类风湿关节炎、强直性脊柱炎和骨关节炎滑膜成纤维样细胞增殖与分化的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的 类风湿关节炎(rheumatoid arthritis,RA)是主要表现为周围对称性多关节慢性炎症的自身免疫性疾病。类风湿关节炎的基本病理变化为滑膜炎。滑膜成纤维样细胞(FLS)过度增生,大量T淋巴细胞和巨噬细胞浸润,以及血管翳的形成。异常增生的FLS分泌基质蛋白酶和致炎性细胞因子,促发炎症和免疫反应,是导致软骨和骨质的破坏的主要因素。抑制FLS的异常增殖或诱导FLS分化成熟是治疗RA的重要策略。
     沙利度胺(Thalidomide)是TNF-α抑制剂和血管生成抑制剂,具有较强的抗炎作用,近年已作为免疫调节剂应用于RA等风湿性疾病。白芍总苷(total glucosides of peony,TGP)是从中国传统的中草药白芍根部中提取的有效成分,具有机能和剂量依赖性的免疫调节作用。基础和临床研究证实,沙利度胺和TGP对类风湿关节炎有一定疗效,改善临床症状。艾拉莫德(Iguratimod,T-614)为一种甲磺酰胺基非甾体类抗炎药(NSAIDs),是COX-2选择性抑制剂,国外研究表明其对RA患者有一定免疫抑制作用。全反式维甲酸(ATRA)、1,25(OH)_2D_3、地塞米松是已知的细胞分化诱导剂,可促进成纤维细胞的分化成熟,抑制其无限增殖特性,被广泛用于治疗皮肤、肝脏、肺脏纤维化,降低纤维组织增生,但它们对RA的滑膜成纤维细胞增殖影响却鲜有报道。本试验旨在观察RA滑膜FLS的生长特点,研究沙利度胺、TGP、T-614,ATRA、1,25(OH)_2D_3、和地塞米松在体外实验中对RA-FLS细胞增殖分化特性的影响,将更全面地揭示RA的发病机制,探讨免疫调节药物的不同作用方式,验证其临床疗效,寻找治疗RA新途径。
     方法 1.组织来源:滑膜组织关节镜诊断治疗术、关节活检针抽取滑膜组织和抽取关节积液培养。收集膝OA(8例)和RA(5例),RA和OA患者的诊断均
OBJECTIVE: Rheumatoid arthritis (RA) is a chronic inflammatory and autoimmune disease that mainly affects multiple synovial joints. Synovitis may be present in RA. Inflammation is accompanied by an influx of immune competent cells and by aberrant proliferation of resident fibroblast-like synovial cells (FLS) . Accretion of FLS is responsible for progressive joint destruction.
    T-614 [N-(3-formylamino- 4-oxo-6-phenoxy-4H-chromen-7-yl) methanesulfonamide] is known as cyclooxygenase-2(COX-2) inhibitor and total glucosides of paeony (TGP) are active compounds extracted from the roots of Paeonia lactiflora Pall, both are efficient in anti-inflammation and immunoregulation in arthritis via various pathways. The tumor necrosis factor-alpha (TNF-α) inhibitor thalidomide is known to be a potential modulator of host immunity, a potential treatment for autoimmune disorders such as rheumatoid arthritis (RA).
    All trans retinoid acid (ATRA) , 1,25 (OH)_2D_3 and desamethasone are known as inducer for cell differentiation and inhibitor to fibroblast cells proliferatiation. The effect on FLS proliferatiation and apoptosis is still unclear.
    In this study, we investigate the proliferation characteristics of FLS in RA and OA patients in vitro and the mechanism of the immunosuppressive effect of thalidomide, TGP , T-614, ATRA, 1,25 (OH)_2D_3 and desamethasone on them.
引文
1. Firestein GS. Invasive fibroblast-like synoviocytes in rheumatoid arthritis: passive responder or transformed aggressors? Arthritis Rheum,1996,223:117-26.
    2. Kramer I, Wibulswas A, Croft D, et al. Rheumatoid arthritis: targeting the proliferative fibroblast. Prog Cell Res, 2003,5:59-70.
    3. Spector TD, Hart DJ, Nandra D et al. Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum, 1997,40:723-27.
    4. Haywood L, McWilliams DF, Pearson CI, et al. Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum, 2003, 48:2173-77.
    5. Inaba T, Tanaka K, Takeno R, et al. Synthesis and antiinflammatory activity of 7-methanesulfonylamino-6-phenoxychromones.Antiarthritic effect of the 3-formylamino compound (T-614) in chronic inflammatory disease models. Chem Pharm Bull (Tokyo), 2000, 48: 131-39.
    6.王斌,姚余有等.白芍总苷对AA大鼠关节损伤的保护作用.中国药理学与毒理学杂志,1996,10(3):211-14.
    7. Zhu L, Wei W, Zheng YQ. Effects and mechanisms of total glucosides of paeony on joint damage in rat collagen-induced arthritis. Inflamm Res,2005, 54: 211-20.
    8. Bombini G, Canetti C, Rocha FA, et. al. Tumour necrosis factor-alpha mediates neutrophil migration to the knee synovial cavity during immune inflammation. Eur J Pharmacol, 2004, 496:197-204.
    9. Lainer DT, Brahn E. New anti angiogenic strategies for the treatment of proliferative synovitis. Expert Opin Investig Drugs, 2005, 14: 1-17.
    10. Wagner J. Potential role of retinoids in the therapy of renal disease.Nephrol Dial Transplant, 2001, 16:441-444.
    11. Orfanos CE, Zouboulis CC, Almond RB, et al. Current use of retinoids in dermatology. Drug, 1997,53:358-388.
    12. Krupsky M, Fine A, Berk JK, et al. Retinoic acid-induced inhibition of type Ⅰ collagen gene expression in human lung fibroblast. Biochimim et Bioph Acta, 1994, 1219:335-341.
    13. Sung L H, Tsuchihashi M. Tenshin S, et al. Effect of retinoic acid on contraction of collagen gel induced by fibroblasts. Biochem Biophys Res Commun, 1994,205:455-459.
    14. Deluca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J, 2001, 15 (14) : 2579-2585.
    15. Hewison M. Vitamin D and immune system. Endocrinology, 1992, 132: 173-175.
    16 Lai DR, Chen HR, Lin LM, et al. Clinical evaluation of differern treatment methods for oral submucous fibrosis: a 10-year experience with 150 cases. J Oral Pathol Med, 1995, 24: 402-412.
    17. Jaiswal N, Haynesworth SE , Caplan Al, et al. Osteogenic differentiation of purified culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem, 1997,64: 295-312.
    18. Tsuzaki M, Guyton G, Garrett W, et al. IL-1 beta induces C0X2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. J Orthop Res, 2003, 21: 256-64.
    19. Baeten D, Peene I, Union A, et al. Specific presence of intracellular citrullinated proteins in rheumatoid arthritis synovium: relevance to antifilaggrin autoantibodies. Arthritis Rheum ,2001, 44:2255-62.
    20. Dowthwaite GP, Edwards JCW, Pitsillides AA. An essential role for the interaction between hyaluronan and hyaluronan binding proteins during joint development. J Histochem Cytochem, 1998, 46:641-51.
    21. Ruschpler P, Stiehl P. Shift in Th1 (IL-2 and IFN-gamma) and Th2 (IL-10 and IL-4) cytokine mRNA balance within two new histological main-types of rheumatoid-arthritis (RA). Cell Mol Biol, 2002, 48:285-93.
    22. Canete JD, Martinez SE, Farres J, et al. Differential Th1/Th2 cytokine patterns in chronic arthritis: interferon r is highly expressed in synovium of rheumatoid arthritis compared with seronegative spondyloarthropathies. Ann Rheum Dis ,2000,59:263-68.
    23. Kraan MC, Haringman JJ, Weedon H, et al. T cells, fibroblast-like synoviocytes, and granzyme B+ cytotoxic cells are associated with joint damage in patients with recent onset rheumatoid arthritis. Ann Rheum Dis, 2004, 63: 483-88.
    24. Francois RJ, Gardner DL, Degrave EJ, et al. Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis. Arthritis Rheum, 2000, 43: 2011-24.
    25. Baeten D, Kruithof E, Rycke LD, et al. Infiltration of the synovial membrane with macrophage subsets and polymorphonuclear cells reflects global disease activity in spondyloarthropathy. Arthritis Res Ther, 2005, 7:359-69.
    26. Shunsei H, TamikoY, TatsuoN. Induction of fibroblast-like cells from CD34~+ progenitor cells of the bone marrow in rheumatoid arthritis. Journal of Leukocyte Biology, 2001,70:413-421.
    27. Bari CD, Dell' AF, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum, 2001, 44(8): 1928-42.
    28. Corr M, Zvaifler NJ. Mesenchymal precursor cells. Annals of the Rheumatic Diseases, 2002, 61:3-5.
    29. Edwards JCW, Leigh RD, Cambridge G: Expression of molecules involved in B lymphocyte survival and differentiation by synovial fibroblasts. Clin Exp Immunol, 1997, 108:407-414.
    30. Cosimo D B, Francesco DA, Frank V, et al. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. The Journal of Cell Biology, 2003, 160: 909-918
    31. Hiroaki S, Satoshi K, Toshiki M . Distinct roles of Smad pathways and p38 pathways in cartilage-specific gene expression in synovial fibroblasts . Clin. Invest, 2004, 113:718-726.
    32. Mattey D L, Dawes P T, Nixon N B, et al. Transforming growth factor b-1 and interleukin 4 induced smooth muscle actin expression and myofibroblast-like differentiation in human synovial fibroblasts in vitro: modulation by basic fibroblast growth factor. Ann Rheum Dis, 1997, 56:426-431o
    33. Fibroblast biology: Development and differentiation of synovial fibroblasts in arthritis. Arthritis Res, 2000, 2:344-347
    34. Bhatia A, Blades S, Cambridge G, Edwards JCW: Differential distribution of Fc γ RIIIa in normal human tissues. Immunology, 1998, 94:56-63.
    35.Hamman J, Vogel B, van Schijndel GMW, van Lier RAW: The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med, 1996, 184:1185-1189.
    36. Cumano A, Dieterlen-Lievre F, Godin I: Lymphoid potential, probed splanchnopleura. Cell, 1996, 86:907-916.
    37. Allard SA, Muirden KD, Camplejohn KL, Maini RN: Chondrocyte-derived cells and matrix at the rheumatoid cartilage-pannus junction identified with monoclonal antibodies. Rheumatol Int, 1987, 7:153-159.
    38. Hembry RM, Bagga MR, Reynolds JJ, Hamblen DL: Immunolocalisation studies on six matrix metal loproteinases and their inhibitors TIMP-1 and TIMP-2 in synovia from patients with osteo- and rheumatoid arthritis. Ann Rheum Dis, 1995, 54:25-32.
    39. Wilkinson LS, Edwards JCW, Poston R, Haskard DO: Cell populations expressing VCAM-1 in normal and diseased synovium. Lab Invest, 1993, 68:82-88.
    40 Danks L, Sabokbar A, Gundle R, et al. Synovial macrophage-osteoclast differentiation in inflammatory arthritis. Annals of the Rheumatic Diseases , 2002, 61:916-921
    41. Shigeyama Y, Pap T, Kunzler P, et al. Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum, 2000, 43: 2523-2530.
    42. Tsuboi H, Matsui Y, Hayashida K, et al. Tartrate resistant acid phosphatase (TRAP) positive cells in rheumatoid synovium may induce the destruction of articular cartilage. Annals of the Rheumatic Diseases, 2003, 62:196-203.
    43. Gravallese EM, Manning C, Tsay A, et al. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum, 2000, 43: 250-258.
    44. Powell D W, Mifflin RC, Valentich JD, et al. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol Cell Physiol , 1999,277:1-19.
    45. Davis LS. A Question of Transformation: The Synovial Fibroblast in Rheumatoid Arthritis. American Journal of Pathology. 2003, 162: 1399-1402.
    46. Fiorito S, Magrini L, Adrey J, et al. Inflammatory status and cartilage regenerative potential of synovial fibroblasts from patients with osteoarthritis and chondropathy. Rheumatology(Oxford), 2005, 44: 164-71.
    47. Benito M J, Veale D J, FitzGerald O, et al. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dise, 2005,64:1263-67.
    48. Lories R J U, Derese I, Bari C De, et al. In vitro growth rate of fibroblast-like synovial cells is reduced by methotrexate treatment. Ann Rheum Dise, 2003, 62:568-71.
    49. Moller B, Kukoc MZ, Kessler U, et al. Expression of interleukin-18 and its monokine-directed function in rheumatoid arthritis. Rheumatology (Oxyford),2001, 40:302-09
    50. Tanaka K, Yamamoto T, Aikawa Y, et al. Inhibitory effects of an anti-rheumatic agent T-614 on immunoglobulin production by cultured B cells and rheumatoid synovial tissues engrafted into SCID mice.Rheumatology(Oxford),2003,42:1365-71.
    51. Aikawa Y, Tanuma N, Shin T, et, al. A new anti-rheumatic drug, T-614,effectively suppresses the development of autoimmune encephalomyelitis.J Neuroimmunol, 1998, 89: 35-42.
    52. Kawakami A, Tsuboi M, Urayama S, et al. Inhibitory effect of a new anti-rheumatic drug T-614 on costimulatory molecule expression, cytokine production, and antigen presentation by synovial cells. J Lab Clin Med,1999, 133: 566-74.
    53. Inaba T, Tanaka K, Takeno R, et al. Synthesis and antiinflammatory activity of 7-methanesulfonylamino-6-phenoxychromones. Antiarthritic effect of the 3-formylamino compound (T-614) in chronic inflammatory disease models. Chem Pharm Bull (Tokyo), 2000, 48: 131-39.
    54. Kohno M, Aikawa Y, Tsubouchi Y, et al. Inhibitory effect of T-614 on tumor necrosis factor-alpha induced cytokine production and nuclear factor-kappaB activation in cultured human synovial cells. J Rheumatol, 2001, 28: 2591-96.
    55.王志坚、万军梅、陈敏珠 白芍总苷对正常人与类风湿关节炎患者单核细胞和淋巴细胞功能的影响 中国药理学通报,1994;10:197-201.
    56.王斌、陈敏珠、徐叔云 白芍总苷对佐剂性关节炎大鼠滑膜细胞功能和脾细胞增殖反应的影响 中国药理学与毒理学杂志,1994,8:129-31.
    57.周强,栗占国。白芍总苷的药理作用及其在自身免疫性疾病中的应用。中国新药与临床杂志,2003,11:687-91.
    58. Zheng YQ, Wei W. Total glucosides of paeony suppresses adjuvant arthritis in rats and intervenes cytokine-signaling between different types of synoviocytes. It Immunopharmacol, 2005; 5: 1560-73.
    59. Culo MI, Vergles D, Horvat G, et al. The levels of TNF-alpha, CAMP, PGE2 and IL-18 in synovial fluid of patients with rheumatoid arthritis and in patients with osteoarthritis. Ann Rheum Dis, 2005, 64: 1831.
    60. Clavel G, Bessis N, Boissier MC. Recent data on the role for angiogenesis in rheumatoid arthritis. Joint Bone Spine, 2003, 70:321-6.
    61. Scott BB, Zaratin PF, Gilmartin AG, et al. TNF-alpha modulates angiopoietin-1 expression in rheumatoid synovial fibroblasts via the NF-kappa B signalling pathway. Biochem Biophys Res Commun, 2005, 328: 409-14.
    62. Nagashima M, Tanaka H, Takahashi H, et al. Study of the mechanism involved in angiogenesis and synovial cell proliferation in human synovial tissues of patients with rheumatoid arthritis using SCID mice. Lab Invest, 2002, 82: 981-88.
    63. Oliver SJ, Freeman SL, Corral LG, et al. Thalidomide analogue CC1069 inhibits development of rat adjuvant arthritis. Clin Exp Immunol, 1999, 118: 315-21.
    64. Bombini G, Canetti C, Rocha FA, et al. Tumour necrosis factor-alpha mediates neutrophil migration to the knee synovial cavity during immune inflammation. Eur J Pharmacol, August 2, 2004, 496: 197-204.
    65. Koch AE. The role of angiogenesis in rheumatoid arthritis: recent developments. Ann Rheum Dis, 2000, 59:65-71.
    66. Lainer DT, Brahn. E. New anti angiogenic strategies for the treatment of proliferative synovitis. Expert Opin Investig Drugs, 2005, 14: 1-17.
    67. Fujita J, Mestre JR, Jerome B. et al. Thalidomide and Its Analogues Inhibit Lipopolysaccharide-mediated Induction of Cyclooxygenase-2. Clin. Cancer Res, 2001, 7: 3349.
    68. Takeuchi AG, J Immumol, 2000, 160: 209-218.
    69. Penna G, et al. J Immumol, 2000, 164: 2405-2411.
    70. Piemonti L, et al. J Immumol, 2000, 164: 4443-4451
    71 Hayes ME, Bayley D, Still P, et al. Differential metabolism of 25-hydroxyvitamin D3 by cultured synovial fluid macrophages and fibroblast-like cells from patients with arthritis. Annals of the Rheumatic Diseases, 1992, 51, 220-226.
    72. Susan J S, Michael E H, Peter L S. et al. Autocrine control of vitamin D metabolism in synovial cells from arthritic patients. Ann Rheum Dis , 1999, 58: 372-378
    73 Meyer, FA , Yaron I, Kamin BN, et al. Differential effects of l,25-(OH)2D3 on acyl hydrolase and cyclooxygenase activities in interleukin 1 beta-stimulated human synovial fibroblast cultures. Prostaglandins Leukot Essent Fatty Acids, 1996, 55: 191-194
    74. Schule R, Rangarajan P, Yang N et al. Retinoic acid is a negative regulator of AP-1 responsive gene. Proc Natl Acad Sci, 1991, 88:6092-6096.
    75. Lee HY, Walsh GL, Dawson MI et al. All-trans-retinoic acid inhibits jun N-terminal kinase-dependent signaling pathways. J Bio Chem, 1998, 273:7066-7071.
    76. Zhu YK, Liu XD, Ronald F, et al. Retinoic Acid Attenuates Cytokine-Driven Fibroblast Degradation of Extracellular Matrix in Three-Dimensional Culture. Am. J. Respir. Cell Mol. Biol., Volume 25, Number 5, November 2001,25: 620-627
    77 Wobus AM, Kaomei G, Shan J, et al. Retinoic acid accelerates stem cell derived cardiac differentiation and endances development of ventricular cardiomyocytes. J Moll cell cardiac. 1997, 29: 1525-1539.
    78. Maden M. Retinoid signaling in the development of the center nervous system. Nat Rev Neurosci, 2002, 3:843-853.
    79. Crandall J, Sakai Y, Zhang JH, et al. 13-cis-retinoic acid suppresses hippocanpal cell division and hippocanpal-dependent learning in mice. Proc Natl Acad Sci USA. 2004,101: 5111-5116.
    80. T. Mao, D. P. Tashkin, P. N. Belloni, I. Baileyhealy, F. Baratelli, and M. D. Roth. All-trans Retinoic Acid Modulates the Balance of Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 in Patients With Emphysema. Chest, 2003, 124: 1724-1732
    81. Tsuneo K, Qihe X, Akira F, et al. Selective Roles of Retinoic Acid Receptor and Retinoid X Receptor in the Suppression of Apoptosis by All-trans-retinoic Acid. J. Biol. Chem. ,2001, 276: 12697-12701.
    82. Bigg H, Cawston TE. Effect of retinoic acid in combination with platelet-derived growth factor-BB or transforming growth factor-beta on tissue inhibitor of metalloproteinases and collagenase secretion from human skin and synovial fibroblasts. J Cell Physiol, 1996, 166: 84-93.
    83. Bigg H F, McLeod R, Waters JG, er al. Mechanisms of induction of human tissue inhibitor of metalloproteinases-1 (TIMP-1) gene expression by all-trans retinoic acid in combination with basic fibroblast growth factor. Eur. J. Biochem. 2000, 267: 4150-4156
    84. Gitter BD , Koehneke EM. Retinoic acid potentiates interleukin-1- and f ibroblast growth factor-induced human synovial f ibroblast proliferation. Clin Immunol Immunopathol, 1991, 61: 191-201.
    85.Zhu YK, Liu XD, Ronald F. Retinoic Acid Attenuates Cytokine-Driven Fibroblast Degradation of Extracellular Matrix in Three-Dimensional Culture. Am. J. Respir. Cell Mol. Biol, 2001, 25: 620-627
    86. Schroen DJ , Brinckerhoff CE. Inhibition of rabbit collagenase (matrix metalloproteinase-1; MMP-1) transcription by retinoid receptors: evidence for binding of RARs/RXRs to the -77 AP-1 site through interactions with c-Jun. J Cell Physiol, 1996, 169(286): 320-332.
    87. Brinckerhoff CE, Harris Jr. Modulation by retinoic acid and corticosteroids of collagenase production by rabbit synovial fibroblasts treated with phorbol myristate acetate or poly(ethylene glycol). Biochim Biophys Acta, 1981, 677(3-4): 424-32.
    88. Maria J. G, Milagros B, Jesus A, Et al. A regulatory cascade involving retinoic acid, Cbfal, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation. The Journal of Cell Biology, 2001, 155:1333-1344.
    89. Brinckerhoff CE, Nagase H, Nagel JE, et al. Effects of all-trans-retinoic acid (retinoic acid) and 4-hydroxyphenylretinamide on synovial cells and articular cartilage. J Am Acad Dermatol, 1982, 6: 591-602.
    90. Beehler BC, Hei YJ, Chen S, et al. Inhibition of disease progression by a novel retinoid antagonist in animal models of arthritis. J Rheumatol, 2003, 30: 355-63
    91. Waal DJ, Oliver A, Wyk VC, et al. The fibroblast population in oral submucous fibrosis . J Oral Pathol Med, 1997, 26:69-79.
    92. Zen RM, Liu J, Liu MI, et al. Effect of four anti-inflammatory drugs on proliferation of FLS in patients with RA in vitro. Zhongguo Linchuang Kangfu, 2005,9 (18) : 67-69
    93. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284 (5411) : 143-147.
    94. Coelho MJ, Fernandes MH. Humam bone cell cultures in biocompatibility testing Part II: effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials. 2000,21:1095-1102.
    95. Ju XD, Lou SQ, Tian H, et al. Basic biological characteristics of mesenchymal stem cells and the characteristics in differentiation into osteoblast. Chinese J clinic Rehabilitation , 2005,18:262-264
    96. Zuk PA , Zhu M, Ashjian P, et al. Human adipose in a source of multipotent stem cells. Molecular Biology of the cell, 2002, 13:4279-4295
    1. Francois RJ, Gardner DL, Degrave EJ, et al. Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis.Arthritis Rheum, 2000, 43: 2011-24. (?)±s
    2. Kim TH, Uhm WS, Inman RD. Pathogenesis of ankylosing spondylitis and reactive arthritis. Curr Opin Rheumatol, 2005, 17(4):400-053.
    3. Tanaka K, Kawasaki H, Kurata K,et al.T-614, a novel antirheumatic drug, inhibits both the activity and induction of cyclooxygenase-2(COX-2) in cultured fibroblasts. Jpn J Pharmacol, 1995, 67: 305-14.
    4. Tanaka K, Shimotori T, Taniguchi Y, et al. Pharmacological studies on T-614, a novel antiinflammatory agent: effect on type Ⅱ collagen-induced arthritis in DBA/1J mice and spontaneous arthritis in MRL/1 mice. Int J Immunotherapy, 1993,9:69-78.
    5. Inaba T, Tanaka K, Takeno R, et al. Synthesis and antiinflammatory activity of 7-methanesulfonylamino-6-phenoxychromones. Antiarthritic effect of the 3-formylamino compound (T-614) in chronic inflammatory disease models. Chem Pharm Bull(Tokyo), 2000, 48: 131-39.
    6.王斌,姚余有等.白芍总苷对AA大鼠关节损伤的保护作用.中国药理学与毒理学杂志,1996,10:211-14.
    7. Zhu L, Wei W, Zheng YQ. Effects and mechanisms of total glucosides of paeony on joint damage in rat collagen-induced arthritis. Inflamm Res,2005, 54: 211-20.
    8. Jayne A. Keifer, Denis C. et al.Inhibition of NF-κB Activity by Thalidomide through Suppression of IκB Kinase Activity . J Biol Chem, 2001, 276:22382-87.
    9. Bombini G, Canetti C, Rocha FA, et. al. Tumour necrosis factor-alpha mediates neutrophil migration to the knee synovial cavity during immune inflammation. Eur J Pharmacol, 2004, 496: 197-204.
    10. Lainer DT, Brahn E. New anti angiogenic strategies for the treatment of proliferative synovitis. Expert Opin Investig Drugs, 2005, 14: 1-17.
    11. Tsuzaki M, Guyton G, Garrett W, et al. IL-1 beta induces C0X2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. J Orthop Res, 2003, 21: 256-64.
    12. Liebermann DA, Gregory B, Hoffman B. AP-1 (Fos/Jun) transcription factors in hematopoietic differentiation and apoptosis. Int J Oncol, 1998, 12:685-700.
    13. Baeten D, Peene I, Union A, et al. Specific presence of intracellular citrullinated proteins in rheumatoid arthritis synovium: relevance to antifilaggrin autoantibodies. Arthritis Rheum , 2001, 44:2255-62.
    14. Dowthwaite GP, Edwards JCW, Pitsillides AA. An essential role for the interaction between hyaluronan and hyaluronan binding proteins during joint development. J Histochem Cytochem ,1998, 46:641-51.
    15. Baeten D, Kruithof E, Rycke LD, et al. Infiltration of the synovial membrane with macrophage subsets and polymorphonuclear cells reflects global disease activity in spondyloarthropathy. Arthritis Res Ther, 2005, 7:359-69.
    16. Baeten D, Demetter P, Cuvelier CA, et al. Macrophages expressing the scavenger receptor 163: a link between immune alterations of the gut and synovial inflammation in spondyloarthropathy. J Pathol , 2002, 196:343-50.
    17. Dorenbosch HL, Tubergen A, Spoorenberg A, et al. The influence of peripheral arthritis on disease activity in ankylosing spondylitis patients as measured with the Bath Ankylosing Spndylitis Activity Index. Arthritis Rheum, 2004, 51:154-59.
    18. Synovial histopathology of psoriatic arthritis, both oligo- and polyarticular, resembles spondyloarthropathy more than it does rheumatoid arthritis. Arthritis Res Ther, 2005, 7: 569-80.
    19. Baeten D, Kruithof E, Bosch DF, et al. Immunomodulatory effects of anti-tumor necrosis factor a therapy on synovium in spondylarthropathy: histologic findings in eight patients from an open-label pilot study. Arthritis Rheum, 2001, 44:186-195.
    20. Evangelisto A, Wakefield R, Emery P. Imaging in early arthritis. Best Pract Res Clin Rheumatol, 2004,18:927-43.
    21. Baeten D, Demetter P, Cuvelier C, et al. Comparative study of synovial histology in rheumatoid arthritis, spondyloarthropathy and osteoarthritis: influence of disease duration and activity. Ann Rheum Dis, 2000, 59:945-53.
    22. Kraan MK, Haringman JJ, Post WJ, et al. Immunohistological analysis of synovial tissue for differential diagnosis in early arthritis. Rheumatology, 1999, 38: 1074-80.
    23. Youssef PP, Kraan MC, Breedveld FC et al. Quantitative microscopic analysis of inflammation in rheumatoid arthritis synovial membrane samples selected at arthroscopy compared with samples obtained blindly by needle biopsy. Arthritis Rheum ,1998, 41:663-69.
    24. Tak PP, Lindblad S, Klareskog L, et al. Synovial biopsies for analysis of the synovial membrane: new perspectives. Newsl Eur Rheumatol Res, 1994,2:27-29.
    25. Bresnihan B. Diagnostic value of synovial biopsies. Ann Rheum Dis, 2005, 64: 94.
    26. Amos N, Lauder S, Evans A, et al. Adenoviral gene transfer into osteoarthritis synovial cells using the endogenous inhibitor IκBα reveals that most, but not all, inflammatory and destructive mediators are NFκB dependent. Rheumatology, 2006, 10: 1093-78.
    27. AikawaY, Yamamoto M, Yamamoto T, et al. An anti-rheumatic agent T-614 inhibits NF-kappaB activation in LPS- and TNF-alpha-stimulated THP-1 cells without interfering with IkappaBalpha degradation. Inflamm Res, 2002, 51: 188-94.
    28. Riendeau D, Charleson S, Cromlish W, et al. Comparison of the cyclooxygenase-1 inhibitory properties of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, using sensitive microsomal and platelet assays. Can J Physiol Pharmacol, 1997, 75: 1088-95.
    29. Tanaka K, Yamamoto T, Aikawa Y, et al. Inhibitory effects of an anti-rheumatic agent T-614 on immunoglobulin production by cultured B cells and rheumatoid synovial tissues engrafted into SCID mice.Rheumatology(Oxford),2003,42: 1365-71.
    30. Aikawa Y, Tanuma N, Shin T, et, al. A new anti-rheumatic drug, T-614,effectively suppresses the development of autoimmune encephalomyelitis.J Neuroimmunol, 1998, 89: 35-42.
    31. Kawakami A, Tsuboi M, Urayama S, et al. Inhibitory effect of a new anti-rheumatic drug T-614 on costimulatory molecule expression, cytokine production, and antigen presentation by synovial cells. J Lab Clin Med,1999, 133: 566-74.
    32.王兴旺,陈敏珠,徐叔云.白芍总苷对T淋巴细胞亚群的作用。中国药理学通报,1992,8:340-44.
    33.李俊,梁俊山,周爱武.白芍总苷对B淋巴细胞增殖和白介素1生成的调节作用.中国药理学与毒理学杂志,1994,8:53-55.
    34.王斌,陈敏珠,徐叔云.白芍总苷对大鼠腹腔巨噬细胞产生肿瘤坏死因子的调节机制.中国药理学通报,1997,13:255-57.
    35.王志坚、万军梅、陈敏珠 白芍总苷对正常人与类风湿关节炎患者单核细胞和淋巴细胞功能的影响 中国药理学通报,1994;10;197-201.
    36.李俊、陈敏珠、徐叔云 白芍总苷对大鼠腹腔巨噬细胞产生前列腺素E_2的作用及部分作用机制的研究 中国药理学通报 1994,18:43.
    37.李俊、赵维中、陈敏珠、白芍总苷对大鼠腹腔巨噬细胞产生白三烯B4的影响。中国药理学通报 1992,10:267-70.
    38.栗占国.风湿病的免疫及生物治疗进展.中国新药杂志,2001,10:488.
    39.王斌、姚余有、周爱武等 白芍总苷对佐剂性关节炎大鼠的免疫调节作用及其与一氧化氮的关系 中国免疫学杂志 1996,12:104-06.
    40.王斌、陈敏珠、徐叔云 白芍总苷对佐剂性关节炎大鼠滑膜细胞功能和脾细胞增殖反应的影响 中国药理学与毒理学杂志,1994,8:129-31.
    41. Capitosti SM, Hansen TP, Brown ML. Thalidomide analogues demonstrate dual inhibition of both angiogenesis and prostate cancer. Bioorg Med Chem,2004, 12: 327-36.
    42. Gockel HR, Lugering A, Heidemann J, et al. Thalidomide Induces Apoptosis in Human Monocytes by Using a Cytochrome c-Dependent Pathway. The Journal of Immunology, 2004, 172: 5103-09.
    43. Franks ME, Macpherson GR, Figg WD. Thalidomide. Lancet, 2004, 363(9423):1802-11.
    44. Kobayashi JH, Yagyu T, Kondo T, et al. Suppression of Urokinase Receptor Expression by Thalidomide Is Associated with Inhibition of Nuclear Factor κB Activation and Subsequently Suppressed Ovarian Cancer Dissemination. Cancer Res, 2005, 65: 10464-71.
    45. Yasui K, Kobayashi N, Yamazaki T, et al. Thalidomide as an immunotherapeutic agent: the effects on neutrophil-mediated inflammation. Curr Pharm Des, 2005, 11: 395-401.
    46. Jayne A. Keifer, Denis C. et al. Inhibition of NF-κB Activity by Thalidomide through Suppression of IκB Kinase Activity-J. Biol. Chem., 2001, 276:22382-87.
    47. Mary A, Lokuta, Anna Huttenlocher. TNF-α promotes a stop signal that inhibits neutrophil polarization and migration via a p38 MAPK pathway. Journal of Leukocyte Biology. 2005, 78:210-19.
    48. Wary KK , Humtsoe JO. Anti-lipid phosphate phosphohydrolase-3 (LPP3) antibody inhibits bFGF- and VEGF-induced capillary morphogenesis of endothelial cells. Cell Commun Signal, 2005,3: 9.
    49. Lainer DT , Brahn E. New antiangiogenic strategies for the treatment of proliferative synovitis. Expert Opin Investig Drugs, 2005, 14: 1-17.
    50. Gnant MF, Turner EM , Alexander HR . Effects of hyperthermia and tumour necrosis factor on inflammatory cytokine secretion and procoagulant activity in endothelial cells. Cytokine, 2000, 12: 339-47.
    51. Friedl J, Puhlmann M, David L. et al. Induction of permeability across endothelial cell monolayers by tumor necrosis factor (TNF) occurs via a tissue factor-dependent mechanism: relationship between the procoagulant and permeability effects of TNF. Blood, 2002, 100: 1334-39.
    52. Fujita J, Mestre JR, Jerome B. et al. Thalidomide and Its Analogues Inhibit Lipopolysaccharide-mediated Induction of Cyclooxygenase-2. Clin. Cancer Res, 2001, 7: 3349.
    53. Mestre JR, Mackrell PJ, Rivadeneira DE, et al. Redundancy in the Signaling Pathways and Promoter Elements Regulating Cyclooxygenase-2 Gene Expression in Endotoxin-treated Macrophage/Monocytic Cells. J Biol Chem, 2001, 276: 3977-82.
    54. Payvandi P, Wu L, Haley M, et al. Immunomodulatory drugs inhibit expression of cyclooxygenase-2 from TNF-alpha, IL-1beta, and LPS-stimulated human PBMC in a partially IL-10-dependent manner. Cell Immunol, 2004,230: 81-88.
    55. Noguchi T, Shimazawa R, Nagasawa K, et al. Thalidomide and its analogues as cyclooxygenase inhibitors. Bioorg Med Chem Lett, 2002, 12: 1043-46.
    56. Culo MI, Vergles D, Horvat G, et al. The levels of TNF-alpha, CAMP, PGE2 and IL-18 in synovial fluid of patients with rheumatoid arthritis and in patients with osteoarthritis. Ann Rheum Dis, 2005, 64: 1831.
    57. Sumariwalla PF, Cao Y, Wu HL, et al. The angiogenesis inhibitor protease-activated kringles 1-5 reduces the severity of murine collagen-induced arthritis. Arthritis Res Ther, 2003, 5: 32-39.
    58. Clavel G, Bessis N, Boissier MC. Recent data on the role for angiogenesis in rheumatoid arthritis. Joint Bone Spine, 2003, 70: 321-6.
    59. Lainer DT, Brahn. E. New anti angiogenic strategies for the treatment of proliferative synovitis. Expert Opin Investig Drugs, 2005, 14: 1-17.
    60. Davis JCJ, Huang F, Maksymowych W. New therapies for ankylosing spondylitis: etanercept, thalidomide, and pamidronate. Rheum Dis Clin North Am, 2003, 29: 481-94.
    61. Wei JC, Chan TW, Lin HS, et al. Thalidomide for severe refractory ankylosing spondylitis: a 6-month open-label trial. J Rheumatol, 2003, 30: 2627-31.
    62. Toussirot E, Wendling D. Therapeutic advances in ankylosing spondylitis. Expert Opin Investig Drugs, 2001, 10: 21-29.
    1. Firestein GS. Invasive fibroblast-like synoviocytes in rheumatoid arthritis: passive responder or transformed aggressors? Arthritis Rheum, 1996, 223:117-26.
    2. Kramer I, Wibulswas A, Croft D, et al. Rheumatoid arthritis: targeting the proliferative fibroblast. Prog Cell Res, 2003, 5:59-70.
    3. Spector TD, Hart DJ, Nandra D et al. Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum, 1997, 40: 723-27.
    4. Haywood L, McWilliams DF, Pearson CI, et al. Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum, 2003, 48(8):2173-77.
    5. Rhodes L A, Grainger A J, Keenan A M. et al. The validation of simple scoring methods for evaluating compartment-specific synovitis detected by MRI in knee osteoarthritis. Rheumatology, 2005, 44 (12) : 1569-73.
    6. Middleton J, Manthey A, Tyler J. Insulin-like growth factor (IGF) receptor, IGF-I, interleukin-1 beta (IL-1 beta), and IL-6 mRNA expression in osteoarthritic and normal human cartilage. J Histochem Cytochem, 1996,44:133-41. 7. Tanaka K, Kawasaki H, Kurata K , et al.T-614, a novel antirheumatic drug, inhibits both the activity and induction of cyclooxygenase-2 (COX-2) in cultured fibroblasts. Jpn J Pharmacol, 1995, 67(4): 305-14.
    8. Tanaka K, Shimotori T, Taniguchi Y, et al. Pharmacological studies on T-614, a novel antiinflammatory agent:effect on type Ⅱ collagen-induced arthritis in DBA/1J mice and spontaneous arthritis in MRL/1 mice. Int J Immunotherapy, 1992,9:69-78.
    9. Inaba T, Tanaka K, Takeno R, et al. Synthesis and antiinflammatory activity of 7-methanesulfonylamino-6 -phenoxychromones. Antiarthritic effect of the 3-formylamino compound (T-614) in chronic inflammatory disease models. Chem Pharm Bull (Tokyo), 2000, 48(1): 131-39.
    10.王斌,姚余有等.白芍总苷对AA大鼠关节损伤的保护作用.中国药理学与毒理学杂志,1996,10(3):211-14.
    11. Zhu L, Wei W, Zheng YQ. Effects and mechanisms of total glucosides of paeony on joint damage in rat collagen-induced arthritis. Inflamm Res, 2005, 54(5): 211-20.
    12. Jayne A. Keifer, Denis C. et al. Inhibition of NF-κB Activity by Thalidomide through Suppression of IκB Kinase Activity. J Biol Chem, 2001, 276(25):22382-87.
    13. Bombini G, Canetti C, Rocha FA, et. al. Tumour necrosis factor-alpha mediates neutrophil migration to the knee synovial cavity during immune inflammation. Eur J Pharmacol, 2004, 496(8): 197-204.
    14. Lainer DT, Brahn E. New anti angiogenic strategies for the treatment of proliferative synovitis. Expert Opin Investig Drugs, 2005, 14(1): 1-17.
    15. Tsuzaki M, Guyton G, Garrett W, et al. IL-1 beta induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. J Orthop Res, 2003, 21(2): 256-64.
    16. Liebermann DA, Gregory B, Hoffman B. AP-1 (Fos/Jun) transcription factors in hematopoietic differentiation and apoptosis. Int J Oncol, 1998, 12(3): 685-700.
    17. Evangelisto A, Wakefield R, Emery P. Imaging in early arthritis. Best Pract Res Clin Rheumatol, 2004, 18(6):927-43.
    18. Baeten D, Demetter P, Cuvelier C, et al. Comparative study of synovial histology in rheumatoid arthritis, spondyloarthropathy and osteoarthritis: influence of disease duration and activity. Ann Rheum Dis, 2000, 59:945-53.
    19. Kraan MK, Haringman JJ, Post WJ, et al. Immunohistological analysis of synovial tissue for differential diagnosis in early arthritis. Rheumatology, 1999, 38: 1074-80.
    20. Youssef PP, Kraan MC, Breedveld FC et al. Quantitative microscopic analysis of inflammation in rheumatoid arthritis synovial membrane samples selected at arthroscopy compared with samples obtained blindly by needle biopsy. Arthritis Rheum , 1998,41:663-69.
    21. Tak PP, Lindblad S, Klareskog L, et al. Synovial biopsies for analysis of the synovial membrane: new perspectives. Newsl Eur Rheumatol Res, 1994,2:27-29.
    22. Bresnihan B. Diagnostic value of synovial biopsies. Ann Rheum Dis, 2005, 64: 94.
    23 . Lizzio MM, Salli S, Gremese E, et al. Functional indexes in osteoarthritis of the knee are significantly determined by the presence or not of synovitis .Ann Rheum Dis, 2005, 64: 293.
    24. Amos N, Lauder S, Evans A, et al. Adenoviral gene transfer into osteoarthritis synovial cells using the endogenous inhibitor IκBα reveals that most, but not all, inflammatory and destructive mediators are NFκB dependent. Rheumatology, 2006, 10: 1093-78.
    25. Mastbergen S.C, Bijlsma JWJ, Lafeber FJPG. Nly IL-1beta/TNF-alpha treated human articular cartilage is sensitive to Prostaglandin E2. Ann Rheum Dis, 2005,64: 475.
    26. Siegle I, Klein T, Backman JT, et al. Expression of cyclooxygenase 1 and cyclooxygenase 2 in human synovial tissue: differential elevation of cyclooxygenase 2 in inflammatory joint diseases. Arthritis Rheum. 1998 Jan, 41(1): 122-29.
    27. FioritoS, Magrini L, Adrey J, et al. Inflammatory status and cartilage regenerative potential of synovial fibroblasts from patients with osteoarthritis and chondropathy. Rheumatology (Oxford) , 2005, 44(2): 164-71.
    28. BenitoMJ, VealeDJ, FitzGeraldO, et al. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dise, 2005,64 (9) :1263-67.
    29. Lories R J U, Derese I, Bari C De, et al. In vitro growth rate of fibroblast-like synovial cells is reduced by methotrexate treatment. Ann Rheum Dise, 2003, 62 (6) :568-71.
    30. Riendeau D, Charleson S, Cromlish W, et al. Comparison of the cyclooxygenase-1 inhibitory properties of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, using sensitive microsomal and platelet assays. Can J Physiol Pharmacol, 1997, 75(9): 1088-95.
    31. AikawaY, Yamamoto M, Yamamoto T, et al. An anti-rheumatic agent T-614 inhibits NF-kappaB activation in LPS- and TNF-alpha-stimulated THP-1 cells without interfering with IkappaBalpha degradation. Inflamm Res, 2002, 51(4): 188-94.
    32. Tanaka K, Yamamoto T, Aikawa Y, et al. Inhibitory effects of an anti-rheumatic agent T-614 on immunoglobulin production by cultured B cells and rheumatoid synovial tissues engrafted into SCID mice. Rheumatology( Oxford) , 2003,42 (11): 1365-71.
    33. Aikawa Y, Tanuma N, Shin T, et, al. A new anti-rheumatic drug, T-614, effectively suppresses the development of autoimmune encephalomyelitis. J Neuroimmunol, 1998, 89(8): 35-42.
    34. Kawakami A, Tsuboi M, Urayama S, et al. Inhibitory effect of a new anti-rheumatic drug T-614 on costimulatory molecule expression, cytokine production, and antigen presentation by synovial cells. J Lab Clin Med, 1999, 133 (6): 566-74.
    35. Inaba T, Tanaka K, Takeno R, et al. Synthesis and antiinflammatory activity of 7-methanesulfonylamino-6-phenoxychromones. Antiarthritic effect of the 3-formylamino compound (T-614) in chronic inflammatory disease models. Chem Pharm Bull (Tokyo), 2000, 48(1): 131-39.
    36. Kohno M, Aikawa Y, Tsubouchi Y, et al. Inhibitory effect of T-614 on tumor necrosis factor-alpha induced cytokine production and nuclear factor-kappaB activation in cultured human synovial cells. J Rheumatol, 2001, 28(12): 2591-96.
    37.王兴旺,陈敏珠,徐叔云.白芍总苷对T淋巴细胞亚群的作用。中国药理学通报,1992,8(5):340-44.
    38.李俊,梁俊山,周爱武.白芍总苷对B淋巴细胞增殖和白介素1生成的调节作用.中国药理学与毒理学杂志,1994,8(1):53-55.
    39.王斌,陈敏珠,徐叔云.白芍总苷对大鼠腹腔巨噬细胞产生肿瘤坏死因子的调节机制.中国药理学通报,1997,13(3):255-57.
    40.王志坚、万军梅、陈敏珠 白芍总苷对正常人与类风湿关节炎患者单核细胞和淋巴细胞功能的影响 中国药理学通报,1994;10(3):197-201.
    41.李俊、陈敏珠、徐叔云 白芍总苷对大鼠腹腔巨噬细胞产生前列腺素E_2的作用及部分作用机制的研究 中国药理学通报 1994,18:43.
    42.李俊、赵维中、陈敏珠、白芍总苷对大鼠腹腔巨噬细胞产生白三烯B4的影响。中国药理学通报 1992,10:267-70.
    43.栗占国.风湿病的免疫及生物治疗进展.中国新药杂志,2001,10(7):488.
    44.王斌、姚余有、周爱武等 白芍总苷对佐剂性关节炎大鼠的免疫调节作用及其与一氧化氮的关系 中国免疫学杂志 1996,12(2):104-06.
    45.王斌、陈敏珠、徐叔云 白芍总苷对佐剂性关节炎大鼠滑膜细胞功能和脾细胞增殖反应的影响 中国药理学与毒理学杂志,1994,8(2):129-31.
    46.王志坚,陈敏珠,孙桂华等 白芍总苷治疗类风湿关节炎的临床药理研究。中国药理学通报,1994;10(2);117-21.
    47. Zheng YQ, Wei W. Total glucosides of paeony suppresses adjuvant arthritis in rats and intervenes cytokine-signaling between different types of synoviocytes. It Immunopharmacol, 2005; 5(10): 1560-73.
    48. Capitosti SM, Hansen TP, Brown ML. Thalidomide analogues demonstrate dual inhibition of both angiogenesis and prostate cancer. Bioorg Med Chem, 2004, 12(2): 327-36.
    49. Gockel HR, Lugering A, Heidemann J, et al. Thalidomide Induces Apoptosis in Human Monocytes by Using a Cytochrome c-Dependent Pathway. The Journal of Immunology, 2004, 172: 5103-09.
    50. Franks ME, Macpherson GR, Figg WD. Thalidomide. Lancet, 2004, 363(9423):1802-11.
    51. Kobayashi JH, Yagyu T, Kondo T, et al. Suppression of Urokinase Receptor Expression by Thalidomide Is Associated with Inhibition of Nuclear Factor κB Activation and Subsequently Suppressed Ovarian Cancer Dissemination. Cancer Res, 2005, 65: 10464-71.
    52. Yasui K, Kobayashi N, Yamazaki T, et al. Thalidomide as an immunotherapeutic agent: the effects on neutrophil-mediated inflammation. Curr Pharm Des, 2005, 11(3): 395-401.
    53. Jayne A. Keifer, Denis C. et al . Inhibition of NF-κB Activity by Thalidomide through Suppression of 1KB Kinase Activity -J. Biol. Chem., 2001, 276(25): 22382-87.
    54. Mary A, Lokuta, Anna Huttenlocher. TNF-α promotes a stop signal that inhibits neutrophil polarization and migration via a p38 MAPK pathway. Journal of Leukocyte Biology. 2005, 78:210-19.
    55. Wary KK , Humtsoe JO. Anti-lipid phosphate phosphohydrolase-3 (LPP3) antibody inhibits bFGF- and VEGF-induced capillary morphogenesis of endothelial cells. Cell Commun Signal, 2005,3: 9.
    56. Lainer DT , Brahn E. New antiangiogenic strategies for the treatment of proliferative synovitis. Expert Opin Investig Drugs, 2005, 14(1): 1-17.
    57. Gnant MF, Turner EM , Alexander HR . Effects of hyperthermia and tumour necrosis factor on inflammatory cytokine secretion and procoagulant activity in endothelial cells. Cytokine, 2000, 12(4): 339-47.
    58. Friedl J, Puhlmann M, David L. et al. Induction of permeability across endothelial cell monolayers by tumor necrosis factor (TNF) occurs via a tissue factor-dependent mechanism: relationship between the procoagulant and permeability effects of TNF. Blood, 2002, 100: 1334-39.
    59. Fujita J, Mestre JR, Jerome B. et al. Thalidomide and Its Analogues Inhibit Lipopolysaccharide-mediated Induction of Cyclooxygenase-2. Clin. Cancer Res, 2001, 7: 3349.
    60. Mestre JR, Mackrell PJ, Rivadeneira DE, et al. Redundancy in the Signaling Pathways and Promoter Elements Regulating Cyclooxygenase-2 Gene Expression in Endotoxin-treated Macrophage/Monocytic Cells. J Biol Chem, 2001, 276: 3977-82.
    61. Payvandi P, Wu L, Haley M, et al. Immunomodulatory drugs inhibit expression of cyclooxygenase-2 from TNF-alpha, IL-lbeta, and LPS-stimulated human PBMC in a partially IL-10-dependent manner. Cell Immunol, 2004,230(2): 81-88.
    62. Noguchi T, Shimazawa R, Nagasawa K, et al. Thalidomide and its analogues as cyclooxygenase inhibitors. Bioorg Med Chem Lett, 2002, 12(7): 1043-46.
    63. Culo MI, Vergles D, Horvat G, et al. The levels of TNF-alpha, CAMP, PGE2 and IL-18 in synovial fluid of patients with rheumatoid arthritis and in patients with osteoarthritis. Ann Rheum Dis, 2005, 64: 1831.
    64. Sumariwalla PF, Cao Y, Wu HL, et al.The angiogenesis inhibitor protease-activated kringles 1-5 reduces the severity of murine collagen-induced arthritis. Arthritis Res Ther, 2003, 5(1): 32-39.
    64. Clavel G, Bessis N, Boissier MC. Recent data on the role for angiogenesis in rheumatoid arthritis. Joint Bone Spine, 2003, 70(5): 321-6.
    66. Scott BB, Zaratin PF, Gilmartin AG, et al. TNF-alpha modulates angiopoietin-1 expression in rheumatoid synovial fibroblasts via the NF-kappa B signalling pathway. Biochem Biophys Res Commun, 2005, 328(2): 409-14.
    67. Nagashima M, Tanaka H, Takahashi H, et al. Study of the mechanism involved in angiogenesis and synovial cell proliferation in human synovial tissues of patients with rheumatoid arthritis using SCID mice. Lab Invest, 2002, 82(8): 981-88.
    68. Oliver SJ, Freeman SL, Corral LG, et al. Thalidomide analogue CC1069 inhibits development of rat adjuvant arthritis. Clin Exp Immunol, 1999, 118(2): 315-21.
    69. Bombini G, Canetti C, Rocha FA, et al. Tumour necrosis factor-alpha mediates neutrophil migration to the knee synovial cavity during immune inflammation. Eur J Pharmacol, August 2, 2004, 496(1-3): 197-204.
    70. Koch AE. The role of angiogenesis in rheumatoid arthritis: recent developments. Ann Rheum Dis, 2000, 59(Suppl 1):65-71.
    71. Lainer DT, Brahn. E. New anti angiogenic strategies for the treatment of proliferative synovitis. Expert Opin Investig Drugs, 2005, 14(1) : 1 — 17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700