. Chem. Mater.1999,11,2310-2312.
    [30]沈理明;姚建林;顾仁敖,金纳米粒子的电化学合成及光谱表征.光谱学与光谱分析.2005,25,1998-2001.
    [31]Gu, J.; Fan, W.; Shimojima, A.; Okubo, T., Microwave-induced synthesis of highly dispersed gold nanoparticles within the pore channels of mesoporous silica. J. Solid. State. Chem.2008,181,957-963.
    [32]Fan, C.; Li, W.; Zhao, S.; Chen, J.; Li, X., Efficient one pot synthesis of chitosan-induced gold nanoparticles by microwave irradiation. Mater. Lett.2008,62,3518-3520.
    [33]Turkevich, J.; Stevenson, P. C.; Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday. Soc.1951,11,55-75.
    [34]Frens, G., Controlled nucletion for the regulation of the particle size in monodiperse gold suspensions. Nature.1973,241,20-22.
    [35]Dykman, L. A.; Lyakhov, A. A.; Bogatyrev, V. A.; ChchyogolevA, S. Y.; Synthesis of colloidal gold using high molecula weight reducing agents. Colloid. J.1998,60,700-704.
    [36]Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J., A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature.1996,382,607-609.
    [37]Li, W.; Nie, Z.; He, K.; Xu, X.; Li, Y.; Huang, Y.; Yao, S., Simple, rapid and label-free colorimetric assay for Zn2+based on unmodified gold nanoparticles and specific Zn2+binding peptide. Chem. Commun.2011,47,4412-4414.
    [38]Zhou, Z.; Du, Y.; Dong, S., Double-StrandDNA-Templated Formation of CopperNanoparticles as Fluorescent Probe for Label-Free Aptamer Sensor. Anal. Chem.2011,83,5122-5127.
    [39]Lee, J. S.; Mirkin, C. A., Chip-Based Scanometric Detection of Mercuric Ion Using DNA-Functionalized Gold Nanoparticles. Anal. Chem.2008,80,6805-6808.
    [40]Guo Y, Wang Z, Qu W, Shao H, Jiang X., Colorimetric Detection of Mercury, Lead and Copper Ions Simultaneously Using Protein-Functionalized Gold Nanoparticles. Biosens. Bioelectron.2011, 26,4064-4069.
    [41]Xue, X.; Wang, F.; Liu, X., One-Step, Room Temperature, Colorimetric Detection of Mercury (Hg2+) Using DNA/Nanoparticle Conjugates. J. Am. Chem. Soc.2008,130,3244-3245.
    [42]Li, B.; Du, Y.; Dong, S., DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions. Anal. Chim. Acta.2009,644,78-82.
    [43]Xu, Y.; Deng, L.; Wang, H.; Ouyang, X.; Zheng, J.; Li, J.; Yang, R., Metal-induced aggregation of mononucleotides-stabilized gold nanoparticles:an efficient approach for simple and rapid colorimetric detection of Hg(II). Chem. Commun.2011,47,6039-6041.
    [44]Watanabe, S.; Seguchi, H.; Yoshida, K.; Kifune, K.; Tadaki, T.; Shiozaki, H., Colorimetric detection of fluoride ion in an aqueous solution using a thioglucose-capped gold nanoparticle. Tetrahedron. Lett.2005,46,8827-8829.
    [45]Liu, C. Y.; Tseng, W. L., Colorimetric assay for cyanide and cyanogenic glycoside using polysorbate 40-stabilized gold nanoparticles. Chem. Commun.2011,47,2550-2552.
    [46]Zhang, M.; Liu, Y. Q.; Ye, B. C., Colorimetric assay for sulfate using positively-charged gold nanoparticles and its application for real-time monitoring of redox process. Analyst.2011,136,4558-4562.
    [47]Qi, W. J.; Wu, D.; Ling, J.; Huang, C. Z., Visual and light scattering spectrometric detections of melamine with polythymine-stabilized gold nanoparticles through specific triple hydrogen-bonding recognition. Chem. Commun.2010,46,4893-4895.
    [48]Zhang, M.; Liu, Y. Q.; Ye, B. C., Rapid and sensitive colorimetric visualization of phthalates using UTP-modified gold nanoparticles cross-linked by copper(Ⅱ). Chem. Commun.2011,47,11849-11851.
    [49]Cao, R.; Li, B., A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Chem. Commun.2011,47,2865-2867.
    [50]Cao, R.; Li, B.; Zhang, Y.; Zhang, Z., Naked-eye sensitive detection of nuclease activity using positively-charged gold nanoparticles as colorimetric probes. Chem. Commun.2011,47,12301-12303.
    [51]Pan, Y.; Guo, M.; Nie, Z.; Huang, Y.; Peng, Y.; Liu, A.; Qing, M.; Yao, S., Colorimetric detection of apoptosis based on caspase-3 activity assay using unmodified gold nanoparticles. Chem. Commun. 2012,48,997-999.
    [52]Wang, J.; Li, Y. F.; Huang, C. Z.; Wu, T., Rapid and selective detection of cysteine based on its induced aggregates of cetyltrimethylammonium bromide capped gold nanoparticles. Anal. Chim. Acta.2008,626,37-43.
    [53]Li, Z. P.; Duan, X. R.; Liu, C. H.; Du, B. A., Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles. Anal. Biochem.2006,351,18-25.
    [54]Zhao, W.; Chiuman, W.; Lam, J. C. E.; Brook, M. A.; Li, Y., Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chem. Commun.2007,3729-3731.
    [55]Lee, J. S.; Ulmann, P. A.; Han, M. S.; Mirkin, C. A., A DNA-Gold Nanoparticle-Based Colorimetric Competition Assay for the Detection of Cysteine. Nano. Letters.2008,8,529-533.
    [56]Liu, Z. D.; Huang, C. Z.; Li, Y. F; Long, Y. F., Enhanced plasmon resonance light scattering signals of colloidal gold resulted from its interactions with organic small molecules using captopril as an example. Anal. Chim. Acta.2006,577,244-249.
    [57]Li, L.; Li, B., Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst.2009,134,1361-1365.
    [58]Chen, Y. M.; Yu, C. J.; Cheng, T. L.; Tseng, W. L., Colorimetric Detection of Lysozyme Based on Electrostatic Interaction with Human Serum Albumin-Modified Gold Nanoparticles. Langmuir.2008, 24,3654-3660.
    [59]Liu, J.; Lu, Y., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew. Chem. Int. Ed.2006,45,90-94.
    [60]Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C., Gold Nanoparticles in Biology:Beyond Toxicity to Cellular Imaging. Acc. Chem. Res.2008,41, 1721-1730.
    [61]Medley, C. D.; Smith, J. E.; Tang, Z.; Wu, Y.; Bamrungsap, S.; Tan, W., Gold Nanoparticle-Based Colorimetric Assay for the Direct Detection of Cancerous Cells. Anal. Chem.2008,80,1067-1072.
    [62]Souza, G. R.; Christianson, D. R.; Staquicini, F. I.; Ozawa, M. G.; Snyder, E. Y.; Sidman, R. L. Miller, H.; Arap, W.; Pasqualini, R., Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc. Natl. Acad. Sci. USA.2006,103,1215-1220.
    [63]Kneipp, J.; Kneipp, H.; McLaughlin, M.; Brown, D.; Kneipp, K., In Vivo Molecular Probing of Cellular Compartments with Gold Nanoparticles and Nanoaggregates. Nano. Lett.2006,6,2225-2231.
    [64]陈礼强;肖赛金;彭丽;谭克俊;郭凤玲;胡萍萍;黄承志;李原芳,核酸适配子共轭金纳米粒子探针成像朊蛋白细胞内在化途径.中国科学:化学,2010,40,393-398.
    [65]Link, S.; Ei-Sayed, M. A., Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem.2000,19,409-453.
    [66]Li, Y.; Yang, P.; Wang, P.; Wang, L., Development of a novel luminol chemiluminescent method catalyzed by gold nanoparticles for determination of estrogens. Anal. Bioanal. Chem.2007,387, 585-592.
    [67]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science.2004,306,666-669.
    [68]Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys.2009,81,109-162.
    [69]Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene:The New Two-Dimensional Nanomaterial. Angew. Chem. Int. Ed.2009,48,7752-7777.
    [70]Xia, J.; Chen, F.; Li, J.; Tao, N., Measurement of the quantum capacitance of graphene. Nature Nanotechnolog.2009,4,505-509.
    [71]Chen, F.; Qing, Q.; Xia, J.; Li, J.; Tao, N., Electrochemical Gate-Controlled Charge Transport in Graphene in Ionic Liquid and Aqueous Solution. J. Am. Chem. Soc.2009,131,9908.
    [72]Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature.2006,442, 282-286.
    [73]Swathi, R. S.; Sebastian, K. L., Resonance energy transfer from a dye molecule to graphene. J Chem Phys.2008,129,054703.
    [74]Swathi, R. S,; Sebastian, K. L., Long range resonance energy transfer from a dye molecule to graphene has (distance) (-4) dependence. J. Chem. Phys.2009,130,086101.
    [75]Viculis, L. M.; Mack, J. J.; Kaner, R. B., A Chemical Route to Carbon Nanoscrolls. Science 2003, 299,1361-1361.
    [76]Somani, P. R.; Somani, S. P.; Umeno, M., Planer nano-graphenes from camphor by CVD. Chemical. Physics. Letters.2006,430,56-59.
    [77]Obraztsov, A. N.; Obraztsov, E. A.; Tyurnina, A. V.; Zolotukhin, A. A., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon.2007,45,2017-2021.
    [78]Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J. Am. Chem. Soc.1956,80.
    [79]Shen, J.; Hu, Y.; Li, C.; Qin, C.; Ye, M., Synthesis of Amphiphilic Graphene Nanoplatelets. Small 2009,5,82-85.
    [80]Cai, D.; Song M., Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J. Mater. Chem.2007,17,3678-3680.
    [81]Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Nguyen, S. B. T.; Ruoff, R. S., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem.2006,16,155-158.
    [82]Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H., PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc.2008,130,10876-10877.
    [83]Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y., High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Phys. Chem. C.2008,112,17554-17558.
    [84]Yang, X.; Zhang, X.; Ma, Y.; Huang, Y.; Wang, Y.; Chen, Y., Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem.2009,19,2710-2714.
    [85]Wen, Y.; Xing, F.; He, S.; Song, S.; Wang, L.; Long, Y.; Li, D.; Fan, C., A graphene-based fluorescent nanoprobe for silver(Ⅰ) ions detection by using graphene oxide and a silver-specific oligonucleotide.Chem. Commun.2010,46,2596-2598.
    [86]Wen, Y.; Peng, C.; Li, D.; Zhuo, L.; He, S.; Wang, L.; Huang, Q.; Xu, Q. H.; Fan, C., Metal ion-modulated graphene-DNAzyme interactions:design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range. Chem. Commun.2011,47, 6278-6280.
    [87]Zhu, Z,; Schmidt, T,; Mahrous, M.; Guieu, V.; Perrier, S.; Ravelet, C.; Peyrin, E., Optimization of the structure-switching aptamer-based fluorescence polarization assay for the sensitive tyrosinamide sensing. Anal. Chim. Acta.2011,707,191-196.
    [88]Zhang, M.; Yin, B. C.; Tan, W.; Ye, B. C., A versatile graphene-based fluorescence "on/off" switch for multiplex detection of various targets. Biosens. Bioelectron.2011,26,3260-3265.
    [89]Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N., Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J. Am. Chem. Soc.2009,131, 3611-3620
    [90]Jang, H.; Kim, Y. K.; Kwon, H. M.; Yeo, W. S.; Kim, D. E.; Min, D. H., A Graphene-Based Platform for the Assay of Duplex-DNAUnwinding by Helicase. Angew. Chem. Int. Ed.2010,49,5703-5707.
    [91]Chang, H.; Tang, L.; Wang, Y.; Jiang, J.; Li, J., Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection. Anal.Chem.2010,82,2341-2346.
    [92]Li, H.; Chen, J.; Han, S.; Niu, W.; Liu, X.; Xu, G., Electrochemiluminescence from tris (2,2' bipyridyl)rutheniurn(Ⅱ)-graphene-Nafion modified electrode. Talanta.2009,79,165-170.
    [93]Wang, K.; Liu, Q.; Wu, X Y.; Guan, Q. M.; Li, H. N., Graphene enhanced electrochemi luminescence of CdS nanocrystal for H2O2 sensing. Talanta.2010,82,372-376.
    [94]Pogliani, L. Molecular Connectivity Model for Determination of lsoelectric Point of Amino Acids. J. Pharm. Sci.1992,81,334-336.
    [95]Stechmiller, J. K.; Childress, B.; Cowan, L., Arginine Supplementation and Wound Healing. Nutr. Clin. Pract.2005,20,52-61.
    [96]Tapiero, H.; Mathe, G.; Couvreur, P.; Tew, K. D., L-Arginine. Biomed. Pharmacother.2002,56, 439-445.
    [97]Vermeulen, M. A.; van de Poll, M.C,; Ligthart-Melis, G.C,; Dejong, C.H,; van den Tol, M.P,; Boelens, P. G,; van Leeuwen, P.A.;Specific amino acids in the critically ill patient-Exogenous glutamine/ arginine:A common denominator? Crit. Care. Med.2007,35,568-576.
    [98]Gopalakrishnan, V.; Burton, P. J.; Blaschke, T. F., High-Performance Liquid Chromatographic Assay for the Quantitation of L-Arginine in Human Plasma. Anal. Chem.1996,68,3520-3523.
    [99]Chen, H.; Gu, L.; Yin, Y.; Koh, K.; Lee, J., Molecular Recognition of Arginine by Supramolecular Complexation with Calixarene Crown Ether Based on Surface Plasmon Resonance. Int. J. Mol. Sci. 2011,12,2315-2324.
    [100]Wei, Y. K.; Yang, J., Evanescent wave infrared chemical sensor possessing a sulfonated sensing phase for the selective detection of arginine in biological fluids. Talanta.2007,71,2007-2014.
    [101]黄兰芳;梁逸曾;郭方遒;陈本美,LC-APCI-MS法同时分离测定人体血浆中的精氨酸及(?)甲基精氨酸的含量.高等学校化学学报.2004,25,233-237.
    [102]Leong, Y. K., Role of Molecular Architecture of Citric and Related Polyacids on the Yield Stress of a-Alumina Slurries:Inter-and Intramolecular Forces. J. Am. Ceram. Soc.,2010,93,2598-2605.
    [103]Li, C. L.; Liu, K. T.; Lin, Y. W.; Chang, H. T., Fluorescence Detection of Lead(II) Ions Through Their Induced Catalytic Activity of DNAzymes. Anal. Chem.2011,83,225-230.
    [104]Patel, G.; Menon, S., Recognition of lysine, arginine and histidine by novel p-sulfonatocalix[4]arene thiol functionalized gold nanoparticles in aqueous solution. Chem. Commun.2009,3563-3565.
    [105]Huang, L. F.; Guo, F. Q.; Liang, Y. Z.; Hu, Q. N.; Chen, B.M., Rapid simultaneous determination of arginine and methylated arginines in human urine by high-performance liquid chromatography-mass spectrometry. Anal. Chim. Acta.2003,487,145-153.
    [106]Mao, H. M.; Chen, B. G.; Wang, W. M.; Zhuang, P.; Zong, M.; Xu, Z.-G., Simultaneous analysis of citrulline and arginine in serum and tissue. Microchemical Journal 2011,97,291-295.
    [107]Mao, H.; Wei, W.; Xiong, W.; Lu, Y.; Chen, B.; Li, Z., Simultaneous determination of L-citrulline and L-arginine in plasma by high performance liquid chromatography. Clinical. Biochemistry.2010, 43,1141-1147.
    [108]Teerlink, T.; Nijveldt, R. J.; de Jong, S.; van Leeuwen, P.A. M., Determination of Arginine, Asymmetric Dimethylarginine, and Symmetric Dimethylarginine in Human Plasma and Other Biological Samples by High-Performance Liquid Chromatography. Anal. Biochem.2002,303, 131-137.
    [109]Zhou, X.; Jin, X.; Li, D.; Wu, X., Selective detection of zwitterionic arginine with a new Zn(II)-terpyridine complex:potential application in protein labeling and determination. Chem. Commun. 2011,47,3921-3923.
    [110]Zhao, Q.; Cao, T.; Li, F.; Li, X.; Jing, H.; Yi, T.; Huang, C., A Highly Selective and Multisignaling Optical Electrochemical Sensor for Hg2+Based on a Phosphorescent Iridium(Ⅲ) Complex. Organometallics.2007,26,2077-2081.
    [111]Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D., Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol.2003,18,149-175.
    [112]Stern, A. H., A review of the studies of the cardiovascular health effects of methylmercury with consideration of their suitability for risk assessment. Environmental Research.2005,98,133-142.
    [113]Zahir, F.; Rizwi, S. J.; Haq, S. K.; b, R. H. K., Low dose mercury toxicity and human health. Environ. Toxicol. Phar.2005,20,351-360.
    [114]Clarkson, T. W., The Toxicology of Mercury and Its Chemical Compounds. Critical Reviews in Toxicology.2006,36,609-662.
    [115]Bulsk, E.; Kandler, W.; Paslawski, P.; Hulanicki, A., Atomic absorption spectrometric determination of mercury in soil standard reference material following microwave sample pretreatment. Mikrochim. Acta.1995,119,137-146.
    [116]Meng, W.; Weiyue, F.; Junwen, S.; Fang, Z.; Bing, W.; Motao, Z.; LiBai; Yuliang, Z.; Zhifang, C., Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS. Talanta.2007,71,2034-2039.
    [117]Han, F. X.; Patterson, W. D.; Xia, Y.; Sridhar, B. B. M.; Su, Y., Rapid determination of mercury in plant and soil samples using inductively coupled plasma atomic emission spectroscopy, a comparative study. Water, Air, and Soil Pollution 2006,170,161-171.
    [118]Zheng, F.; Hu, B., MPTS-silica coated capillary microextraction on line hyphenated with inductively coupled plasma atomic emission spectrometry for the determination of Cu, Hg and Pb in biological samples. Talanta.2007,73,372-379.
    [119]李妍;刘书娟;江冬青;江焱;严秀平,气相色谱-电感耦合等离子体质谱联用技术应用于水产品中汞形态分析.分析化学2008,36,793-798.
    [120]Dai, H.; Liu, F.; Gao, Q.; Fu, T.; Kou, X., A highly selective fluorescent sensor for mercury ion (Ⅱ) based on azathia-crown ether possessing a dansyl moiety. Luminescence.2010,26,523-530.
    [121]Chen, J.; Zheng, A.; Chen, A.; Gao, Y.; He, C.; Kai, X.; Wu, G.; Chen, Y., A functionalized gold nanoparticles and Rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury(II) in environmental water samples. Anal. Chim. Acta.2007,599 134-142.
    [122]Huang, C.; Chan, H., Selective Gold-Nanoparticle-Based "Turn-On" Fluorescent Sensors for Detection of Mercury(Ⅱ) in Aqueous Solution. Anal. Chem.2006,78,8332-8338.
    [123]Lu, J.; He, X.; Zeng, X.; Wan, Q.; Zhang, Z., Voltammetric determination of mercury (II) in aqueous media using glassy carbon electrodes modified with novel calix[4]arene. Talanta.2003,59 553-560.
    [124]Alizadeh, T.; Ganjali, M. R.; Zareb, M., Application of an Hg2+selective imprinted polymer as a new modifying agent for the preparation of a novel highly selective and sensitive electrochemical sensor for the determination of ultratrace mercury ions. Ana. Chim. Acta.2011,689,52-59.
    [125]Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; Machinami, T.; Akira Ono.; Mercuryll-Mediated Formation of Thymine Hg Ⅱ Thymine Base Pairs in DNA Duplexes. J. Am. Chem. Soc.2006,128,2172-2173.
    [126]Ono, A.; Miyake, Y, Highly selective binding of metal ions to thymine-thymine and cytosine-cytosine base pairs in DNA duplexes. Nucleic Acids Research Supplement.2003,3, 227-228
    [127]Watanabe, Y.; Minowa, T.; Ono, A., Metal ion binding of substituted pyrimidine base pairs in DNA duplexes. Nucleic Acids Symposium Series.2004,48,85-86.
    [128]Urata, H.; Yamaguchi, E.; Funai, T.; Matsumura, Y.; Wada, S. I., Incorporation of Thymine Nucleotides by DNA Polymerases throughT-HgⅡ-T Base Pairing. Angew. Chem. Int. Ed.2010,49, 1-5.
    [129]Liu, C. W.; Hsieh, Y. T.; Huang, C. C.; Lina, Z. H.; Chang, H. T., Detection of mercury(II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chem. Commun.2008, 2242-2244.
    [130]Liu, X.; Tang, Y.; Wang, L.; Zhang, J.; Song, S.; Fan, C.; Wang, S., Optical Detection of Mercury(II) in Aqueous Solutions by Using Conjugated Polymers and Label-Free Oligonucleotides. Adv. Mater. 2007,19,1471-1474.
    [131]Li, L.; Li, B.; Qi, Y.; Jin, Y., Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. Bioanal. Chem. 2009,393,2051-2057.
    [132]Li, T.; Dong, S.; Wang, E., Label-Free Colorimetric Detection of Aqueous Mercury Ion (Hg2+) Using Hg2+-Modulated G-Quadruplex-Based DNAzymes. Anal. Chem.2009,81,2144-2149.
    [133]Liu, C. W.; Huang, C. C.; Chang, H. T., Highly Selective DNA-Based Sensor for Lead(Ⅱ) and Mercury(Ⅱ) Ions. Anal. Chem.2009,81,2383-2387.
    [134]Wang, Y.; Geng, F.; Cheng, Q.; Xu, H.; Xu, M., Oligonucleotide-based label-free Hg2+assay with a monomer-excimer fluorescence switch. Analyst.2011,136,4284-4288.
    [135]Liu, Z. D.; Li. Y F; Ling. J; Huang, C. Z.;A Localized Surface Plasmon Resonance Light-Scattering Assay of Mercury (II) on the Basis of Hg2+-DNA Complex Induced Aggregation of Gold Nanoparticles. Environ. Sci. Technol.2009,43,5022-5027.
    [136]Lee, J. S.; Han, M. S.; Mirkin, C. A., Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media using DNA-Functionalized Gold Nanoparticles. Angew. Chem. Int. Ed.2007,46,4093-4096.
    [137]Xue, X.; Wang, F.; Liu, X., One-Step, Room Temperature, Colorimetric Detection of Mercury (Hg2+) Using DNA/Nanoparticle Conjugates. J. Am. Chem. Soc.2008,130,3244 3245.
    [138]Zhang, L.; Li, T.; Li, B.; Li, J.; Wang, E., Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(II) ion. Chem. Commun.2010,46,1476-1478.
    [139]Fang, C. L; Zhou, J.; Liu, X.J; Cao, Z.H.; Shangguan, D.H., Mercury(II)-mediated formation of imide-Hg-imide complexes. Dalton. Trans.2011,40,899-903.
    [140]Roy, B.; Bairi, P.; Nandi, A. K., Selective colorimetric sensing of mercury(II) using turn off-turn on mechanism from riboflavin stabilized silver nanoparticles in aqueous medium. Analyst.2011,136, 3605-3607
    [141]Yang, X.; Liu, H.; Xu, J.; Tang, X.; Huang, H.; Danbi Tianl, A simple and cost-effective sensing strategy of mercury (II) based on analyte-inhibited aggregation of gold nanoparticles. Nanotechnology.2011,22,275503 (6pp).
    [142]Chen, L.; Lou, T.; Yu, C.; Kangb, Q.; Chen, L., N-1-(2-Mercaptoethyl)thymine modification of gold nanoparticles:a highly selective and sensitive colorimetric chemosensor for Hg2+. Analyst.2011,36, 4770-4773
    [143]Liu, X.; Cheng, X.; Bing, T, Fang C, Shangguan, D.; Visual Detection of Hg2+with High Selectivity Using Thymine Modified Gold Nanoparticles. Anal. Sci.2010,26,1169-72.
    [144]Ruan, Y. B.; Li, A. F.; Zhao, J. S.; Shen, J. S.; Jiang, Y.-B., Specific Hg2+-mediated perylene bisimide aggregation for highly sensitive detection of cysteine. Chem. Commun.2010,46,4938-4940.
    [145]Che, Y.; Yang, X.; Zang, L., Ultraselective fluorescent sensing of Hg2+through metal coordination-induced molecular aggregation. Chem. Commu.2008,1413-1415.
    [146]Jin, R.; Wu, G.; Li, Z.; Mirkin, C. A.; Schatz, G. C., What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies? J. Am. Chem. Soc.2003,125,1643-1654.
    [147]pKadatacompiled by R. Williams:research.chem.psu.edu/brpgroup/pKa_compilation.pdf.
    [148]程叙扬;李晓玫,细胞外三磷酸腺苷的代谢及其生物学作用.中国病理生杂志,1998,14,438-441.
    [149]Fieldsa, R. D.; Stevens, B., ATP:an extracellular signaling molecule between neurons and glia. Trends in Neurosciences 2000,23,625-633.
    [150]Zhang, L.; Wei, H.; Li, J.; Li, T.; Li, D.; Li, Y.; Wang, E.; A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay. Biosens. Bioelectron.2010,25,1897-1901.
    [151]Mora, L.; Hernandez-Cazares, A. S.; Aristoy, M. C.; F. Toldra, Hydrophilic interaction chromatographic determination of adenosine triphosphate and its metabolites. Food Chemistry. 2010,123,1282-1288.
    [152]Wang, J.; Wang, L.; Liu, X.; Liang, Z.; Song, S.; Li, W.; Li, G.; Fan, C., AGold Nanoparticle-Based Aptamer Target Binding Readout for ATPAssay. Adv. Mater.2007,19,3943-3946.
    [153]He, Y.; Wang, Z. G.; Tang, H. W.; Pang, D. W., Low background signal platform for the detection of ATP:When a molecular aptamer beacon meets graphene oxide. Biosens. Bioelectron. 2011,29,76-81.
    [154]Huang, C. C.; Chiu, S. H.; Huang, Y. F.; Chang, H. T., Aptamer-Functionalized Gold Nanoparticles for Turn-On Light Switch Detection of Platelet-Derived Growth Factor. Anal. Chem.2007,79,4798 4804.
    [155]Wang, J.; Jiang, Y.; Zhou, C.; Fang, X., Aptamer-Based ATP Assay Using a Luminescent Light Switching Complex. Anal. Chem.2005,77,3542-3546.
    [156]Huang, Y. F.; Chang, H. T., Analysis of Adenosine Triphosphate and Glutathione through Gold Nanoparticles Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem 2007,79, 4852-4859.
    [157]Yoshizumi, J.; Kumamoto, S.; Nakamura, M.; Yamana, K., Target-induced strand release (TISR) from aptamer-DNA duplex:Ageneral strategy for electronic detection of biomolecules ranging from a small molecule to a large protein. Analyst,2008,133,323-325.
    [158]Hummers, W. S.; Offeman R. E., Preparation of Graphitic Oxide. J. Am. Chem. Soc.1958,80, 1339.
    [159]张立,纳米组装体的可控制备及其在细胞成像分析中的应用研究:[博士学位论文].重庆:西南大学.2010.70.
    [160]Liu, F.; Choi, J. Y.; Seo, T. S., Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosens Bioelectron.2010,25,2361-2365.
    [161]Jang, H.; Kim, Y. K.; Kwon, H. M.; Yeo, W. S.; Kim, D. E.; Min, D. H., A Graphene-Based Platform for the Assay of Duplex-DNAUnwinding by Helicase. Angew. Chem. Int. Ed. 2010,49, 5703-5707
    [162]Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z., Functional Graphene Oxide as a Nanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. Small.2010,6,537-44.
    [163]Zhang, L.; Huang, C. Z.; Li, Y. F.; Xiao, S. J.; Xie, J. P., Label-Free Detection of Sequence-Specific DNA with Multiwalled Carbon Nanotubes and Their Light Scattering Signals. J. Phys. Chem. B. 2008,112,7120-7122.
    [164]Huang, J.; Zhu, Z.; Bamrungsap, S.; Zhu, G.; You, M.; He, X.; Wang, K.; Tan, W., Competition-Mediated Pyrene-Switching Aptasensor:Probing Lysozyme in Human Serum with a Monomer-Excimer Fluorescence Switch. Anal. Chem.2010,82,10158-10163.
    [165]Lu, Y.; Zhu, N.; Yu, P.; Mao, L., Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers Analyst.2008,133,1256-1260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700