Corilagin对淤胆型肝炎炎症通路干预机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:柯里拉京(corilagin)是从叶下珠中提取的有效药理成分。本研究探讨柯里拉京(corilagin)对脂多糖(LPS)刺激的RAW 264.7小鼠巨噬细胞瘤细胞分泌的促炎细胞因子和介质的干预作用。
     方法:MTT法检测柯里拉京(corilagin)对RAW 264.7小鼠巨噬细胞瘤细胞的最大无毒浓度,采用LPS刺激的RAW 264.7小鼠巨噬细胞瘤细胞,同时用柯里拉京(corilagin)进行干预, ELISA法检测细胞上清中TNF-α,IL-1β,IL-6,Il-10的含量,Griess法检测细胞上清液中的NO,Real-time PCR法检测细胞中TNF-α,COX-2,iNOS,HO-1 mRNA的表达情况,Western-blotting法检测细胞内COX-2和HO-1蛋白的表达。
     结果:MTT法显示柯里拉京(corilagin)对RAW 264.7细胞株的最大无毒浓度为0.5mg/L。LPS刺激的RAW264.7细胞经柯里拉京(corilagin)干预24小时后,细胞上清液中的TNF-α,IL-1β和IL-6水平明显比模型组要低(p<0.01)。柯里拉京(corilagin)可以明显降低经LPS刺激的RAW264.7细胞内COX-2蛋白的表达(p<0.01)。柯里拉京(corilagin)不仅可以明显降低细胞上清液中一氧化氮的释放(p<0.05),而且可以明显下调细胞中一氧化氮合酶mRNA的表达(p<0.05 or 0.01),并且对IL-10有抑制作用,可促进HO-1基因和蛋白的表达(p<0.01)。柯里拉京(corilagin)可以明显阻止LPS刺激的RAW264.7细胞内NF-κB的核转位(p<0.01)。
     结论:柯里拉京(corilagin)对促炎细胞因子和炎性介质TNF-α,IL-1β,IL-6,COX-2,NO均有不同程度的抑制作用,并可以阻止NF-κB的核转录,说明柯里拉京(corilagin)对炎症的起始阶段有明显的抑制作用。在炎症的修复阶段,柯里拉京(corilagin)对HO-1的表达有明显的促进作用,说明此成分有促进炎症恢复的功效。柯里拉京(corilagin)对IL-10有抑制作用的同时没有地塞米松诱导凋亡的作用,其机制还需要进一步探讨。总之,从本实验可以看出,柯里拉京(corilagin)在对LPS刺激下的RAW264.7细胞分泌的炎性因子和介质有不同程度的抑制作用,可以初步说明柯里拉京(corilagin)具有抗炎的作用。
     第二部分柯里拉京(corilagin)抗乙肝病毒的作用研究
     目的:明确柯里拉京(corilagin)是否有抗乙肝病毒的作用。
     方法:MTT法检测柯里拉京(corilagin)对HepG2.2.15细胞的最大无毒浓度。采用柯里拉京(corilagin)干预HepG2.2.15细胞,实时荧光定量PCR法检测细胞上清液中HBV-DNA的分泌量,EIA法检测细胞上清中HBsAg和HBeAg。
     结果:处理9d后,80mg/L柯里拉京(corilagin)组OD值与正常HepG2.2.15细胞组相比有显著性差异(p<0.05),9d时柯里拉京(corilagin)对HepG2.2.15细胞的半数抑制浓度(IC50)为75.85mg/L。各实验剂量的柯里拉京(corilagin)组分别在3d、6d、9d上清液中分泌的HBV-DNA与正常细胞组相比无显著性差异(p>0.05)。各实验剂量的柯里拉京(corilagin)组分别在3d、6d、9d分泌的HBsAg与正常细胞组相比无显著性差异(p>0.05)。各实验剂量的柯里拉京(corilagin)组分别在3d、6d、9d分泌的HBeAg与正常细胞组相比无显著性差异(p>0.05)。
     结论:从结果来看,实验浓度的柯里拉京(corilagin)对HepG2.2.15细胞没有毒性,在此浓度作用下HepG2.2.15细胞分泌的HBsAg、HBeAg、HBV-DNA的量没有受到明显影响,说明柯里拉京(corilagin)没有明显的抗乙肝病毒的作用。
     目的:研究叶下珠柯里拉京(Corilagin)提取物对肝内胆汁淤积的干预作用。
     方法:给予SD大鼠ANIT造成急性淤胆型肝炎的动物模型,采用叶下珠柯里拉京(Corilagin)提取物灌胃,以地塞米松和熊去氧胆酸(UDCA)作为对照,检测肝功能,观察动物生活质量,病理切片检测肝组织病理学变化,实时荧光定量PCR法检测核因子Egr-1,趋化因子CINC-1和MIP-2,western-blot法检测粘附分子ICAM-1,免疫组织化学法检测核因子NF-κB转录,诱导型一氧化氮合酶iNOS表达,ELISA法检测肝组织和血清中TNF-α和IL-6的水平,采用硝酸还原酶法检测组织中一氧化氮(NO),硫代巴比妥酸比色法检测组织中丙二醛(MDA),黄嘌呤氧化酶法检测组织中超氧化物歧化酶(SOD),比色法检测组织中髓过氧化物酶(MPO)。
     结果:经柯里拉京(corilagin)处理的淤胆型肝炎大鼠的淤胆指数明显降低,柯里拉京(corilagin)对AKP,γ-GT和TBA在高峰期或者消退期有作用,但对转氨酶无明显影响。对急性淤胆型肝炎动物模型的生存状况也有明显改善,对肝脏组织学变化起到降低损害强度和缩短进程的作用。对核因子Egr-1和NF-κB在高峰期或消退期有作用,对趋化因子CINC-1和MIP-2在高峰期或消退期有明显抑制作用,对粘附分子ICAM-1的表达有降低作用,对肝组织内促炎细胞因子TNF-α和IL-6有一定影响,对肝组织iNOS和NO的表达有明显促进的作用,对肝组织氧化应激的指标有明显恢复作用。
     UDCA在急性淤胆型肝炎时有保护细胞膜和促进胆汁排泄,改善肝功能的作用,但出现的时间较晚,对急性淤胆型肝炎动物模型的生存状况也有明显改善,对肝脏组织学变化起到降低损害强度和延缓损害进程的作用。对核转录因子Egr-1无明显作用,但淤胆后期对NF-κB有一定抑制作用,对趋化因子CINC-1和MIP-2没有明显抑制作用,对粘附分子ICAM-1的表达有一定的降低作用,对肝组织内促炎细胞因子TNF-α和IL-6,以及血清TNF-α无明显作用,仅后期对血清IL-6有一定影响,对肝组织iNOS有轻微的促进表达作用,但不影响肝组织中的NO,对肝组织中中性粒细胞的聚集无明显影响,对肝组织中氧化应激的指标也无明显影响。
     经地塞米松处理的淤胆型肝炎大鼠的淤胆指数和碱性磷酸酶出现降低外,其他指标如转氨酶,γ-谷氨酰基转移酶和总胆汁酸均上升,说明地塞米松导致的免疫抑制可能造成肝细胞的继发性损伤。并且,地塞米松处理的大鼠生活质量明显变差,体重急剧下降,凝血功能失常,出现出血倾向,肝组织病理学改变明显加重,对核因子Egr-1无影响,早期可以抑制NF-κB,中后期反而加重,甚至还有加强趋化因子CINC-1和MIP-2的作用,对粘附分子ICAM-1的表达也是早期抑制,中后期反而促进,对iNOS和NO在上升期和消退期有一定作用,有阻止组织和血清TNF-α和血清IL-6达到高峰并促进恢复的作用,对MPO反而有促进作用,但对氧化产物MDA和抗氧化酶SOD有一定的调节作用。
     结论:柯里拉京(corilagin)对淤胆型肝炎的保护作用上,对肝细胞膜没有明显的保护作用,但对促进胆红素的排泄,缓解肝脏的炎症反应和氧化应激损伤方面均有不同程度的作用:以促进胆红素排泄,抑制白细胞向肝脏的募集和趋化,缓解肝脏的氧化应激最为明显,且在整个急性淤胆型肝炎的发展演变过程中,以发病的中后期效果最好,起到降低炎症反应的强度和加快炎症反应的过程,促进炎症的恢复三个方面的作用。UDCA可能是通过调节肝细胞和胆管细胞膜上的受体,促进胆汁排泄,减轻胆汁酸的损害起到保护肝脏的作用,其自身对肝脏的炎症并没有很明显的保护作用。而地塞米松虽然具备一定的退黄作用,但同时也具备加重肝脏损害,促进中性粒细胞趋化和聚集,粘附,导致内环境紊乱,使病情加重的危险。因此,柯里拉京(corilagin)与UDCA比较,主要体现在通过抑制炎症和抗氧化达到护肝,退黄的作用,并且没有地塞米松的副作用。
Aim: Corilagin is a novel member of the tannin family which has been discovered from many medicinal plants and has been confirmed many pharmacological activities. However, the purified Corilagin that was used in experiment is rare, and the anti-inflammatory mechanism of Corilagin has not been investigated clearly. This study is to explore the inner anti-inflammatory mechanism of Corilagin.
     Methods: Inflammatory cellular model was established by lipopolysaccharide (LPS) interfering on RAW264.7 cell line. Levels of TNF-α, IL-1β, IL-6, NO and IL-10 in supernatant, mRNA expression of TNF-α, COX-2, iNOS and HO-1, protein expression of COX-2 and HO-1, translocation of NF-κB were assayed by ELISA or Griess method, real-time quantitative PCR, western-blot and immunocytochemistry method, respectively.
     Results: Corilagin could significantly reduce production of pro-inflammatory cytokines and mediators TNF-α, IL-1β, IL-6, NO (iNOS) and COX-2 on both protein and gene level by blocking NF-κB nuclear translocation. Meanwhile Corilagin could notably promote release of anti-inflammatory factor HO-1 on both protein and gene level, but suppress the release of IL-10.
     Conclusion: the anti-inflammatory effects of Corilagin are attributed to the suppression of pro-inflammatory cytokines and mediators by blocking NF-κB activation. Corilagin also can promote HO-1 production to induce regression of inflammation but can inhibit IL-10 production like Dexamethasone. Corilagin possesses a potential anti-inflammatory effect by not only abating inflammatory impairment but also promoting regression of inflammation and has a good prospect to be used in many inflammation- related diseases.
     Part 2: Exploration of Corilagin on the effect of anti-hepatitis B virus
     Aim: To explore the antiviral effect of Corilagin on hepatitis B.
     Methods: The max non-cytotoxic concentration of Corilagin was determined by MTT assay. The HepG 2.2.15 cell line was interfered by Corilagin. The amount of HBV-DNA in supernatant was measured by real-time PCR assay. The HBsAg and HBeAg in supernatant were detected by EIA.
     Results: The max non-cytotoxic concentration of Corilagin was 80mg/L after 9d persistent intervention. There were no differences between Corilagin group and control group on HBV-DNA, HBsAg and HBeAg in supernantant.
     Conclusion: Corilain has no effect on inhibiting hepatitis B virus.
     Part 3: Exploration of Corilagin to treat alpha-naphthylisothiocyanate- induced chelostatic hepatitis via anti-inflammation pathway
     Aim: This study is to disclose the mechanism of Corilagin to treat chelostatic hepatitis via anti-inflammation pathway.
     Methods: Rats were divided into Corilagin, ursodeoxycholic acid, Dexamethasone, model and blank control groups with treatment of respective agent after administration of alpha-naphthylisothiocyanate. At 24h, 48h and 72h time points after administration those rats were examined liver function, pathological changes of hepatic tissue, tumor necrosis factor (TNF)-α, interleukin (IL)-6, myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), cytokine-induced neutrophil chemoattractant (CINC)-1, monocyte inflammatory protein (MIP)-2, intercellular adhesion molecule (ICAM)-1, nuclear factor (NF)-κB and early growth response (Egr)-1, nitric oxide (NO) and inducible nitric oxide synthase (iNOS).
     Result: Compared to the controls, Corilagin had a notable effect on rat’s living condition, pathological manifestation of hepatic tissue, total bilirubin, direct bilirubin, (P<0.05), and little effect on ALP, GGT and total bile acid. With Corilagin intervention, levels of TNF-α, IL-6, MPO, MDA, CINC-1, MIP-2, ICAM-1, Egr-1 and translocation of NF-κB was decreased to different extent, and levels of SOD, NO and iNOS was markedly increased.
     Conclusion: Corilagin has a protective effect on liver function and a restoring activity on chelostatic hepatitis by anti-inflammation. The effects are mainly due to antagonizing pro-inflammatory cytokines and mediators, inhibiting oxidative damage, improving hepatic microcirculation, reducing impairment signals, and controlling nutrophil infiltration.
引文
1. Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev. 2007;65(12 Pt 2):S140-6.
    2. Scanzello CR, Moskowitz NK, Gibofsky A. The post-NSAID era: what to use now for the pharmacologic treatment of pain and inflammation in osteoarthritis. Curr Pain Headache Rep. 2007;11(6):415-22.
    3. Lai KN, Tang SC, Leung JC. Mediators of inflammation and fibrosis. Perit Dial Int. 2007;27 Suppl 2:S65-71.
    4. Jackson JM. TNF- alpha inhibitors. Dermatol Ther. 2007;20(4):251-64.
    5. Brabers NA, Nottet HS. Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia. Eur J Clin Invest. 2006;36(7):447-58.
    6. Toussirot E, Wendling D. The use of TNF-alpha blocking agents in rheumatoid arthritis: an update. Expert Opin Pharmacother. 2007;8(13):2089-107.
    7. Paul AT, Gohil VM, Bhutani KK. Modulating TNF-alpha signaling with natural products. Drug Discov Today. 2006;11(15-16):725-32.
    8. Kuldo JM, Westra J, Asgeirsdóttir SA, Kok RJ, Oosterhuis K, Rots MG, Schouten JP, Limburg PC, Molema G. Differential effects of NF-{kappa}B and p38 MAPK inhibitors and combinations thereof on TNF-{alpha}- and IL-1{beta}-induced proinflammatory status of endothelial cells in vitro. Am J Physiol Cell Physiol. 2005;289(5):C1229-39.
    9. LüJP, Ma ZC, Yang J, Huang J, Wang SR, Wang SQ. Ginsenoside Rg1-induced alterations in gene expression in TNF-alpha stimulated endothelial cells. Chin Med J (Engl). 2004;117(6):871-6.
    10. Akunda JK, Johnson E, Ahrens FA, Kramer TT. Chlortetracycline modulates acute phase response of ex vivo perfused pig livers, and inhibits TNF-alpha secretion by isolated Kupffer cells. Comp Immunol Microbiol Infect Dis. 2001;24(2):81-9.
    11. Jacques C, Gosset M, Berenbaum F, Gabay C. The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation. Vitam Horm. 2006;74:371-403.
    12. Dinarello CA. Blocking IL-1 in systemic inflammation. J Exp Med. 2005;201(9): 1355-9.
    13. Dinarello CA. Therapeutic strategies to reduce IL-1 activity in treating local and systemic inflammation. Curr Opin Pharmacol. 2004;4(4):378-85.
    14. M?ller B, Villiger PM. Inhibition of IL-1, IL-6, and TNF-alpha in immune-mediated inflammatory diseases. Springer Semin Immunopathol. 2006;27(4):391-408.
    15. Burger D, Dayer JM, Palmer G, Gabay C. Is IL-1 a good therapeutic target in the treatment of arthritis? Best Pract Res Clin Rheumatol. 2006;20(5):879-96.
    16. Jones SA. Directing transition from innate to acquired immunity: defining a role forIL-6. J Immunol. 2005;175(6):3463-8.
    17. Rose-John S, Waetzig GH, Scheller J, Gr?tzinger J, Seegert D. The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin Ther Targets. 2007;11(5):613-24.
    18. Nishimoto N, Kishimoto T. Inhibition of IL-6 for the treatment of inflammatory diseases. Curr Opin Pharmacol. 2004 Aug;4(4):386-91.
    19. Warner TD, Mitchell JA. COX-2 selectivity alone does not define the cardiovascular risks associated with non-steroidal anti-inflammatory drugs. Lancet. 2008;371 (9608):270-3.
    20. Little D, Jones SL, Blikslager AT. Cyclooxygenase (COX) inhibitors and the intestine. J Vet Intern Med. 2007;21(3):367-77.
    21. Bazan NG, Colangelo V, Lukiw WJ. Prostaglandins and other lipid mediators in Alzheimer's disease. Prostaglandins Other Lipid Mediat. 2002;68-69:197-210.
    22. Botting R, Ayoub SS. COX-3 and the mechanism of action of paracetamol/ acetaminophen. Prostaglandins Leukot Essent Fatty Acids. 2005;72(2):85-7.
    23. Berenbaum F. COX-3: fact or fancy? Joint Bone Spine. 2004;71(6):451-3.
    24. Iezzi A, Ferri C, Mezzetti A, Cipollone F. COX-2: friend or foe? Curr Pharm Des. 2007;13(16):1715-21.
    25. Singh P, Mittal A. Current status of COX-2 inhibitors. Mini Rev Med Chem. 2008;8(1):73-90.
    26. Salinas G, Rangasetty UC, Uretsky BF, Birnbaum Y. The cycloxygenase 2 (COX-2) story: it's time to explain, not inflame. J Cardiovasc Pharmacol Ther. 2007;12(2): 98-111.
    27. Tripathi P. Nitric oxide and immune response. Indian J Biochem Biophys. 2007; 44(5):310-9.
    28. Gorren AC, Mayer B. Nitric-oxide synthase: a cytochrome P450 family foster child. Biochim Biophys Acta. 2007;1770(3):432-45.
    29. Batra J, Chatterjee R, Ghosh B. Inducible nitric oxide synthase (iNOS): role in asthmapathogenesis. Indian J Biochem Biophys. 2007;44(5):303-9.
    30. Vital AL, Gon?alo M, Cruz MT, Figueiredo A, Duarte CB, Lopes MC. Dexamethasone prevents granulocyte-macrophage colony-stimulating factor-induced nuclear factor-kappaB activation, inducible nitric oxide synthase expression and nitric oxide production in a skin dendritic cell line. Mediators Inflamm. 2003;12(2):71-8.
    31. Chen CW, Lee ST, Wu WT, Fu WM, Ho FM, Lin WW. Signal transduction for inhibition of inducible nitric oxide synthase and cyclooxygenase-2 induction by capsaicin and related analogs in macrophages. Br J Pharmacol. 2003 Nov;140(6): 1077-87.
    32. Lowenstein CJ, Padalko E. iNOS (NOS2) at a glance. J Cell Sci. 2004;117(Pt 14):2865-7.
    33. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15(6):252-9.
    34. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132(3): 344-62.
    35. H?cker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE. 2006;2006(357):re13.
    36. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 2000;18:621-63.
    37. H?m?l?inen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007;2007:45673.
    38. Riese U, Brenner S, D?cke WD, Pr?sch S, Reinke P, Oppert M, Volk HD, Platzer C. Catecholamines induce IL-10 release in patients suffering from acute myocardialinfarction by transactivating its promoter in monocytic but not in T-cells. Mol Cell Biochem. 2000;212(1-2):45-50.
    39. Wu K, Bi Y, Sun K, Wang C. IL-10-producing type 1 regulatory T cells and allergy. Cell Mol Immunol. 2007;4(4):269-75.
    40. Filippi CM, von Herrath MG. IL-10 and the resolution of infections. J Pathol. 2008;214(2):224-30.
    41. Conti P, Kempuraj D, Kandere K, Di Gioacchino M, Barbacane RC, Castellani ML, Felaco M, Boucher W, Letourneau R, Theoharides TC. IL-10, an inflammatory/ inhibitory cytokine, but not always. Immunol Lett. 2003 Apr 3;86(2):123-9.
    42. Franchimont D, Martens H, Hagelstein MT, Louis E, Dewe W, Chrousos GP, Belaiche J, Geenen V. Tumor necrosis factor alpha decreases, and interleukin-10 increases, the sensitivity of human monocytes to dexamethasone: potential regulation of the glucocorticoid receptor. J Clin Endocrinol Metab. 1999;84(8):2834-9.
    43. Wagener FA, da Silva JL, Farley T, de Witte T, Kappas A, Abraham NG. Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression. J Pharmacol Exp Ther. 1999;291(1):416-23.
    44. Ryter SW, Kim HP, Nakahira K, Zuckerbraun BS, Morse D, Choi AM. Protective functions of heme oxygenase-1 and carbon monoxide in the respiratory system. Antioxid Redox Signal. 2007;9(12):2157-73.
    45. Takahashi T, Shimizu H, Morimatsu H, Inoue K, Akagi R, Morita K, Sassa S. Heme oxygenase-1: a fundamental guardian against oxidative tissue injuries in acute inflammation. Mini Rev Med Chem. 2007;7(7):745-53.
    46. Naito Y, Takagi T, Yoshikawa T. Molecular fingerprints of neutrophil-dependent oxidative stress in inflammatory bowel disease. J Gastroenterol. 2007;42(10):787-98.
    47. Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86(2):583-650.
    1. Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol. 2006;1:23-61.
    2. Loomba R, Liang TJ. Treatment of chronic hepatitis B. Antivir Ther. 2007;12 Suppl 3:H33-41.
    3. El Khouri M, dos Santos VA. Hepatitis B: epidemiological, immunological, and serological considerations emphasizing mutation. Rev Hosp Clin Fac Med Sao Paulo. 2004;59(4):216-24.
    4. Sun Z, Ming L, Zhu X, Lu J. Prevention and control of hepatitis B in China. J Med Virol. 2002;67(3):447-50.
    5. Sun X, Qin WX, Li YP, Jiang XH. Comparative cost-effectiveness of antiviral therapies in patients with chronic hepatitis B: a systematic review of economic evidence. J Gastroenterol Hepatol. 2007; 22(9): 1369-77.
    6. Ram M, Shoenfeld Y. Hepatitis B: infection, vaccination and autoimmunity. Isr Med Assoc J. 2008;10(1):61-4.
    7. Lai CL, Yuen MF. The natural history of chronic hepatitis B. J Viral Hepat. 2007;14 Suppl 1:6-10.
    8. Loomba R, Liang TJ. Treatment of chronic hepatitis B. Antivir Ther. 2007;12 Suppl 3:H33-41.
    9. Liu CJ, Kao JH. Pegylated interferons for the treatment of chronic hepatitis B. Recent Patents Anti-Infect Drug Disc. 2006; 1(1): 85-94.
    10. Amarapurkar DN. Telbivudine: a new treatment for chronic hepatitis B. World J Gastroenterol. 2007;13(46):6150-5.
    11. Modi AA, Wright EC, Seeff LB. Complementary and alternative medicine (CAM) for the treatment of chronic hepatitis B and C: a review. Antivir Ther. 2007;12(3):285-95.
    12. Sureau C, Romet-Lemonne JL, Mullins JI, Essex M. Production of hepatitis B virus by a differentiated human hepatoma cell line after transfection with cloned circular HBV DNA. Cell. 1986;47(1):37-47.
    13. Wen WH, Qin WJ, Gao H, Zhao J, Jia LT, Liao QH, Meng YL, Jin BQ, Yao LB, Chen SY, Yang AG. An hepatitis B virus surface antigen specific single chain of variable fragment derived from a natural immune antigen binding fragment phage display library is specifically internalized by HepG2.2.15 cells. J Viral Hepat. 2007;14(7):512-9.
    14. Jia F, Zhang YZ, Liu CM. Stable inhibition of hepatitis B virus expression and replication in HepG2.2.15 cells by RNA interference based on retrovirus delivery. J Biotechnol. 2007;128(1):32-40.
    15. Lupberger J, Mund A, Kock J, Hildt E. Cultivation of HepG2.2.15 on Cytodex-3: higher yield of hepatitis B virus and less subviral particles compared to conventional culture methods. J Hepatol. 2006;45(4):547-52.
    16. World Health Organization. Hepatitis B. World Health Organization Fact Sheet 204 dex. (Revised October 2000). WHO Web site .http://www.who.int/mediacentre/ factsheets/ fs204/en/ in html.
    17.梁晓峰,陈园生,王晓军,贺雄,陈丽娟,王骏,林长缨,白呼群,严俊,崔钢,于竞进.中国3岁以上人群乙型肝炎血清流行病学研究.中华流行病学杂志, 2005, 26:655-658.
    18. Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology. 2007;45(2):507-39.
    19. Choi IG, Yu YG. Interaction and assembly of HBV structural proteins: novel target sites of anti-HBV agents. Infect Disord Drug Targets. 2007;7(3):251-6.
    20. Iannacone M, Sitia G, Ruggeri ZM, Guidotti LG. HBV pathogenesis in animal models:recent advances on the role of platelets. J Hepatol. 2007;46(4):719-26.
    21. Hatzakis A, Magiorkinis E, Haida C. HBV virological assessment. J Hepatol. 2006;44(1 Suppl):S71-6.
    22.中华医学会肝脏病学会和中华医学会感染病学分会.慢性乙型肝炎防治指南.中华肝脏病杂志,2005,13:881-891.
    23. Lok AS, Zoulim F, Locarnini S, Bartholomeusz A, Ghany MG, Pawlotsky JM, Liaw YF, Mizokami M, Kuiken C; Hepatitis B Virus Drug Resistance Working Group. Antiviral drug-resistant HBV: standardization of nomenclature and assays and recommendations for management. Hepatology. 2007;46(1):254-65.
    24. Darnell JE Jr. Interferon research: impact on understanding transcriptional control. Curr Top Microbiol Immunol. 2007;316:155-63.
    25. Asselah T, Lada O, Moucari R, Martinot M, Boyer N, Marcellin P. Interferon therapy for chronic hepatitis B. Clin Liver Dis. 2007;11(4):839-49, viii.
    26. Guan R. Treatment of chronic hepatitis B infection using interferon. Med J Malaysia. 2005;60 Suppl B:28-33.
    27. Leemans WF, Ter Borg MJ, de Man RA. Success and failure of nucleoside and nucleotide analogues in chronic hepatitis B. Aliment Pharmacol Ther. 2007;26 Suppl 2:171-82.
    28. Heathcote EJ. Treatment of hepatitis B: the next five years. Clin Med. 2007;7(5):472-7.
    29. Férir G, Kaptein S, Neyts J, De Clercq E. Antiviral treatment of chronic hepatitis B virus infections: the past, the present and the future. Rev Med Virol. 2008;18(1):19-34.
    30. Nagafuchi S, Kashiwagi S, Hayashi J, Katsuta H, Ikematsu H, Harada M. A delayed type hypersensitivity (DTH) skin reaction to hepatitis B surface antigen (HBsAg) and intradermal hepatitis B vaccination. Fukuoka Igaku Zasshi. 2004;95(12):305-13.
    31. Milich DR, Leroux-Roels GG. Immunogenetics of the response to HBsAg vaccination. Autoimmun Rev. 2003;2(5):248-57.
    32. Ozaras R, Tabak F, Tahan V, Ozturk R, Akin H, Mert A, Senturk H. Correlation ofQuantitative Assay of HBsAg and HBV DNA Levels During Chronic HBV Treatment. Dig Dis Sci. 2008 Apr 12; [Epub ahead of print]. 10.1007/s10620-008-0263-5
    33. Chu CM, Liaw YF. Chronic hepatitis B virus infection acquired in childhood: special emphasis on prognostic and therapeutic implication of delayed HBeAg seroconversion. J Viral Hepat. 2007;14(3):147-52.
    34. Saikia N, Talukdar R, Mazumder S, Khanna S, Tandon R. Management of patients with HBeAg-negative chronic hepatitis B. Postgrad Med J. 2007;83(975):32-9.
    35. Marcellin P, Boyer N, Asselah T. Medical therapy of patients affected by HBeAg- negative chronic hepatitis B. Minerva Gastroenterol Dietol. 2006;52(1):23-38.
    36. Bonino F, Brunetto MR. Chronic hepatitis B e antigen (HBeAg) negative, anti-HBe positive hepatitis B: an overview. J Hepatol. 2003;39 Suppl 1:S160-3.
    37. Fang CT. Blood screening for HBV DNA. J Clin Virol. 2006;36 Suppl 1:S30-2.
    38. Pawlotsky JM. Hepatitis B virus (HBV) DNA assays (methods and practical use) and viral kinetics. J Hepatol. 2003;39 Suppl 1:S31-5.
    39. van der Eijk AA, de Man RA, Niesters HG, Schalm SW, Zaaijer HL. Hepatitis B virus (HBV) DNA levels and the management of HBV-infected health care workers. J Viral Hepat. 2006;13(1):2-4.
    40. Maher SG, Romero-Weaver AL, Scarzello AJ, Gamero AM. Interferon: cellular executioner or white knight? Curr Med Chem. 2007;14(12):1279-89.
    41. Asselah T, Lada O, Moucari R, Martinot M, Boyer N, Marcellin P. Interferon therapy for chronic hepatitis B. Clin Liver Dis. 2007;11(4):839-49, viii.
    42. Zuniga EI, Hahm B, Oldstone MB. Type I interferon during viral infections: multiple triggers for a multifunctional mediator. Curr Top Microbiol Immunol. 2007;316: 337-57.
    43. Shuangsuo D, Zhengguo Z, Yunru C, Xin Z, Baofeng W, Lichao Y, Yan'an C. Inhibition of the replication of hepatitis B virus in vitro by emodin. Med Sci Monit. 2006;12(9):BR302-6.
    44. Chany C. Early days in interferon research. Biochimie. 2007;89(6-7):721-2.
    45. Streck CJ, Ng CY, Zhang Y, Zhou J, Nathwani AC, Davidoff AM. Interferon-mediated anti-angiogenic therapy for neuroblastoma. Cancer Lett. 2005;228(1-2):163-70.
    46. Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, Borden EC. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis. 2003;8(3):237-49.
    47. Sharief MK, Noori MA, Zoukos Y. Reduced expression of the inhibitor of apoptosis proteins in T cells from patients with multiple sclerosis following interferon-beta therapy. J Neuroimmunol. 2002;129(1-2):224-31.
    48. Jewell AP. Interferon-alpha, Bcl-2 expression and apoptosis in B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 1996;21(1-2):43-7.
    1. Ding Y, Zhao L, Mei H, Huang ZH, Zhang SL. Alterations of biliary biochemical constituents and cytokines in infantile hepatitis syndrome. World J Gastroenterol. 2006;12(43):7038-41.
    2. Lee CY, Peng WH, Cheng HY, Chen FN, Lai MT, Chiu TH. Hepatoprotective effect of Phyllanthus in Taiwan on acute liver damage induced by carbon tetrachloride. Am J Chin Med. 2006;34(3):471-82.
    3. Shen B, Yu J, Wang S, Chu ES, Wong VW, Zhou X, Lin G, Sung JJ, Chan HL. Phyllanthus urinaria ameliorates the severity of nutritional steatohepatitis both in vitro and in vivo. Hepatology. 2008;47(2):473-83.
    4. Kinoshita S, Inoue Y, Nakama S, Ichiba T, Aniya Y. Antioxidant and hepatoprot- ective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin. Phytomedicine. 2007;14(11):755-62.
    5. Duan W, Yu Y, Zhang L. Antiatherogenic effects of phyllanthus emblica associated with corilagin and its analogue. Yakugaku Zasshi. 2005;125(7):587-91.
    6. Palmeira CM, Ferreira FM, Rolo AP, Oliveira PJ, Santos MS, Moreno AJ, Cipriano MA, Martins MI, Sei?a R. Histological changes and impairment of liver mitochondrial bioenergetics after long-term treatment with alpha-naphthyl- isothiocyanate (ANIT). Toxicology. 2003 Aug 28;190(3):185-96.
    7. Ohta Y, Kongo-Nishimura M, Hayashi T, Kitagawa A, Matsura T, Yamada K. Saikokeishito Extract Exerts a Therapeutic Effect on alpha-Naphthylisothio- cyanate-Induced Liver Injury in Rats through Attenuation of Enhanced Neutrophil Infiltration and Oxidative Stress in the Liver Tissue. J Clin Biochem Nutr. 2007;40(1):31-41.
    8. Roth RA, Dahm LJ. Neutrophil- and glutathione-mediated hepatotoxicity of alpha-naphthylisothiocyanate. Drug Metab Rev. 1997;29(1-2):153-65.
    9. Hill DA, Jean PA, Roth RA. Bile duct epithelial cells exposed to alpha-naphthylis- othiocyanate produce a factor that causes neutrophil-dependent hepatocellular injury in vitro. Toxicol Sci. 1999;47(1):118-25.
    10. Dietrich CG, Ottenhoff R, de Waart DR, Oude Elferink RP. Role of MRP2 and GSH in intrahepatic cycling of toxins. Toxicology. 2001;167(1):73-81.
    11. Xu J, Lee G, Wang H, Vierling JM, Maher JJ. Limited role for CXC chemokines in the pathogenesis of alpha-naphthylisothiocyanate-induced liver injury. Am J Physiol Gastrointest Liver Physiol. 2004;287(3):G734-41.
    12. Dahm LJ, Schultze AE, Roth RA. An antibody to neutrophils attenuates alpha-naphthylisothiocyanate-induced liver injury. J Pharmacol Exp Ther. 1991; 256(1):412-20.
    13. Hill DA, Roth RA. Alpha-naphthylisothiocyanate causes neutrophils to release factors that are cytotoxic to hepatocytes. Toxicol Appl Pharmacol. 1998; 148(1):169-75.
    14. Kongo M, Ohta Y, Nishida K, Sasaki E, Harada N, Ishiguro I. An association between lipid peroxidation and alpha-naphthylisothiocyanate-induced liver injury in rats. Toxicol Lett. 1999;105(2):103-10.
    15. Puoti C, Bellis L, Galossi A, Guarisco R, Nicodemo S, Spilabotti L, Unto OD. Antiviral treatment of HCV carriers with persistently normal ALT levels. Mini Rev Med Chem. 2008;8(2):150-2.
    16. Shaheen AA, Myers RP. Diagnostic accuracy of the aspartate aminotransferase- to-platelet ratio index for the prediction of hepatitis C-related fibrosis: a systematic review. Hepatology. 2007;46(3):912-21.
    17. Ollinger R, Wang H, Yamashita K, Wegiel B, Thomas M, Margreiter R, Bach FH.Therapeutic applications of bilirubin and biliverdin in transplantation. Antioxid Redox Signal. 2007;9(12):2175-85.
    18. Harvey AM, Holt PE, Barr FJ, Rizzo F, Tasker S. Treatment and long-term follow-up of extrahepatic biliary obstruction with bilirubin cholelithiasis in a Somali cat with pyruvate kinase deficiency. J Feline Med Surg. 2007;9(5):424-31.
    19. Fernandez NJ, Kidney BA. Alkaline phosphatase: beyond the liver. Vet Clin Pathol. 2007;36(3):223-33.
    20. Narayanan S. Serum alkaline phosphatase isoenzymes as markers of liver disease. Ann Clin Lab Sci. 1991;21(1):12-8.
    21. Braun JP, Siest G, Rico AG. Uses of gamma-glutamyltransferase in experimental toxicology. Adv Vet Sci Comp Med. 1987;31:151-72.
    22. Cabrera-Abreu JC, Green A.Gamma-glutamyltransferase: value of its measurement in paediatrics.Ann Clin Biochem. 2002;39(Pt 1):22-5.
    23. Hotta T, Kobayashi Y, Taniguchi K, Johata K, Sahara M, Ochiai M, Watanabe T, Tanimura H. Liver functional analysis by total bile acid level of C-tube bile after hepatectomy. Hepatogastroenterology. 2005;52(64):1211-5.
    24. Hasegawa T, Shukri N, Sasaki T, Kimura T, Okada A. Measurement of serum total bile acid levels in long-term postoperative follow-up of patients with congenital bile-duct dilatation. Pediatr Surg Int. 2002;18(4):227-30.
    25. Hiscott J, Kwon H, Génin P. Hostile takeovers: viral appropriation of the NF-kappaB pathway. J Clin Invest. 2001 Jan;107(2):143-51.
    26. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132(3):344-62.
    27. Uwe S. Anti-inflammatory interventions of NF-kappaB signaling: potential applications and risks. Biochem Pharmacol. 2008;75(8):1567-79.
    28. Miyoshi H, Rust C, Guicciardi ME, Gores GJ. NF-kappaB is activated in cholestasis and functions to reduce liver injury. Am J Pathol. 2001;158(3):967-75.
    29. Khachigian LM, Collins T. Early growth response factor 1: a pleiotropic mediator of inducible gene expression. J Mol Med. 1998;76(9):613-6.
    30. Ngiam N, Post M, Kavanagh BP. Early growth response factor-1 in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1089-91.
    31. Kishore R, Hill JR, McMullen MR, Frenkel J, Nagy LE. ERK1/2 and Egr-1 contribute to increased TNF-alpha production in rat Kupffer cells after chronic ethanol feeding. Am J Physiol Gastrointest Liver Physiol. 2002;282(1):G6-15.
    32. Kim ND, Moon JO, Slitt AL, Copple BL. Early growth response factor-1 is critical for cholestatic liver injury. Toxicol Sci. 2006;90(2):586-95.
    33. Hasegawa M. The roles of chemokines in the development of systemic sclerosis.Nihon Rinsho Meneki Gakkai Kaishi. 2008;31(1):23-36.
    34. Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev. 2000;52(1):145-76.
    35. Masihi KN. Novel concepts for anti-infective activity of cytokines, chemokines and diverse agents. Recent Patents Anti-Infect Drug Disc. 2006;1(2):147-56.
    36. White FA, Jung H, Miller RJ. Chemokines and the pathophysiology of neuropathic pain. Proc Natl Acad Sci U S A. 2007;104(51):20151-8.
    37. Bhatia M, Brady M, Shokuhi S, Christmas S, Neoptolemos JP, Slavin J. Inflammatory mediators in acute pancreatitis. J Pathol. 2000 Feb;190(2):117-25.
    38. Miyakawa H, Kira S, Okuda K, Takeshima N, Mori M, Noguchi T. Olprinone decreases elevated concentrations of cytokine-induced neutrophil chemoattractant-1 in septic rats. J Anesth. 2008;22(1):27-31.
    39. Cui HS, Hayasaka S, Zheng LS, Hayasaka Y, Zhang XY, Chi ZL. Effect of berberine on monocyte chemotactic protein-1 and cytokine-induced neutrophil chemoattra- ctant-1 expression in rat lipopolysaccharide-induced uveitis. Ophthalmic Res. 2007;39(1):32-9.
    40. Sheikh N, Tron K, Dudas J, Ramadori G. Cytokine-induced neutrophil chemoattractant-1 is released by the noninjured liver in a rat acute-phase model. Lab Invest. 2006;86(8):800-14.
    41. Koyama Y, Baba A, Matsuda T. Production of monocyte chemoattractant protein-1 and cytokine-induced neutrophil chemoattractant-1 in rat brain is stimulated by intracerebroventricular administration of an endothelin ETB receptor agonist. Neuroreport. 2007;18(12):1275-9.
    42. Yasui T, Matsuzaki T, Ushigoe K, Kuwahara A, Maegawa M, Furumoto H, Aono T, Irahara M. Stimulatory effect of the herbal medicine Keishi-bukuryo-gan on a cytokine-induced neutrophil chemoattractant, in rat ovarian cell culture. Am J Reprod Immunol. 2003;50(1):90-7.
    43. Handa O, Naito Y, Takagi T, Shimozawa M, Kokura S, Yoshida N, Matsui H, Cepinskas G, Kvietys PR, Yoshikawa T. Tumor necrosis factor-alpha-induced cytokine-induced neutrophil chemoattractant-1 (CINC-1) production by rat gastric epithelial cells: role of reactive oxygen species and nuclear factor-kappaB. J Pharmacol Exp Ther. 2004;309(2):670-6.
    44. Horio F, Kiyama K, Kobayashi M, Kawai K, Tsuda T. Ascorbic acid deficiency stimulates hepatic expression of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1, in scurvy-prone ODS rats. J Nutr Sci Vitaminol (Tokyo). 2006;52(1):28-32.
    45. Kodali P, Wu P, Lahiji PA, Brown EJ, Maher JJ. ANIT toxicity toward mouse hepatocytes in vivo is mediated primarily by neutrophils via CD18. Am J Physiol Gastrointest Liver Physiol. 2006;291(2):G355-63.
    46. Wolpe SD, Cerami A. Macrophage inflammatory proteins 1 and 2: members of a novel superfamily of cytokines. FASEB J. 1989 Dec;3(14):2565-73.
    47. De Plaen IG, Han XB, Liu X, Hsueh W, Ghosh S, May MJ. Lipopolysaccharide induces CXCL2/macrophage inflammatory protein-2 gene expression in enterocytesvia NF-kappaB activation: independence from endogenous TNF-alpha and platelet-activating factor. Immunology. 2006;118(2):153-63.
    48. Johnston RA, Schwartzman IN, Shore SA. Macrophage inflammatory protein-2 levels are associated with changes in serum leptin concentrations following ozone-induced airway inflammation. Chest. 2003;123(3 Suppl):369S-70S.
    49. Watson K, Fan GH. Macrophage inflammatory protein 2 inhibits beta-amyloid peptide (1-42)-mediated hippocampal neuronal apoptosis through activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Mol Pharmacol. 2005;67(3):757-65.
    50. Wang Y, Thorlacius H. Mast cell-derived tumour necrosis factor-alpha mediates macrophage inflammatory protein-2-induced recruitment of neutrophils in mice. Br J Pharmacol. 2005;145(8):1062-8.
    51. Mittal R, Chhibber S, Sharma S, Harjai K. Macrophage inflammatory protein-2, neutrophil recruitment and bacterial persistence in an experimental mouse model of urinary tract infection. Microbes Infect. 2004;6(14):1326-32.
    52. Gujral JS, Liu J, Farhood A, Jaeschke H. Reduced oncotic necrosis in Fas receptor-deficient C57BL/6J-lpr mice after bile duct ligation. Hepatology. 2004;40(4):998-1007.
    53. Neubauer K, Eichhorst ST, Wilfling T, Buchenau M, Xia L, Ramadori G. Sinusoidal intercellular adhesion molecule-1 up-regulation precedes the accumulation of leukocyte function antigen-1-positive cells and tissue necrosis in a model of carbontetrachloride-induced acute rat liver injury. Lab Invest. 1998;78(2):185-94.
    54. Ayyagari VN, Januszkiewicz A, Nath J. Effects of nitrogen dioxide on the expression of intercellular adhesion molecule-1, neutrophil adhesion, and cytotoxicity: studies in human bronchial epithelial cells. Inhal Toxicol. 2007;19(2):181-94.
    55. Tian XF, Yao JH, Li YH, Zhang XS, Feng BA, Yang CM, Zheng SS. Effect of nuclear factor kappa B on intercellular adhesion molecule-1 expression andneutrophil infiltration in lung injury induced by intestinal ischemia/reperfusion in rats. World J Gastroenterol. 2006;12(3):388-92.
    56. Sakaue Y, Nezu Y, Yanagisawa S, Komori S, Hara Y, Takahashi K, Tagawa M, Ogawa R. Effects of continuous low-dose infusion of lipopolysaccharide on expression of E-selectin and intercellular adhesion molecule-1 messenger RNA and neutrophil accumulation in specific organs in dogs. Am J Vet Res. 2005; 66(7):1259-66.
    57. Hubbard AK, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic Biol Med. 2000;28(9):1379-86.
    58. Merchant SH, Gurule DM, Larson RS. Amelioration of ischemia-reperfusion injury with cyclic peptide blockade of ICAM-1. Am J Physiol Heart Circ Physiol. 2003 Apr;284(4):H1260-8.
    59. Pritchard MT, Nagy LE. Ethanol-induced liver injury: potential roles for egr-1.Alcohol Clin Exp Res. 2005;29(11 Suppl):146S-150S.
    60. Liu TZ, Lee KT, Chern CL, Cheng JT, Stern A, Tsai LY. Free radical-triggered hepatic injury of experimental obstructive jaundice of rats involves overproduction of proinflammatory cytokines and enhanced activation of nuclear factor kappaB. Ann Clin Lab Sci. 2001;31(4):383-90.
    61. Huang ZH, Huang X, Li Y. Changes and significance of tumor necrosis factor-alpha and interleukin-6 level in plasma and bile during the formation of acute intrahepatic cholestasis in New Zealand white rabbits. Zhonghua Gan Zang Bing Za Zhi. 2003;11(5):313.
    62. Ishikawa F, Miyazaki S. New biodefense strategies by neutrophils. Arch Immunol Ther Exp (Warsz). 2005;53(3):226-33.
    63. Nishimoto N, Kishimoto T. Interleukin 6: from bench to bedside. Nat Clin Pract Rheumatol. 2006;2(11):619-26.
    64. Kishimoto T. IL-6: from laboratory to bedside. Clin Rev Allergy Immunol.2005;28(3):177-86.
    65. Carlsen H, Alexander G, Austenaa LM, Ebihara K, Blomhoff R. Molecular imaging of the transcription factor NF-kappaB, a primary regulator of stress response. Mutat Res. 2004;551(1-2):199-211.
    66. Liu J, Waalkes MP. Nitric oxide and chemically induced hepatotoxicity: beneficial effects of the liver-selective nitric oxide donor, V-PYRRO/NO. Toxicology. 2005; 208(2):289-97.
    67. Liu J, Waalkes MP. Nitric oxide and chemically induced hepatotoxicity: beneficial effects of the liver-selective nitric oxide donor, V-PYRRO/NO. Toxicology. 2005; 208(2):289-97.
    68. Rockey DC, Shah V. Nitric oxide biology and the liver: report of an AASLD research workshop. Hepatology. 2004;39(1):250-7.
    69. Atucha NM, Nadal FJ, IyúD, Alcaraz A, Rodríguez-Barbero A, Ortiz MC, López-Novoa JM, García-Esta? J. Role of vascular nitric oxide in experimental liver cirrhosis. Curr Vasc Pharmacol. 2005;3(1):81-5.
    70. Hortelano S, Zeini M, Casado M, Martín-Sanz P, BoscáL. Animal models for the study of liver regeneration: role of nitric oxide and prostaglandins. Front Biosci. 2007;12:13-21.
    71. Chen T, Zamora R, Zuckerbraun B, Billiar TR. Role of nitric oxide in liver injury. Curr Mol Med. 2003;3(6):519-26.
    72. Martin-Sanz P, Hortelano S, Callejas NA, Goren N, Casado M, Zeini M, BoscáL. Nitric oxide in liver inflammation and regeneration. Metab Brain Dis. 2002; 17(4):325-34.
    73. Malle E, Furtmüller PG, Sattler W, Obinger C. Myeloperoxidase: a target for new drug development? Br J Pharmacol. 2007;152(6):838-54.
    74. Shao B, Oda MN, Oram JF, Heinecke JW. Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein. Curr Opin Cardiol.2006;21(4):322-8.
    75. Tuma DJ. Role of malondialdehyde-acetaldehyde adducts in liver injury. Free Radic Biol Med. 2002 Feb 15;32(4):303-8.
    76. Uchida K. Lipid peroxidation and redox-sensitive signaling pathways. Curr Atheroscler Rep. 2007;9(3):216-21.
    77. Liochev SI, Fridovich I. The effects of superoxide dismutase on H2O2 formation. Free Radic Biol Med. 2007;42(10):1465-9.
    78. Vives-Bauza C, Starkov A, Garcia-Arumi E. Measurements of the antioxidant enzyme activities of superoxide dismutase, catalase, and glutathione peroxidase. Methods Cell Biol. 2007;80:379-93.
    79. Lindor K. Ursodeoxycholic acid for the treatment of primary biliary cirrhosis. N Engl J Med. 2007;357(15):1524-9.
    80. Eken H, Ozturk H, Ozturk H, Buyukbayram H. Dose-related effects of dexamethasone on liver damage due to bile duct ligation in rats. World J Gastroenterol. 2006;12(33):5379-83.
    81. Glantz A, Marschall HU, Lammert F, Mattsson LA. Intrahepatic cholestasis of pregnancy: a randomized controlled trial comparing dexamethasone and ursodeoxy- cholic acid. Hepatology. 2005;42(6):1399-405.
    82. Kretowicz E, McIntyre HD. Intrahepatic cholestasis of pregnancy, worsening after dexamethasone. Aust N Z J Obstet Gynaecol. 1994;34(2):211-3.
    1. Thyagarajan SP, Jayaram S, Gopalakrishnan V, Hari R, Jeyakumar P, Sripathi MS. Herbal medicines for liver diseases in India. J Gastroenterol Hepatol. 2002;17 Suppl3:S370-6.
    2. Thyagarajan SP, Subramanian S, Thirunalasundari T, Venkateswaran PS, Blumberg BS. Effect of Phyllanthus amarus on chronic carriers of hepatitis B virus. Lancet. 1988;2(8614):764-6.
    3. Thyagarajan SP, Thiruneelakantan K, Subramanian S, Sundaravelu T. In vitro inactivation of HBsAg by Eclipta alba Hassk and Phyllanthus niruri Linn. Indian J Med Res. 1982;76 Suppl:124-30.
    4. Thyagarajan SP, Jayaram S, Valliammai T, Madanagopalan N, Pal VG, Jayaraman K. Phyllanthus amarus and hepatitis B. Lancet. 1990; 336(8720): 949-50.
    5.江苏新医学院编.中药大词典.下册.上海:上海科学技术出版社,1997∶1496.
    6. Fang SH, Rao YK, Tzeng YM. Anti-oxidant and inflammatory mediator's growth inhibitory effects of compounds isolated from Phyllanthus urinaria. J Ethnopha- rmacol. 2008;116(2):333-40.
    7. Xu M, Zha ZJ, Qin XL, Zhang XL, Yang CR, Zhang YJ. Phenolic antioxidants from the whole plant of Phyllanthus urinaria. Chem Biodivers. 2007;4(9):2246-52.
    8. Lee CY, Peng WH, Cheng HY, Chen FN, Lai MT, Chiu TH. Hepatoprotective effect of Phyllanthus in Taiwan on acute liver damage induced by carbon tetrachloride. Am J Chin Med. 2006;34(3):471-82.
    9. Shen B, Yu J, Wang S, Chu ES, Wong VW, Zhou X, Lin G, Sung JJ, Chan HL. Phyllanthus urinaria ameliorates the severity of nutritional steatohepatitis both in vitro and in vivo. Hepatology. 2008;47(2):473-83.
    10. Shin MS, Kang EH, Lee YI. A flavonoid from medicinal plants blocks hepatitis B virus-e antigen secretion in HBV-infected hepatocytes. Antiviral Res. 2005 Sep;67(3):163-8.
    11. Wang M, Cheng H, Li Y, Meng L, Zhao G, Mai K. Herbs of the genus Phyllanthus in the treatment of chronic hepatitis B: observations with three preparations from different geographic sites. J Lab Clin Med. 1995;126(4):350-2.
    12. Yang CM, Cheng HY, Lin TC, Chiang LC, Lin CC. Hippomanin a from acetone extract of Phyllanthus urinaria inhibited HSV-2 but not HSV-1 infection in vitro. Phytother Res. 2007;21(12):1182-6.
    13. Yang CM, Cheng HY, Lin TC, Chiang LC, Lin CC. Acetone, ethanol and methanol extracts of Phyllanthus urinaria inhibit HSV-2 infection in vitro. Antiviral Res. 2005;67(1):24-30.
    14. Yang CM, Cheng HY, Lin TC, Chiang LC, Lin CC. The in vitro activity of geraniin and 1,3,4,6-tetra-O-galloyl-beta-D-glucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. J Ethnopharmacol. 2007;110 (3):555-8.
    15. Liu KC, Lin MT, Lee SS, Chiou JF, Ren S, Lien EJ. Antiviral tannins from two Phyllanthus species. Planta Med. 1999 Feb;65(1):43-6.
    16. Hout S, Chea A, Bun SS, Elias R, Gasquet M, Timon-David P, Balansard G, Azas N. Screening of selected indigenous plants of Cambodia for antiplasmodial activity. J Ethnopharmacol. 2006;107(1):12-8.
    17. Huang ST, Yang RC, Lee PN, Yang SH, Liao SK, Chen TY, Pang JH. Anti-tumor and anti-angiogenic effects of Phyllanthus urinaria in mice bearing Lewis lung carcinoma. Int Immunopharmacol. 2006;6(6):870-9.
    18. Huang ST, Yang RC, Yang LJ, Lee PN, Pang JH. Phyllanthus urinaria triggers the apoptosis and Bcl-2 down-regulation in Lewis lung carcinoma cells. Life Sci. 2003;72(15):1705-16.
    19. Huang ST, Yang RC, Pang JH. Aqueous extract of Phyllanthus urinaria induces apoptosis in human cancer cells. Am J Chin Med. 2004;32(2):175-83.
    20. Huang ST, Yang RC, Chen MY, Pang JH. Phyllanthus urinaria induces the Fas receptor/ligand expression and ceramide-mediated apoptosis in HL-60 cells. Life Sci. 2004;75(3):339-51.
    21. Bharali R, Tabassum J, Azad MR. Chemopreventive action of Phyllanthus urinariaLinn on DMBA-induced skin carcinogenesis in mice. Indian J Exp Biol. 2003; 41(11):1325-8.
    22. Giridharan P, Somasundaram ST, Perumal K, Vishwakarma RA, Karthikeyan NP, Velmurugan R, Balakrishnan A. Novel substituted methylenedioxy lignan suppresses proliferation of cancer cells by inhibiting telomerase and activation of c-myc and caspases leading to apoptosis. Br J Cancer. 2002;87(1):98-105.
    23. Chularojmontri L, Wattanapitayakul SK, Herunsalee A, Charuchongkolwongse S, Niumsakul S, Srichairat S. Antioxidative and cardioprotective effects of Phyllanthus urinaria L. on doxorubicin-induced cardiotoxicity. Biol Pharm Bull. 2005;28(7): 1165-71.
    24. Catapan E, Otuki MF, Viana AM, Yunes RA, Bresciani LF, Ferreira J, Santos AR, Calixto JB, Cechinel-Filho V. Pharmacological activity and chemical composition of callus culture extracts from selected species of Phyllanthus. Pharmazie. 2000; 55(12):945-6.
    25. Santos AR, De Campos RO, Miguel OG, Cechinel-Filho V, Yunes RA, Calixto JB. The involvement of K+ channels and Gi/o protein in the antinociceptive action of the gallic acid ethyl ester. Eur J Pharmacol. 1999;379(1):7-17.
    26. Santos AR, Filho VC, Yunes RA, Calixto JB. Analysis of the mechanisms underlying the antinociceptive effect of the extracts of plants from the genus Phyllanthus. Gen Pharmacol. 1995;26(7):1499-1506.
    27. Paulino N, Pizollatti MG, Yunes RA, Filho VC, Creczynski-Pasa TB, Calixto JB. The mechanisms underlying the relaxant effect of methyl and ethyl gallates in the guinea pig trachea in vitro: contribution of potassium channels. Naunyn Schmiedebergs Arch Pharmacol. 1999;360(3):331-6.
    28. Paulino N, Cechinel-Filho V, Yunes RA, Calixto JB. The relaxant effect of extract of Phyllanthus urinaria in the guinea-pig isolated trachea. Evidence for involvement of ATP-sensitive potassium channels. J Pharm Pharmacol. 1996;48(11):1158-63.
    29. Paulino N, Cechinel Filho V, Pizzolatti MG, Yunes RA, Calixto JB. Mechanismsinvolved in the contractile responses induced by the hydroalcoholic extract of Phyllanthus urinaria on the guinea pig isolated trachea: evidence for participation of tachykinins and influx of extracellular Ca2+ sensitive to ruthenium red. Gen Pharmacol. 1996;27(5):795-802.
    30. Dias MA, Campos AH, Cechinel Filho V, Yunes RA, Calixto JB. Analysis of the mechanisms underlying the contractile response induced by the hydroalcoholic extract of Phyllanthus urinaria in the guinea-pig urinary bladder in-vitro. J Pharm Pharmacol. 1995;47(10):846-51.
    31. Kinoshita S, Inoue Y, Nakama S, Ichiba T, Aniya Y. Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin. Phytomedicine. 2007;14(11):755-62.
    32. Duan W, Yu Y, Zhang L. Antiatherogenic effects of phyllanthus emblica associated with corilagin and its analogue. Yakugaku Zasshi. 2005;125(7):587-91.
    33. Shen ZQ, Dong ZJ, Peng H, Liu JK. Modulation of PAI-1 and tPA activity and thrombolytic effects of corilagin. Planta Med. 2003;69(12):1109-12.
    34. Shiota S, Shimizu M, Sugiyama J, Morita Y, Mizushima T, Tsuchiya T. Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol. 2004;48(1):67-73.
    35. Shimizu M, Shiota S, Mizushima T, Ito H, Hatano T, Yoshida T, Tsuchiya T. Marked potentiation of activity of beta-lactams against methicillin-resistant Staphylococcus aureus by corilagin. Antimicrob Agents Chemother. 2001;45(11):3198-201.
    36. Okabe S, Suganuma M, Imayoshi Y, Taniguchi S, Yoshida T, Fujiki H. New TNF-alpha releasing inhibitors, geraniin and corilagin, in leaves of Acer nikoense, Megusurino-ki. Biol Pharm Bull. 2001;24(10):1145-8.
    37. Cheng JT, Lin TC, Hsu FL. Antihypertensive effect of corilagin in the rat. Can J Physiol Pharmacol. 1995;73(10):1425-9.
    1. Yong EL, Wong SP, Shen P, Gong YH, Li J, Hong Y. Standardization and evaluation of botanical mixtures: lessons from a traditional Chinese herb, Epimedium, with oestrogenic properties. Novartis Found Symp. 2007;282:173-88; discussion 188-91, 212-8.
    2. Zee-Cheng RK. Shi-quan-da-bu-tang (ten significant tonic decoction), SQT. A potent Chinese biological response modifier in cancer immunotherapy, potentiation and detoxification of anticancer drugs. Methods Find Exp Clin Pharmacol. 1992; 14(9):725-36.
    3. Shen ZQ, Dong ZJ, Peng H, Liu JK. Modulation of PAI-1 and tPA activity and thrombolytic effects of corilagin. Planta Med. 2003 Dec;69(12):1109-12.
    4. Jikai L, Yue H, Henkel T, Weber K. One step purification of corilagin and ellagic acid from Phyllanthus urinaria using high-speed countercurrent chromatography. Phytochem Anal. 2002 Jan-Feb;13(1):1-3.
    5. Xiao JS, Liu L, Wu H, Xie BJ, Yang EN, Sun ZD. Rapid preparation of procyanidins b2 and c1 from granny smith apples by using low pressure column chromatography and identification of their oligomeric procyanidins. J Agric Food Chem. 2008 Mar 26;56(6):2096-101.
    6. Zhao X, Wang Y, Sun Y. Quantitative and qualitative determination of Liuwei Dihuang tablets by HPLC-UV-MS-MS. J Chromatogr Sci. 2007 Sep;45(8):549-52.
    7. Wei YJ, Qi LW, Li P, Luo HW, Yi L, Sheng LH. Improved quality control method for Fufang Danshen preparations through simultaneous determination of phenolic acids, saponins and diterpenoid quinones by HPLC coupled with diode array and evaporative light scattering detectors. J Pharm Biomed Anal. 2007;45(5):775-84.
    8. Xie J, Wang W, Zhang Y, Bai Y, Yang Q. Simultaneous analysis of glycyrrhizin, paeoniflorin, quercetin, ferulic acid, liquiritin, formononetin, benzoic acid and isoliquiritigenin in the Chinese proprietary medicine Xiao Yao Wan by HPLC. J Pharm Biomed Anal. 2007 Nov 5;45(3):450-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700