苏云金芽孢杆菌降解BDE209的性能及影响因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PBDEs构成的污染及其所带来的生态风险已引起了人们的极大关注。本研究以广东省汕头市贵屿镇电子废弃物集散及拆卸地环境中的十溴联苯醚(BDE209)为研究对象,对苏云金芽孢杆菌对BDE209的降解性能及其影响因子进行了研究,主要包括:BDD209好氧降解菌的筛选、鉴定及降解性能;在有生物表面活性剂存在的情况下,微生物对BDE209的降解特性;所筛菌株在BDE209-Cd复合污染体系中,对BDE209的降解特性以及对Cd的吸附特性;BDE209的好氧降解机理。
     从污染土壤中分离得到1株对Cd有较强的耐受性的BDE209高效降解菌J-1,经鉴定为苏云金芽孢杆菌。菌株的投菌量、菌龄、培养液pH值、温度、污染物浓度、通氧量、底物浓度、盐度对BDE209降解有较大影响。蔗糖作为外加碳源能够最大程度地促进BDE209的降解。
     生物表面活性剂的加入对J-1降解BDE209有较大的促进作用。污染物初始浓度,表面活性剂浓度、培养温度、pH、溶解氧等能对生物表面活性剂促进J-1对BDE209的降解产生较大的影响。提前1d加入生物表面活性剂能更大限度的促进J-1对BDE209的降解。
     在BDE209-Cd复合污染体系中,菌龄为12-24h之间的J-1对BDE209以及Cd的修复效果最佳。J-1对BDE209的降解动力学方程基本符合一级动力学。J-1的投加方式对其联合修复BDE209-Cd复合污染有较大的影响。10-20mg/1的表面活性剂能促进J-1对BDE209-Cd复合污染的联合修复。从对J-1的细胞结构电镜扫描图来看,J-1能在BDE209-Cd复合污染体系中保持完整的细胞结构,表明其对该种复合污染有较强的耐受性。
     酶促降解研究表明,菌株J-1的胞内/外酶均对BDE209有降解作用,胞内酶的作用更为明显。pH、温度、通氧量等环境因素会影响胞外酶的降解活性;Cd在一定浓度范围内能促进酶促降解。FT-IR、GC-MS分析表明,在微生物的作用下,BDE209的结构发生了变化,在其对BDE209的降解过程中,有羟基、羧基等含氧基团的产生,同时脱去其苯环上的Br,生成八溴联苯醚。
People have been great concerning on PBDEs pollution and its correspondingly ecological risks existed in E-waste recycling area. The research performed on the characteristic and impact factors of BDE209 degradation by Bacillus thuringiensis. In the work, a strain being able to degrade BDE209 in aerobic condition was screened, identified and its characteristic degrading BDE209 was investigated. The effect of bio-surfactant, Cd on BDE209 degradation by the strain was also observed. Furthermore, the mechanism of BDE209 degradation by the strain was explored in the aerobic condition.
     The strain, isolated from the contaminated soil, strongly tolerable of Cd and effective in degrading BDE209 was identified as Bacillus thuringiensis and named as Bacillus thuringiensis J-1. The factors such as inoculation amount, cell age, pH, temperature, pollutant concentration, dissolved oxygen, substrate concentration and salinity significantly affect the efficiency of BDE209 degradation by J-1. Sucrose as the additional carbon source could mostly promote J-1 degrading BDE209.
     Biosurfactant could enhance the efficiency of BDE209 degradation by J-1. The factors, for example initial concentration, surfactant concentration, temperature, pH, dissolved oxygen etc., could greatly impact on BDE209 degradation by J-1 in the presence of bio-surfactant. Treating the BDE209 solution forl day with the bio-surfactant could effectively increased the efficiency of BDE209 degradation by J-1.
     In BDE209-Cd combined pollution system, the J-1 whose age was 12-24h degraded BDE209 and absorbed Cd effectively. The dynamic equation of BDE209 degradation by J-1 met the first order kinetics. The way of bacteria inoculation had significant influence on the remediation of BDE209-Cd combined pollution. Addition of 10-20mg/l of bio-surfactants could improve the removal efficiencies of BDE209 and Cd in combined pollution. The result of electron microscope scans showed that the cell of J-1 maintained integrity in BDE209-Cd combined pollution system, which indicated the J-1 was strong tolerance to the kind of combined pollution.
     The result of enzymatic degradation showed that the internal and external enzyme both could degrade BDE209, but the intracellular enzyme was more effective. The environmental factors such as pH, temperature, and dissolved oxygen could affect the activity of extra-cellular enzyme. A certain concentration of Cd could improve the enzymatic degradation. The analysis degrading of products by FT-IR and GC-MS showed that BDE209 was transformed into octa-BDEs by broking off the Br on the benzene ring with the action of microorganisms. At the same time, some oxygen groups such as hydroxyl, carboxyl also produced.
引文
[1]Huo X, PengL, XuXJ, et al. Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China[J]. Environmental Health Perspectives,2007,115:1113-1117.
    [2]Leung A, Luksemburg WJ, Wbng AS, et al. Spatial distribution of Polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recyeling site in southeast China[J]. Environmental Science and Technology,2007,41:2730-2737.
    [3]刘征涛.持久性有机污染物的主要特征和研究进展[J].环境科学研究,2005,18(3):93-100.
    [4]叶细标,傅华.多溴联苯醚的环境暴露及健康危害[J].环境与职业医学,2007,24(1):95-99.
    [5]Cheung, K.C, J.S. Zheng, H.M. Leung. et al. Exposure to polybrominated diphenyl ethers associated with consumption of marine and freshwater fish in Hong Kong[J]. chemosphere,2007,7(43).
    [6]Van den Steen E et al. Variation, levels and profiles of organochlorines and brominated flame retardants in great tit (Parus major) eggs from different types of sampling locations in Flanders (Belgium)[J]. Environ International,2007,14(7).
    [7]Yawei Wang a, Guibin Jiang. Polybrominated diphenyl ether in the East Asian environment:A critical review[J]. Environment International,2007,33:963-973.
    [8]Kim Hooper, Thomas A. McDonald. The PBDEs: An Emerging Environmental Challenge and Another Reason for Breast-Milk Monitoring Programs[J]. Environmental Health Perspectives,2000,108(5):387-392.
    [9]Arnold Schecter, Marian Pavuk, Olaf Papke. Polybrominated Diphenyl Ethers (PBDEs) in U.S. Mothers' Milk[J]. Environmental Health Perspectives,2003,111.
    [10]Weiyue Qu, Xinhui Bi, Guoying Sheng, et al. Exposure to polybrominated diphenyl ethers among workers at an electronic waste dismantling region in Guangdong, China[J]. Environment International,2007, 33:1029-1034.
    [11]陈社军,麦碧娴,曾永平等.珠江三角洲及南海北部海域表层沉积物中多溴联苯醚的分布特征[J].环境科学学报,2005,25:1165-1171.
    [12]陈多宏,李丽萍,毕新慧等.典型电子垃圾拆解区大气中多溴联苯醚的污染[J].环境科学,2008,29(8):2105-2110.
    [13]Ethel Eljarrat, Go'ran Marsh, Ana Labandeira, et al. Effect of sewage sludges contaminated with polybrominated diphenylethers on agricultural soils[J. Chemosphere,2008,71:1079-1086.
    [14]Paune, F., Rivera, J., Espadaler, I.,et al. Determination of polychlorinated biphenyls in sewage sludges from Catalonia (N.E.Spain) by high-resolution gas chromatography with electron-capture detection[J]. Chromatogr. A 1994,684:289-296.
    [15]Hites R A. Polybrominated diphenyl ethers in the environment and in people:a meta-analysis of concentrations [J]. Environmental Science and Technology,2004,38:945-956.
    [16]沈东升,朱荫湄.进口废电器拆解残余固体废物中污染物的溶出试验研究[J].环境科学学报,2001,21(3):382-384.
    [17]王艳,黄玉明.我国水环境中重金属污染行为和相关效应的研究进展[J].专家论坛,2007,19(3):200-201.
    [18]曹红英,梁涛,王立军等.近海潮间带水体及沉积物中重金属的含量及分布特征[J].环境科学,2006,27(1):126-131.
    [19]袁传勋,王国霞,潘见.一种高效钢铁除锈剂的研制[J].合肥工业大学学报(自然科学版),1999,22(2):74-77.
    [20]Bognolo G. Biosurfactants as emulsifying agents for hydrocarbons[J]. Colloids and Surfaces (A).1999, 152(1):41-52.
    [21]刘汉霞,张庆华,江桂斌等.多溴联苯醚及其环境问题[J].化学进展,2005,17(3):554-560.
    [22]梁生康,王修林,单宝田.生物表面活性剂强化疏水性有机污染物生物降解研究进展[J].化工环保,2005,25(4):276-280.
    [23]Colores,G. M.; Macur, R. E.; Ward; D. M., et al. Molecular analysis of surfantant-driven microbial population shifts in hydrocarbon-contaminated soil[J]. Enviro.Microbiol.2000,66(7),2959-2964.
    [24]Suflita, J. M.; Horowitz, A.; Shelton, D. R., et al. M. Dehalogenationsa novel pathway for the anaerobic biodegradation of haloaromatic compounds[J]. Science,1982,218,1115-1117.
    [25]Fetzner, S. Bacterial dehalogenation[J]. Microbiol. Biotechnol.1998,50,633-657.
    [26]Morris, P. J.; Quensen III, J. F.; Tiedje, J. M, et al. An assessment of the reductive debromination of polybrominated biphenyls in the Pine River Reservoir[J]. Environmental Science and Technology,1993,27, 1580-1586.
    [27]Morris, P. J.; Quensen Ⅲ, J. F.; Tiedje, J. M., et al. Reductive debromination of the commercial polybrominated biphenyl mixture Firemaster BP6 by anaerobic microorganisms from sediments[J]. Environ. Microbiol.1992,58,3249-3256.
    [28]Bune, P. V.; Patricia, V. B.; Schmidt, S. The microbial degradation of halogenated diaryl ether[J], Biotechnol. Adv.1997,15,621-632.
    [29]Gerecke, A. C.; Hartmann, P. C.; Heeb, N. V., et al. Anaerobic degradation of decabromodiphenyl ether[J]. Environmental Science and Technology,2005,39 (4),1078-1083.
    [30]Jianzhong He, Kristin R. Robrock, Lisa Alvarez-Cohen. Microbial Reductive Debromination of Polybrominated Diphenyl Ethers (PBDEs)[J]. Environmental Science and Technology,2006,40 (14): 4429-4434.
    [31]Robrock, K. R.; Korytar, P.; Alvarez-Cohen, L. Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers[J]. Environmental Science and Technology,2008,42 (8),2845-2852.
    [32]Rayne, S.; Ikonomou, M. G.; Whale, M. D. Anaerobic microbial and photochemical degradation of 4,4'-dibromodiphenyl ether[J]. Water Reserch.2003,37,551-560.
    [33]Fagervold, S. K.; May, H. D.; Sowers, K. R. Microbial reductive dechlorination of aroclor 1260 in Baltimore Harbor sediment microcosms is catalyzed by thee phylotypes within the phylum Chloroflexi[J]. Environ. Microbiol.2007,73 (9),3009-3018.
    [34]He, J.; Robrock, K. R.; Alvarez-Cohen, L. Microbial reductive debromination of polybrominated diphenyl ethers[J].Environmental Science and Technology,2006,40,4429-4434.
    [35]Johan Eriksson, Nicholas Green, Gran Marsh, et al. Photochemical Decomposition of 15 Polybrominated Diphenyl Ether Congeners in Methanol/Water[J]. Environmental Science and Technology,2004,38 (11): 3119-3125.
    [36]Rayne, S.; Wan, P.; Ikonomou, M. G. Photochemistry of a major commercial polybrominated diphenyl ether flame retardant congener: 2,2',4,4',5,5'-Hexabromodiphenyl ether (BDE153)[J]. Environmental.International.2006,32,575-585.
    [37]Hooper, K.; McDonald, T. A. The PBDEs:an emerging environmental challenge and another reason for breast milk monitoring programs[J]. Environmental Health Perspectives. 2000,108,387-392.
    [38]Ahn, M. Y.; Filley, T. R.; Jafvert, C. T, et al. Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides, and sediment[J]. Environmental Science and Technology,2006,40,215-220.
    [39]Lei Fang, Jun Huang, Gang Yu,et al. Photochemical degradation of six polybrominated diphenyl ether congeners under ultraviolet irradiation in hexane[J]. Chemosphere,2008,71:258-267.
    [40]Shih, Y. H.; Wang, C. K. Photolytic degradation of polybromodiphenyl ethers under UV-lamp and solar irradiations[J]. Journal of Hazardous Materials 2009,165,34-38.
    [41]Kierkegaard, A.; Balk, L.; Tjarnlund, U, et al. Dietary uptake and biological effects of decabromodiphenyl ether in rainbow trout (Oncorhynchus mykiss)[J]. Environmental Science and Technology,1999,33 (10), 1612-1617.
    [42]Stapleton, H. M.; Alaee, M.; Letcher, R. J.; Baker, J. E. Debromination of the flame retardant decabromodiphenyl ether by juvenile carp (Cyprinus carpio) following dietary exposure[J]. Environmental Science and Technology,2004,38 (1),112-119.
    [43]Stapleton, H. M.; Brazil, B.; Holbrook, R. D.; Mitchelmore, C. L.;Benedict, R.; Konstantinov, A.; Potter, D. In vivo and in vitro debromination of decabromodiphenyl ether (BDE 209) by juvenile rainbow trout andcommoncarp[J]. Environmental Science and Technology,2006,40,4653-4658.
    [44]Morck, A.; Hakk, H.; Orn, U., et al. Decabromodiphenyl ether in the rat: absorption, distribution, metabolism, and excretion[J]. Drug Metab. Dispos.2003,31,900-907.
    [45]Stapleton, H. M.; Kelly, S. M.; Pei, R.; Letcher, et al. Metabolism of polybrominated diphenyl ethers (PBDEs) by human hepatocytes in vitro[J]. Environmental Health Perspectives.2009,117,197-202.
    [46]Keum,Y-S.; Li, Q. X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron[J]. Environmental Science and Technology,2005,39 (7),2280-2286.
    [47]Li, A.; Tai, C.; Zhao, Z. S, et al. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticle[J]. Environmental Science and Technology,2007,41,6841-6846.
    [48]魏爱雪,王学彤,徐晓白.环境中多溴联苯醚类(PBDEs)化合物污染研究[J].化学进展,2006,18(9):1227-1232.
    [49]Borjia J, Taleon DM, Auresenia J,et al.2005. Polychlorinated biphenyls and their biodegradation [J].Process Biochem.,40:1999-2013.
    [50]贾凌云.多氯联苯的降解菌的筛选及其降解性能的研究[D].大连理工大学,2008年.
    [51]Wouter A. Gebbink. Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus)[J]. Environmental Pollution,2008,152:621-629.
    [52]俞毓馨,吴国庆,孟宪庭等.《环境工程微生物检验手册》[M].北京:中国环境科学出版社,1990年.
    [53]肖琳,杨柳燕,尹大强,张敏跃.环境微生物试验技术[M].北京:中国环境科学出版社,2004年.
    [54]萨姆布鲁克J.拉塞尔D.W.《分子克隆试验指南》(第三版).科学出版社,2002年.
    [55]东秀珠,蔡妙英等.《常见细菌系统鉴定手册》.北京:科学出版社,2001:145-200.
    [56]布坎南RE,吉本斯NE等.伯杰细菌鉴定手册[M].北京:科学出版社,1989,9:34-107.
    [57]王婷,尹华,彭辉等.低浓度重金属对蜡状芽孢杆菌复合菌降解BDE209性能的影响[J].环境科学, 2008,29(7):1967-1972.
    [58]藏淑艳,李培军,周启星,等.苯并(a)芘及其代谢产物的连续降解研究[J].环境科学,2006,27(12):2531-2535.
    [59]孟范平,李卓娜.多溴联苯醚(PBDEs)在海洋环境中的行为研究进展[J].中国海洋大学学报,2009,39(2):285-289.
    [60]Ueno D, Inoue S, Takahashi S, et al. Global pollution monitoring of polybrominated diphenyl ethers using skipjack tuna as a bioindicator[J]. Environmental Science and Technology,2004,38:2312-2316.
    [61]Kajiwara N, Kamikawa S, Ramu K, et al. Geographical distribution of polybrominated diphenyl ethers (PBDEs) and organochlorines in small cetaceans from Asian waters [J]. Chemosphere,2006,64:287-295.
    [62]余海粟,朱利中.混合表面活性剂对菲和芘的增溶作用[J].环境化学,,2004,23(5):485-489
    [63]梁生康,王修林,单宝田.生物表面活性剂强化疏水性有机污染物生物降解研究进展[J].化工环保,2005,25(4):276-280.
    [64]周清,杨乐巍,黄国强.鼠李糖脂对土壤中原油降解的促进[J].环境化学,2009,28(2):181-184.
    [65]韩双艳,任昌琼,林影.生物表面活性剂的生产与应用[J].中国工程科学,2009,11(4):26-30.
    [66]谢丹平,尹华,彭辉.生物表面活性剂对菌XD-1降解原油的作用[J].暨南大学学报(自然科学版),2004,25(3):365-369.
    [67]强婧.高效降解菌和生物表面活性剂对蒽降解作用的研究[D].暨南大学,2009年.
    [68]陈静,王学军,胡俊栋等.表面活性剂对白腐真菌降解多环芳烃的影响[J].环境科学,,2006,27(1):154-159.
    [69]郭利果,苏荣国,梁生康.鼠李糖脂生物表面活性剂对多环芳烃的增溶作用[J].环境化学,2009,28(4):510-514.
    [70]孟佑婷,袁兴中,曾光明等.生物表面活性剂修复重金属污染研究进展[J].生态学杂志,2005,24(6):677-680.
    [71]Tan H,Champion J T,Artiola J F, et al. Complexation of Cadmium by a rhamnolipid biosurfactant [J]. Environmental Science and Technology,1994,28 (3):2402-2406.
    [72]Shi J G, Yuan XZ,Zhang SF, et al. Removal of cadmium and lead from sediment by rhamnolipid [J]. Trans. Nonf errous Met. Soc. Chin.2004,14:66-70.
    [73]叶锦韶.重金属生物吸附剂的开发应用与机理研究[D].暨南大学,2003年.
    [74]孙艳,钞亚鹏,钱世钧.嗜吡啶红球菌R04的联苯降解途径的研究[J].微生物学报,2003,43(5):653-658.
    [75]吴蔓莉,聂麦茜,王晓昌.蒽和菲的酶促降解条件及动力学特征[J].环境化学,2007,26(3)314-317.
    [76]王秀国,朱鲁生,王军.细菌HB25对除草剂莠去津的酶促降解研究[J].环境科学学报,2006,26(4):579-583.
    [77]谢慧,朱鲁生,王军.真菌WZ-Ⅰ对有机磷杀虫剂毒死蜱的酶促降解[J].环境科学,2005,26(6):164-168.
    [78]张卫,虞云龙,吴加伦.农药阿维菌素酶促降解的初步研究[J].中国环境科学,2004,24(1):14-18.
    [79]刘爱民,黄为一.抗Cd细菌J5的筛选和抗Cd2+特性.农业环境科学学报,2005,24(增刊):223-227.
    [80]Nies D. H. Microbial heavy-metal resistance[J]. Microbiol. Biotechnol,1999,51:730-750.
    [81]曾国威,菜河山,林龙利.环境中重金属与微生物相互关系研究进展[J].广州化工,2005,33(4):15-16.
    [82]朱淮武.有机分子结构波谱解析[M].北京:化学工业出版社,2008:45-59.
    [83]Robrock, Kristin R.,Coelhan, Mehmet, Sedlak, David L. Aerobic Biotransformation of Polybrominated Diphenyl Ethers (PBDEs) by Bacterial Isolates[J]. Environmental Science and Technology,2009,43(15): 5705-5711.
    [84]QiuXinghua, Bigsby Robert M,Hites Ronald A.Hydroxylated Metabolites of Polybrominated Diphenyl Ethers in Human Blood Samples from the United States[J]. Environmental Health Perspectives, 2009,17(1):93-98.
    [85]王婷.蜡状芽孢杆菌修复重金属及多溴联苯醚复合污染的研究[D].暨南大学,2007年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700