盘类件模锻过程金属变形模式及流动规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从塑性加工力学角度,将复杂构件模锻成形过程的不同阶段和区域抽象分解为圆柱压缩、圆环压缩和类挤压三个基本变形模式,使复杂模锻问题的分析模块化。通过深入分析不同变形模式及互相耦合流动行为,揭示了复杂构件模锻成形过程中金属的变形流动规律,为复杂锻件精确塑性成形的变形流动控制提供理论依据。
     对模锻成形过程的变形特征进行了深入分析,得到了模锻过程变形模式提出的理论依据。提出了罗德系数等应力场特征量对模锻过程进行变形类型分区的研究方法,给出了应力场与应变增量数值间的定量变化关系,并对金属的宏观变形流动行为进行了可视化表征。
     通过有限元模拟,分别对圆柱和圆环压缩变形模式的成形过程进行分析,得到了不同条件下压缩过程中金属塑性变形及流动的规律,并研究了不同变形过程中金属流动行为的力学机理,结果表明:圆环压缩变形时,随着高径比的增加,难变形区的范围逐渐扩大并显著左移;而随着摩擦因子的增大,塑性区内应变类型由均一的压缩类变为三种共存的形式。
     进行了不同类挤压变形过程的数值模拟和实验研究,研究了不同成形过程中金属的变形流动规律,并对其成形过程进行了变形分区及应力应变分析,结果表明:随着型腔模角和挤压比的增大,塑性区的范围明显缩小,该区内应变类型由均一的伸长类变为三种共存;带内锥凸模可消除平模成形过程中模底部金属分流流动的情形;与无润滑情况相比,采用积极摩擦时轴心处点的相对位移量数值降低了69.7%,由此可知,积极摩擦可显著地降低坯料横断面金属流速的不均性,有利于制品质量的提高。
     分别抽象构造出了不同变形模式耦合的轴对称和三维复杂构件模型。针对模锻成形过程的不同阶段和区域,利用前面研究所得基本变形模式的成形规律来对其进行深入分析,进而给出了耦合成形过程中金属变形及流动的规律,及不同模腔内金属流动分界面的形状和塑性区的分布特征,并揭示了成形过程中金属变形流动行为的力学机理。
     针对模锻成形过程中金属塑性应变和流线分布难于测定的问题,提出了一种用套环螺纹进行测量的方法。该方法不用替代材料即可实现对模锻成形过程中三维塑性变形的测量,并可作为其定量分析的依据。利用此方法对耦合成形过程中典型截面上四条流线及应变进行了测量分析,并定量给出了复杂锻件成形过程中变形及应变分布规律,该方法是测试模锻成形过程中金属塑性变形流动较为有效的实验手段。
From the view of plastic mechanics, the deformation of closed-die forging can be divided into three basic deformation modes: cylindrical billet compression, ring compression and pseudo-extrusion. It makes the analysis modularizetion. Analyzing different deformation mode and coupled flowing behaviors, the rule of metal flowing was disclosed for complex components, which supplied with theoretical references for the investigation on the plastic forming of complicated forgings.
     The deformation characteristics of closed-die forging were analyzed deeply, which were the theoretical basis of three deformation modes for closed-die forging. Based on the Lode parameter, a new research method is proposed to study the different deformation zones for closed-die forging. The quantitative relation between stress field and strain increment has been determined, and the metal macroscopic flowing behavior has been attributed to visualize.
     Based on the FEM, the deformation modes of the column and the ring compression were analyzed, and the rule of metal flowing was obtained under the different compression conditions. The mechanics mechanism of metal flowing was investigated during the different deformation process. The results show that the stagnant zones expand and shift towards the left with height-diameter ratio increasing, and the strain in the plastic area changes into three coexistent modes from the single compression mode.
     For the different types of extrusion deformation, the rule of metal flowing was investigated by simulation and experiment. Deformation zones were divided, and stress-strain was analyzed during the forming process. The results show that the plastic zones decreases significantly with modular angle and deformation increasing, and the strain in the plastic zones changes into three coexistent modes from the single elongation mode; the male die with inner cone may eliminate the metal split-flow in the flat bottom of the male die during the forming process; compared with the non-lubrication case, the relative displacement reduced 69.7% by use of the active friction, thus it can be concluded that the active friction may significantly reduce the non-uniform of metal flowing, and be helpful to improve the product quality.
     An axisymmetric model and a 3D complex model were built, in which different deformation mode were coupled. With the above forming rule of three basic deformation mode, the closed-die forging process was analyzed during the different stage and at the different zones, and the rule of metal flowing was obtained in the coupled forming process. The distribution character of plastic zones and the interface configuration of metal flowing in the different die cavity were also given. The mechanics mechanism of metal flowing was disclosed during the forming process.
     A new measuring method, in which a few rings of screw threads was used, was put forward in order to solve the difficulties of measuring the strain and the streamlines distribution during the closed-die forging process. In the method, it does not need substitute material to measure the magnitude of three-dimensional plastic deformation during the closed-die forging process, which can be the references to quantitative analysis. Using the method, the strain and the four streamlines of typical sections were measured and analysed during the deformation of a coupled model. The distribution rule of stress-strain was given quantitatively. It is an effective method to measure and analyse the metal flowing of closed-die forging.
引文
1 Hyoji Yoshimura, Katsuhisa Tanaka.Precision forging of aluminum and steel. Journal of Materials Processing Technology.2000,98(2):196-204
    2 Q. Wang, F. He.A review of developments in the forging of connecting rods in China. Journal of Materials Processing Technology.2004,151(1-3):192-195
    3 吕炎.锻压成形理论及工艺.机械工业出版社,1990:121-123
    4 N. Ogawa, M. Shiomi and K. Osakada.Forming limit of magnesium alloy at elevated temperatures for precision forging.International Journal of Machine Tools and Manufacture.2002,42(5):607-614
    5 K.L.Schlemmer,F.H.Osman.Differential heating forming of solid and bi-metallic hollow parts. Journal of Material Processing Technology.2005,162-163:564-569
    6 孙前江, 王高潮.减小镦粗鼓形的措施及有限元模拟分析.南昌航空工业学院学报(自然科学版).2004,18(1):34-38
    7 李锦, 王广春, 王同海.提高自由镦粗变形均匀性的措施及模拟分析.热加工工艺.2002,31(2):12-23
    8 M.P. Mungi, S.D. Rasane, P.M. Dixit. Residual stresses in cold axisymmetric forging. Journal of Materials Processing Technology.2003,142(1):256-266
    9 Liu Z B, Nie M S, Wang LD, et al. A new theory for upsetting a cylinder between flat platens. Chinese Journal of Mechanical Engineering.1992,5(4): 297-303
    10 刘助柏, 倪利勇, 梁晨, 刘国晖, 邓冬梅.普通平板镦粗高圆柱体的拉应力理论的模拟.中国机械工程.2005,16(1):74-77
    11 王仲仁, 詹艳然.三向应力状态屈服面的展开图形及镦粗工序沿其上的加载轨迹.塑性工程学报.1996,3(4):64-69
    12 詹艳然, 王仲仁.镦粗过程中塑性变形的发生和发展.金属成形工艺.1998,16 (5):36-38
    13 Wei-Ching Yeh, Ming-Chang Wu.A variational upper-bound method for analysis of upset forging of rings. Journal of Materials Processing Technology. 2005,170(1-2):392-402
    14 Ssemakula Hamzah, Ulf Stahlberg. A Study of Pore Closure in the Manu-facturing of Heavy Rings. Journal of Materials Processing Technology. 1998,84(1-3):25-37
    15 俞彦勤, 黄早文, 夏巨谌, 余明俊, 徐智勇.管料镦锻变形规律的物理模拟.锻压技术.2000,25(2):10-12
    16 Jung-Chung Hung, Yu-Chung Tsai and Chinghua Hung.Frictional effect of ultrasonic-vibration on upsetting.Ultrasonics.2007,46(3):277-284
    17 T. Robinson, H. Ou, C.G. Armstrong. Study on Ring Compression Test Using Physical Modeling and FE Simulation. Journal of Materials Processing Technology.2004,153-154:54-59
    18 T.Karman. Festigkeitsversuche unter Allseitigem Druck.Z.Ver.deut.Ing.1911,55: 1749
    19 王礼良.7075/7050 铝合金充液压缩金属流动行为研究.哈尔滨工业大学硕士学位论文.2006:45-46
    20 F.Meiners, S.R?hr, R.Schmidt-Jurgensen. Extension of Forming Limits in Forging of Less Ductile Light Weight Metals by Means of Superimposed Hydrostatic Pressure. Advanced Technology of Plasticity,2002,(1):37-42
    21 Danielle Kugler, Tess J. Moon. A Technique for Compression Testing of Composite Rings. Composites.2002,A33:507-514
    22 LIU Gang, WANG Li-liang, YUAN Shi-jian, WANG Zhong-ren.Compressive formability of 7075 aluminum alloy rings under hydrostatic pressure. Transactions of Nonferrous Metals Society of China.2006,16(4):1103-1109
    23 L.X. Li, K.P. Rao, Y. Lou. D.S. Peng.A study on hot extrusion of Ti–6Al–4V using simulations and experiments. International Journal of Mechanical Sciences. 2002,44(12):2415-2425
    24 Dinesh Damodaran, Rajiv Shivpuri. Prediction and control of part distortion during the hot extrusion of titanium alloys. Journal of Materials Processing Technology.2004,150(1-2):70-75
    25 L.Li, J.Zhou, J.Duszczyk. Prediction of temperature evolution during the extrusion of 7075 aluminium alloy at various ram speeds by means of 3D FEM simulation. Journal of Materials Processing Technology.2004,145(3):360-370
    26 Hong Yan and Juchen Xia.An approach to the optimal design of technological parameters in the profile extrusion process.Science and Technology of Advanced Materials.2006,7(1):127-131
    27 S. M. Byon and S. M. Hwang .Die shape optimal design in cold and hot extrusion.Journal of Materials Processing Technology.2003,138(1-3):316-324
    28 Jung Min Lee, Byung Min Kim , Chung Gil Kang. Effects of chamber shapes of porthole die on elastic deformation and extrusion process in condenser tube extrusion.Materials and Design.2005,26(4):327-336
    29 Wu xianghong,Zhao Guoqun,Luan Yiguo,Ma Xinwu. Numerical simulation and die structure optimization of an aluminum rectangular hollow pipe extrusion process.Materials Science and Engineering A,2006,435-436:266-274
    30 Pawel Kazanowski, Heather M. Browne, Wojciech Libura.Mechanical and microstructural performance of convex dies in axisymmetric extrusion-Theory and experimental verification.Materials Science and Engineering A.2005,404 (1-2):235-243
    31 C. G. Kang, N. H. Kim and B. M. Kim.The effect of die shape on the hot extrudability and mechanical properties of 6061 Al/Al2 O 3 composites. Journal of Materials Processing Technology.2000,100(1-3):53-62
    32 Young-Tae Kim, Keisuke Ikeda, Tadasu Murakami. Metal flow in porthole die extrusion of aluminium.Journal of Materials Processing Technology.2002,121 (1):107-115
    33 Hossein Rahimi Darani, Mostafa Ketabchi. Simulation of“L”section extrusion using upper bound method. Materials and Design.2004,25(6):535-540
    34 YAN Hong; WANG Gao-chao; XIA Ju-chen; LI Zhi-gang.Mathematical model of determination of die bearing length in design of aluminum profile extrusion die. Transactions of Nonferrous Metals Society of China.2004,14(5):890-895
    35 Tze-Chi Hsu, Chien-Chin Huang.The friction modeling of different tribological interfaces in extrusion process. Journal of Materials Processing Technology. 2003,140(1-3):49-53
    36 Hao M. Bakhshi-Jooybari.A theoretical and experimental study of friction in metal forming by the use of the forward extrusion process.Journal of Materials Processing Technology.2004,125-126:369-374
    37 Dinesh Damodaran and Rajiv Shivpuri.Prediction and control of part distortion during the hot extrusion of titanium alloys.Journal of Materials Processing Technology.2004,150(1-2):70-75
    38 V.L.Berezhnoi,B.Moroz: Obrabotka metallov ispavov davljenijem. Moskova,WILS.1976:259-276
    39 Klaus.B.Müller:“Indirect extrusion with active friction (ISA),” Advanced Technology of plasticity,Vol.1.Proceedings of the 7th ICTP,Yokohama, Japan. 2002:427-432
    40 N.Srinivasan, N. Ramakrishnan, A.Venugopal Rao and N.Swamy. CAE for forging of titanium alloy aero-engine disc and integration with CAD-CAM for fabrication of the dies. Journal of Materials Processing Technology.2002,124 (3):353-359
    41 Steffen Reinsch, Bernd Mussig, Bernd Schmidt, Kirsten Tracht. Advanced manufacturing system for forging products. Journal of Materials Processing Technology.2003,138(1-3):16-21
    42 Gracious Ngaile, Taylan Altan. Computer aided engineering in forging.In Koseinenkin Kaikan,ed. Proceedings of 3rd J STP International Seminar on Precision Forging. Nagoya:The Japan Society for Technology of Plasticity, 2004, 21-30
    43 李成功, 傅恒志, 于翘.航空航天材料.国防工业出版社,2002:279-280
    44 王乐安编著.难变形合金锻件生产技术.国防工业出版社,2005:173-175
    45 H.S. Jeong, J.R. Choa, H.C. Park. Microstructure prediction of Nimonic 80A for large exhaust valve during hot closed die forging. Journal of Materials Processing Technology.2005,162-163:504-511
    46 马天军, 金鑫, 赵玉才, 赵雅婷.研制直径 2000mm 超大型高温合金涡轮盘的新技术.宝钢技术.2005,(5):50-54
    47 R.R.Boyer.An overview on the use of titanium in the aerospace industry. Materials Science and Engineering A.1996,213(1-2):103-114
    48 Y.G. Zhou, W.D. Zeng and H.Q. Yu.An investigation of a new near-beta forging process for titanium alloys and its application in aviation components.Materials Science and Engineering A.2005,393(1-2):204-212
    49 Conor MacCormack and John Monaghan.2D and 3D finite element analysis of a three stage forging sequence.Journal of Materials Processing Technology. 2002,127(1):48-56
    50 C.S. Li, X.H. Liu and G.D. Wang.Ring upsetting simulation by the meshless method of corrected smooth particle hydrodynamics.Journal of Materials Processing Technology.2007,183(2-3):425-431
    51 H. Ou and C. G. Armstrong.Die shape compensation in hot forging of titanium aerofoil sections.Journal of Materials Processing Technology.2002,125-126(9): 347-352
    52 曹春晓.航空用钛合金的发展概况.航空科学技术.2005,4:3-6
    53 Z.M.Hu and T.A.Dean.Aspects of forging of titanium alloys and the production of blade forms.Journal of Materials Processing Technology.2001,111(1-3):10-19
    54 Hes. D.G..Forging for aircraft engines. Metal Forming.1970,10:285-290
    55 Wang Lean. The study on precision forging blade technology with constant load of mechanical press.in:Z.R.Wang and He Yuxin eds. Advanced Technology of Plasticity- Proceeding of the Forth International Conference on Technology of Plasticity. Beijing. International academic Publishers,1993,2:1096-1101
    56 胡正寰, 夏巨谌主编.中国材料工程大典(材料塑性成形工程).化学工业出版社,2006:250-253
    57 M.Jackson, R.J. Dashwood, L. Christodoulou, H.M. Flower. Isothermal subtransus forging of Ti-6Al-2Sn-4Zr-6Mo.Journal of Light Metals.2002.2(3): 185-195
    58 C.Jongung, C.Haeyong. Upper Bound Analysis For Forging of Trochoidal Gear. Journal of Materials Processing Technology.2000,103(3):347-352
    59 J.J. Park, H.S. Hwang.Preform design for precision forging of an asymmetric rib-web type component. Journal of Materials Processing Technology. 2007, 187-188:595-599
    60 Debin Shan, Wenchen Xu, Changhao Si and Yan Lu.Research on local loading method for an aluminium-alloy hatch with cross ribs and thin webs.Journal of Materials Processing Technology.2007,187-188:480-485
    61 吴跃江, 杨合, 孙志超, 樊晓光.局部加载条件对筋板类构件成形材料流动影响的模拟研究.中国机械工程.2006,17(S1):12-15
    62 Welschof.K,Kopp.R.Incremental forging-a flexible forming technology which improves enegy and material efficiency.Aluminium.1987,63(2):168-172
    63 Sturm.J.C, Welschof.K,Mahlke.M.Methods of saving energy and raw materials in the manufacture of integrated aircraft structural components. Aluminium. 1987,63(11):1157-1162
    64 K. Shi, D.B. Shan,W.C. Xu, Y. Lu.Near net shape forming process of a titanium alloy impeller.Journal of Materials Processing Technology.2007,187-188:582–585
    65 H.Ou and C.G. Armstrong.Evaluating the effect of press and die elasticity in forging of aerofoil sections using finite element simulation.Finite Elements in Analysis and Design.2006,42(10):856-867
    66 N. Srinivasan, N. Ramakrishnan, A. Venugopal Rao and N. Swamy. CAE for forging of titanium alloy aero-engine disc and integration with CAD–CAM for fabrication of the dies. Journal of Materials Processing Technology.2002,124 (3): 353-359
    67 LIU Fang, SHAN De-bin, LU Yan.Experimental study and numerical simulation of isothermal closed die forging for aluminium alloy rotor. Transactions of Nonferrous Metals Society of China.2005,15(2):136-141
    68 Debin Shan, Fang Liu, Wenchen Xu, Yan Lu. Experimental study on process of precision forging of an aluminium-alloy rotor. Journal of Materials Processing Technology.2005,170(1-2): 412-415
    69 Shan.D.B,Zhang.Y.Q,Wang.Y,Xu W.C,Lu.Y.Defect analysis of complex-shape aluminum alloy forging. Transactions of Nonferrous Metals Society of China. 2006,16(S3):1574-1579
    70 D.B.Shan, Z.Wang, Y.Lu, K.M.Xue. Study on isothermal precision forging technology for a cylindrical aluminium-alloy housing. Journal of Materials Processing Technology.1997,72(3):403-406
    71 杨平, 单德彬, 高双胜, 徐文臣, 吕炎. 筋板类锻件等温精密成形技术研究.锻压技术.2006,31(3):55-60
    72 刘晓晶, 刘润广, 李哲等.2214 铝合金上防扭臂等温模锻工艺的研究.哈尔滨工业大学学报.2000,32(5):13-16
    73 C.Tuncer, T.A.Dean. A New Pin Design for Pressure Measurement in Metal forming Processes. International Journal of Machine Tools and Manufacture. 1987,27(3):235-331
    74 Ewing, D. J. F., A series method for constructing slip line fields, Journal of Materials Physics Solids. 1967,15:105
    75 Wei-Ching Yeh and Ming-Chang Wu.A variational upper-bound method for analysis of upset forging of rings.Journal of Materials Processing Technology.2005,170(1-2):392-402
    76 Ming-Chang Wu and Wei-Ching Yeh.Effect of natural boundary conditions onthe upper-bound analysis of upset forging of ring and disks.Materials and Design.2007,28(4):1245-1256
    77 林治平, 谢水生, 程军编著.金属塑性变形的实验方法.冶金工业出版社,2002: 5-7
    78 戴亮, 姚泽坤, 梁新民, 郭鸿镇.不同截面形状结构件等温成形规律的物理模拟.锻压技术.2004,29(6):23-26
    79 Hugo S. Ferguson. Dynamic Thermal/Mechanical Simulators and Simulation of Welding, Forming and Casting, Proceedings of the International Symposium on Physical Simulation, Harbin China,1990,16-27
    80 HUANG Zhao-hui, FU Pei-fu. Solution to the bulging problem in the open-die cold extrusion of a spline shaft and relevant photoplastic theoretical study. Journal of Materials Processing Technology.2001,114(3):185-188
    81 M Zhou, X J Wang, B K A Ngoi, J G K Gan. Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. Journal of Materials Processing Technology.2002,121(2-3):243-251
    82 T Robinson, H Ou, C G Armstrong. Study on ring compression test using physical. Modeling and FE simulation. Journal of Materials Processing Technology.2004,153-154: 54-59
    83 A.E.M.Pertence, P.R.Cetlin. Analysis of a new model material for the physical simulation of metal forming. Journal of Materials Processing Technology.1998, 84(1-3):261-267
    84 Dutta Abhijit, Rao A. Venugopal. Simulation of isothermal forging of compressor disc by combined numerical and physical modelling techniques. Journal of Materials Processing Technology.1997,72(3):392-395
    85 S.K. Choi, M.S. Chun, C.J. Van Tyne and Y.H. Moon.Optimization of open die forging of round shapes using FEM analysis.Journal of Materials Processing Technology.2006,172(1):88-95
    86 He Yang, Zhan Mei, Liu Yuli, et al.Some advanced plastic processing technologies and their numerical simulation. Journal of Materials Processing Technology.2004,151(1-3): 63-69
    87 D.Y.Yang, N.K.Lee and J.H.Yoon. A three-dimensional simulation of isothernal turbine blade forging by the rigid-viscoplastic finite element method. Journal of Materials Engineering and Performance.1993,2(1):119-124
    88 J.W. Brooks, T.A. Dean, Z.M. Hu, E. Wey. Three-dimensional finite element modeling of a Titanium Aluminum Aerofoil Forging. Journal of Materials Processing Technology.1998,80-81(Complete):149-155
    89 He Yang, Mei Zhan, Yuli Liu. A 3D rigid–viscoplastic FEM simulation of the isothermal precision forging of a blade with a damper platform. Journal of Materials Processing Technology.2002,122(1):45-50
    90 M. Zhan, Y.L. Liu, H. Yang, A 3D rigid–plastic FEM simulation of the compressor blade isothermal forging, Journal of Materials Processing Technology.2001,117(1-2):56-61
    91 Liu Yuli,Yang He,Gao Tao,et al. Effecs of process parameters on the temperature field in Ti-6Al-4V alloy blade precision forging process. Journal of Materials Processing Technology.2006,22(4):473-477
    92 John Walters, Wei-Tsu Wu, Anand Arvind, Guoji Li, Dave Lambert and Juipeng Tang .Recent development of process simulation for industrial applications. Journal of Materials Processing Technology.2000,98(2):205-211
    93 P. Petrov, V. Perfilov and S. Stebunov.Prevention of lap formation in near net shape isothermal forging technology of part of irregular shape made of aluminium alloy.Journal of Materials Processing Technology.2006,177(1-3): 218-223
    94 何祝斌.应力及应力场的可视化及其在塑性加工中的应用.哈尔滨工业大学博士学位论文.2005:4-5
    95 Suwat Jirathearanat, Victor Vazquez, Ciro A. Rodríguez and Taylan Altan. Virtual processing – application of rapid prototyping for visualization of metal forming processes. Journal of Materials Processing Technology. 2000,98(1): 116-124
    96 Z.B.He,Z.R.Wang.Graphical methods of representing the stress components on different inclined planes at one point. Journal of Materials Processing Technology.2004,151(1-3):334-339
    97 Zhubin He, Z.R.Wang, Bugang Teng, A graphic representation of traction for a 3D elastic/plastic stress state, International Journal of Mechanical Engineering Education.2004,32(2):153-159
    98 何祝斌, 王仲仁, 苑世剑.一点的正应力和剪应力三维图形及其在金属成形分析中的应用.金属学报.2004,40(3):319-325
    99 冯培锋, 孔祥林, 王仲仁.轴对称塑性成形过程数值模拟的可视化.塑性工程学报.2004,11(4):22-26
    100 张存生.三维体积成形过程有限元模拟可视化技术研究与软件开发.山东大学硕士学位论文.2005
    101 中国机械工程学会锻压学会.锻压手册(锻造).机械工业出版社,2002:256-268
    102 王仲仁.塑性加工力学基础.国防工业出版社,1989:156-157
    103 W.L.Hu, Z.B. He, Y. Fang:“Uniform principle on stress, strain and yield locus for analyzing metal forming processes: the contribution of Prof. Z.R. Wang.” Journal of Materials Processing Technology.2004,151(1-3):27-32
    104 王仲仁.Lode 参数的物理实质及其对塑性流动的影响.固体力学学报.2006,27 (3):277-282

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700